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—— Abstract

In this paper, we study rotating Q-automata, which are (memoryless) automata with weights
in Q, that can read the input tape from left to right several times. We show that the series realized
by valid rotating Q-automata are Q-Hadamard series (which are the closure of Q-rational series
by pointwise inverse), and that every Q-Hadamard series can be realized by such an automaton.
We prove that, although validity of rotating Q-automata is undecidable, the equivalence problem
is decidable on rotating Q-automata. Finally, we prove that every valid two-way Q-automaton
admits an equivalent rotating Q-automaton. The conversion, which is effective, implies the
decidability of equivalence of two-way Q-automata.
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1 Introduction

Rotating automata are a natural model of automata. They were first considered as a
restriction of two-way automata [8, 11]. In this model, the automaton reads the input from
the left to the right, but when the right end of the input is reached, either the automaton
stops, or the tape is rewinded back to the left end of the input. In the Boolean case, rotating
automata are as expressive as NFA, but they have been studied since their size can be much
smaller [8]. In particular they can compute the intersection of two regular languages with a
linear number of states.

In the framework of weighted automata or transducers, rotating automata are more
expressive than one-way automata or transducers [9]. In particular, in rationally additive
semirings [5], they realize Hadamard series, which are the closure of rational series by
Hadamard product and Hadamard inverse. This is a sound class of series, and in this
framework, algorithms have been defined to convert rotating automata to expressions
describing Hadamard series and to synthesize rotating automata from such expressions [4].

Hadamard series over a field have been studied for a long time [12] and it is not surprising
that rotating automata can realize them. Nevertheless, fields are not rationally additive
semirings, and the potentially infinite number of runs for some input must be handled in a
more subtle way to translate rotating automata to Hadamard series. In this paper we prove
that the set of Hadamard series over Q is exactly the behaviour of rotating Q-automata.
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We also prove that two-way Q-automata realize the same class of series. This is an
extension of the work of Anselmo and Bertoni on probabilistic two-way automata [1]. In
contrast, sweeping transducers with unary outputs are equivalent to rotating transducers
and they are weaker than two-way transducers [7]. Notice that the algebraic characterization
of series realized by weighted two-way automata is in general not achieved.

In Section 2, we briefly recall the definition of rational series and weighted automata.
In Section 3, we define Hadamard series, which form a strictly larger class than rational
series, and study different ways to describe them as well as the conversions between these
descriptions. Finally we show that it is undecidable whether the description of a Hadamard
series, called a Hadamard expression, is well defined, but in the case where two expressions
actually define a Hadamard series, their equivalence is decidable.

In Section 4, we introduce rotating Q-automata and we prove that they actually realize
Q-Hadamard series and that, conversely, a rotating Q-automaton can be synthesized from
any expression denoting a Hadamard series. In particular, rotating Q-automata are strictly
more expressive than one-way Q-automata.

Finally, in Section 5 we formally define two-way Q-automata and we show that they
can be simulated by rotating Q-automata. As a consequence, the equivalence of two-way
Q-automata is decidable.

2 Rational series and weighted automata

For every alphabet A, we denote A* the free monoid generated by A. The set of formal
power series over A* with coefficients in Q is denoted Q((A*)). A series s in Q({A*)) is a
mapping from A* into Q; the coefficient of a word w in s is denoted (s, w), the coefficient of
the empty word is the constant term of the series, and s itself is denoted as a formal sum:

s= Z (s, w)w. (1)

weA*

The sum s+ ¢ of two series is the pointwise sum. The Cauchy product is the extension of the
usual polynomial product to series; the series 1 (where all the coefficients are 0 except the
constant term equal to 1) is neutral for this product. The Cauchy product is associative and
distributes over the sum. Hence (Q({A*)),+,-) is a semiring.

In a semiring, the star of an element is defined as the sum of the powers of the element,
if it exists. Hence, in (Q((A*)),+, ), the star of s is defined if the constant term belongs to
] — 1;1[; it is called the Kleene star of s and is denoted s*. In contrast to the case of the
Boolean semiring, the Kleene star is not idempotent in Q, neither in series with coefficients
in Q.

The support of a series s is the set of words w such that (s,w) # 0. A series with a finite
support is a polynomial; if every word of A* belongs to the support, we say that the series
has a full support.

» Definition 1. The set QRatA* of rational series is the closure of polynomials in Q({A*))
under sum, Cauchy product and Kleene star.

Likewise, the set of Q. -rational series is the closure of polynomials with positive coefficients
under sum, Cauchy product and Kleene star.

The behaviour of an automaton is the language or series that describes the result of the
automaton on every input. For instance, the behaviour of an NFA is the language of accepted
words. The behaviour of a Q-automaton is the series which maps every word to the weight
of this word in the automaton.
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» Definition 2. A Q-automaton over an alphabet A is a tuple A = (Q, E,I,T), where
Q@ is a finite set of states;
I and T are, respectively, the initial and the final weight functions from @ into Q;
E is the transition weight function from @ x A x @ into Q.

The set of initial (resp. final) states is the support of I (resp. T), i.e. the states p such
that I(p) # 0 (resp. T(p) # 0). The set of transitions is the support of E.

As usual, a run with label w = wiws ... wy in A* is a sequence of states (p;);efo;x] such
that po is an initial state, py is a final state, and for every ¢ in [1;k], (pi—1,w:, pi) is a
transition. The weight of the run is equal to I(pg). Hle E(pi—1,;,pi)-T(pr). The weight
A(w) of a word w in A is the sum of all runs with label w. The behaviour of A is the series
Y wear A(w)w. We say that A realizes the series s if s is the behaviour of A. Like regular
languages are the behaviour of NFA, by the Kleene-Schiitzenberger Theorem [15], Q-rational
series are the behaviour of one-way Q-automata.

In the sequel, it will be useful to consider automata with particular properties.

» Lemma 3. Every Q-automaton is equivalent to an automaton with a single initial state
with initial weight 1 and such that the weight of every transition is positive.

Proof. Let A = (Q, E,I,T) be a Q-automaton. We first show that A is equivalent to an
automaton with a single initial state with initial weight 1. An initial state ¢ is added; for
every state ¢ and every letter a, we extend £ with E(i,a,q) = >_, I(p).E(p, a, ), and T' with
T(i) =2, 1(p).T(p). The automaton A" = (QU {i}, E, x;,T), where x; is the characteristic
function of ¢, is then equivalent to A.

We assume now that A = (Q, F, x;,T) has a single initial state with initial weight 1. We
define B = (Q x {—1,1}, E, x(3,1), T") such that, for every p, q in Q, every letter a, and every

i, in {=1,1},

i.j.E(p,a,q) ifi.j.E(p,a,q) >0,

T (p,i) = iT(p). 2
0 otherwise; ) 2 @)

El((pa i)a a, (Qa.])) = {

There is a natural bijection between runs of A and runs of B such that corresponding runs
have the same weights, hence B is equivalent to A. <

3 Hadamard series

3.1 Hadamard operations

We consider now the Hadamard product of two series: if s and ¢ are two series in Q((A*)),
then for every word w in A*, (s ® t,w) = (s,w).(t, w). This product is also called the
pointwise product. The neutral for this product is the series where the coefficient of every
word is 1; this series is the characteristic series of A* and is denoted itself A*. Like in any
commutative semiring, the Hadamard product preserves the rationality of series.

» Proposition 4 ([16]). The Hadamard product of two Q-rational series is a Q-rational
series.

This result is constructive (¢f. for instance [13]): if two rational series are realized by two
Q-automata, their Hadamard product is realized by the direct product of the Q-automata.
As usual, the Hadamard power of a series can be defined from the Hadamard product. The
0-th Hadamard power of every series is the neutral for the Hadamard product, that is A*. If
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s is a series with each coefficient in | — 1; 1[, then the sum of the Hadamard powers of s is
defined; it is called the Hadamard iteration of s and denoted s®.

Likewise, if the support of s is full, the Hadamard inverse of s is defined, and for every
series t, the Hadamard quotient of ¢ by s is defined as

t t
Yw € A%, (o—,w) = { ,w>. (3)
S <5’ w>
A*
With this notation, the Hadamard inverse of s is o .
s

» Definition 5. The set QHadA* of Hadamard series over Q is the set of series which are
equal to the Hadamard quotient of two rational series.

The set of Hadamard series is closed under sum and Hadamard product:

t t tot t v tos+tos

o— O o— = o—-—, e—+o—=0———. (4)
s s s@©s s s sO s

If z is a rational number in | — 1;1[, the sum of powers of z is a rational number

2* = (1 —x)~!. Since the Hadamard product is a pointwise operation, this extends to formal
power series: if every coefficient of a series s is in | — 1; 1], then
*
o A

¥ =m0 ()

A* — s

Therefore, series generated from rational series using sum, Hadamard product, and Hadamard
iteration are Hadamard series.

Conversely, the Hadamard inverse can also be computed from the Hadamard iteration. To
this end, for every rational number A\, we define Geom(\) as the series over A* such that, for
every word w, (Geom(\), w) = Alwl+1,

» Lemma 6. Let t be a Q-rational series such that, for every word w, (t,w) > 0. There
exists a positive rational number \ such that t' = A* —t ® Geom(\) is a Q. -rational series
where every coefficient is in [0; 1].

Proof. By Lemma 3, there exists a Q-automaton A = (Q, E,I,T) that realizes ¢, with a
single initial state ¢ with weight 1 and positive transitions.

Let M = max(max; >, E(p,a,q), max, T(p)) and A = 1/M. We define B = (Q U
{L}, E',I,T"), where L is a fresh state and, for every p,q in Q U { L} and every letter a,

E(p,a,q).\ if p,q € Q,
1- > E(pya,r).A ifpe@andqg=1,

E'(p,a,q) = reQ (6)
0 otherwise.

Depending on T”, the automaton B may realize different series:

! In particular, ¢ has full support.
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(a) T'(p) = T(p).\ for every p in @ and T”(L) = 0; then there is a natural bijection between
runs of B and runs of A; the weight of each run with label w in B is equal to the weight
of the corresponding run in A multiplied by A“I*1. Hence (B, w) = (t,w). A"+,

(b) T'(p) =1 for every p in QU {L}; for every letter a and every state p, the sum of weights
of outgoing transitions from p with label a is equal to 1. As there is only one initial state
with weight 1, the weight of every word in B is 1.

(c) T'(p) =1 —T(p).X for every p in Q and T"(L) = 1. In this case, the behaviour is the
difference between the two previous behaviours and (B,w) = 1 — (¢, w).A“I*1 which is
in [0;1].

In the last case, every weight in B is positive; hence B is a Q-automaton which realizes a

Q4 -rational series. <

» Proposition 7. For every Q-rational series s with full support, there exists a positive
rational number A such that the Hadamard iteration of A* — s ® s © Geom(\) is defined and
A*
o—— = (A* — 5 © 5 © Geom(\))® © s © Geom()\). (7)
s
Proof. If s is a Q-rational series with full support, t = s ® s is also rational with positive
coefficients. Hence, by Lemma 6, there exists A such that 1 — (s, w)2.A"*I*1 is in [0; 1] for

every word w, and

A* A*
(A* —t ® Geom(M\)® ® s ® Geom(\) = o—————— © 5 ® Geom(\) = o——. (8)
t ® Geom(\) s

<

Finally, our definition of Hadamard series is consistent with the definition of [4]:

» Corollary 8. QHadA* is the closure of QRatA* wunder Hadamard product, sum, and
Hadamard iteration.

» Proposition 9. There exist Q-Hadamard series which are not rational.

Proof. Let t be the series such that, for every k in N, <t,ak> = k+ 1. It is a rational
series: t = a*.a*. Let s be the Hadamard inverse of ¢: for every k in N, (s, a*) = k—}H The
coefficients of a rational series over one variable satisfy a linear recurrence relation (cf. for

instance [2]). Therefore s is not rational. <

» Proposition 10. The set QHadA* is not closed under Cauchy product.

Proof. Let s be the series defined in the proof of Proposition 9. We consider the Cauchy
product of s with itself; for large integers k, it holds:

k

2 1 2Ink
ky _ ~
<5.5,a>7k+2;:()2_+1 o 9)

If s.s is a Hadamard series, it is the Hadamard quotient of two rational series = and y. If

(resp. y) is rational, its coefficients satisfy a linear recurrence relation. The ratio of (z,a*)

and (y,a*) can not be equivalent to 21]?’“, .

» Remark. By Lemma 6, if a series is the Hadamard quotient of two Q4-rational series, it is
also in the closure of QRatA* under sum, Hadamard product and Hadamard iteration.

Nevertheless, it is unknown whether a series in this closure is always the Hadamard
quotient of two Q-rational series.

6:5
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3.2 Validity and equivalence

Rational series over QQ are represented by rational expressions. It is well known that such
an expression may be non valid if the star operator is applied to a subexpression whose
interpretation is a series s on which the star is not defined. Nevertheless, the star can be
applied if and only if the constant term of s is in ] — 1; 1[; this condition is decidable on
rational expressions; thus it is decidable whether a rational expression is valid.

There are two ways to describe Q-Hadamard series. First, a Q-Hadamard series is a
quotient of s by ¢t where s and ¢ are two QQ-rational series; hence, it can be described as a pair
of rational expressions. Such a representation is valid if and only if both rational expressions
are valid and ¢ has full support.

It is undecidable whether a Q-rational series has full support (¢f. [2, 13]). Notice that it
is decidable whether a Q4 -rational series has full support.

» Proposition 11. [t is undecidable whether the representation of a Q-Hadamard series as a
pair of Q-rational series is valid.
If the denominator series is Q4 -rational, the validity of the representation is decidable.

Another description of Q-Hadamard series consists in the application of pointwise opera-
tors (sum, Hadamard product, Hadamard iteration) to Q-rational expressions. This leads
to Q-Hadamard expressions as defined in [4]. The validity of Q-Hadamard expressions is
undecidable, as well as the validity of Q-Hadamard expressions.

» Proposition 12. [t is undecidable whether a Q4 -Hadamard expression is valid.

: %; 1} accepts

some word with a probability larger than or equal to 3 [10]. Let s be the Q. -rational series
which is the behaviour of this automaton. It is undecidable whether (2s)® is defined. <

Proof. It is undecidable whether a probabilistic automaton with weights in {0

Assume now that h; = (s1,t1) and he = (s2,t2) are two valid representations of Q-
Hadamard series as pairs of Q-rational series. Then h; and hs represent the same series if
and only if s1 ®ty = so ®t;. The Hadamard product of two Q-rational series is a computable
Q-rational series (Prop. 4), and the equivalence of Q-rational series is decidable (¢f. [2, 13]).

If Q-Hadamard series are described by Q-Hadamard expressions, these descriptions can
be converted into pairs of Q-rational series. Actually, using Equations (4) and (5), every
Q-Hadamard expression can be turned into a pair of expressions which are combinations of
Q-rational expressions connected with sum and Hadamard product operators. Each of these
expressions denotes a Q-rational series.

» Theorem 13. The equivalence of valid descriptions of Q-Hadamard series is decidable.

3.3 Extension to real and complex numbers

All results presented in this section apply directly to series over R, up to the calculability of
operations with real numbers.

To apply them on series over C, we need to consider the complex conjugacy. The conjugacy
commutes with rational operations; hence, if s is a C-rational series, its complex conjugacy s
is also a C-rational series. Thus, Proposition 7 can be extended.

» Proposition 14. For every C-rational series s with full support, there exists a positive real
number X such that the Hadamard iteration of A* — s ©@5® Geom(A) is defined and
A*
o—— = (A* — 5 ©35® Geom(\))® ®3 ® Geom(A). (10)
S
Actually, s ©® s is a C-rational series whose coefficients are positive real numbers, hence, it is
a R-rational series [6] and Lemma 6 applies.
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4 Weighted rotating automata

A rotating Q-automaton is a Q-automaton that can read its input from left to right several
times. To this end, it is endowed with transitions with a special label r, which is not in A.
A run of a rotating Q-automaton is accepting for a word w in A* if the label of the run
is in (wr)*w.
For every word w, if the sum of the weights of the accepting runs for w is defined, the
weight A(w) of w in A is equal to this sum. The automaton is valid if the weight of every
word in A* is defined.

» Remark. Every one-way Q-automaton over an alphabet A can be considered as a rotating
Q-automaton without any transition with label r. In this case, every run accepting a word
w has label w, hence, its behaviour as a rotating Q-automaton is the same as its behaviour
as a one-way Q-automaton.

» Proposition 15. The behaviour of a valid rotating Q-automaton is a Q-Hadamard series.

Proof. Q4 U {oo} is a rationally additive semiring: the star of every element is defined.

By [9], every rotating (Q4 U {oo})-automaton realizes a Hadamard series. Thus every valid
rotating Q-automaton realizes a Q-Hadamard series. If A is a valid rotating Q-automaton,
its behaviour s can be split into s = sy — s_, where s; and s_ are realized by rotating

Q4-automata. This construction is similar to the one described in the proof of Lemma 3.

Since s; and s_ are Q-Hadamard series, the behaviour of A is a QQ-Hadamard series. <

» Remark. In the definition of validity, it is not assumed that the potentially infinite sums of
weights are in Q (they might be in R); it appears that these sums can be computed through
the rational operations (sum, product and star), hence, if they are defined, they belong to Q.

» Remark. Clearly, Proposition 15 extends to R. It also holds for rotating C-automata.
Using a construction similar to the construction in the proof of Lemma 3 (with Q' =
Q x {-1,1,i,—i}), one shows that every series s with coefficients in C can be split into four
series with positive real coeflicients: s = Sye4 — Sye— + %-Sim+ — -Sim—-

The following proposition is a corollary of Proposition 15 and Theorem 13, since every
rotating Q-automaton can be turned into a Q-Hadamard expression.

» Proposition 16. The equivalence of valid rotating Q-automata is decidable.

We prove now that every Q-Hadamard series can be realized by a rotating Q-automaton.
If two automata A and B respectively realize series s and t, it is straightforward that the
union of A and B realizes the series s +t. Likewise, s ®t is realized by the automaton A ® B
based on the union of A and B, where

for every final state p of A and every initial state ¢ of B there is a transition with label r

and weight T4 (p)I5(q);

the initial function is restricted to states of A and the final function to states of .
In order to realize s®, a similar construction could be applied to A by adding transitions with
label r from final states to initial states. This construction may lead to an infinite number
of runs accepting a given word w, and, even if the weight of w is in | — 1; 1], there is no
guarantee that the sum of all these runs is defined. Therefore, we consider that Q-Hadamard
series are Hadamard quotients of Q-rational series and we prove that such a quotient can be
realized by a rotating Q-automaton.

» Proposition 17. Let s be a Q-rational series with full support. There exists a valid rotating
Q-automaton A such that the behaviour of A is the Hadamard inverse of s.

6:7
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Proof. By Lemma 6, there exists a positive rational number A\ such that t = A* — s ®
s ® Geom() is a series with coefficients in [0; 1] that can be realized by a Q. -automaton
A=(Q,E,I,T). Without loss of generality, we assume that A has a single initial state ¢
with weight 1. Let B be the rotating Q-automaton built from A by:
adding a transition from each final state p to state ¢ with label r and weight T'(p);
adding a new state L, which is initial and final with weight 1, and such that there is a
loop on the state with weight 1 for every label except r.
Every run with label w in B is either a circuit in 1 with weight 1, or a concatenation of runs
in A (glued with r-transitions). The weight of every run in A is positive and for every word
w, the sum of the weights of all runs with label w in A is smaller than 1. Hence, the weight
of w in B is defined: it is the star of the weight of w in A. Therefore, B is valid and its

behaviour is (A* — s ® s ©® Geom()))® = o Ttis then easy to build a rotating
s©s©Geom ()
automaton that realizes (4* — s ® s © Geom(\))® © s ©® Geom(\) = ot <

S

» Theorem 18. The set of series which are behaviours of valid rotating Q-automata is the
set of Q-Hadamard series.

Rotating Q-automata and Q-Hadamard expressions are therefore equivalent. Proof of
Proposition 11 applies on rotating Q-automata and their validity is therefore undecidable.

» Proposition 19. The validity of a rotating Q-automaton is undecidable.

A sweeping Q-automaton is an automaton that can read its input from left to right
and right to left, but can only change the direction of the reading head on one of the
endmarkers. Every rotating Q-automaton can be simulated by a sweeping Q-automaton.
Conversely, like in any commutative semiring, sweeping Q-automata can be simulated by
rotating Q-automata.

Hence, the validity of sweeping Q-automata is undecidable, but the equivalence of valid
sweeping Q-automata is decidable.

5 From two-way to rotating automata

In this section, we formally define two-way Q-automata and we show that they can be
simulated by rotating Q-automata. The proof presented here is inspired by the work in [1]
on two-way probabilistic automata. Starting with a two-way Q-automaton, for every word w,
we define a matrix M,, such that the weight of w in the two-way Q-automaton is an entry of
M, the sum of iterated powers of M,,. We show that since M is the inverse of Id — M,,, the
weight of w can be computed as the ratio of an entry of the matrix of cofactors of Id — M,
by the determinant of Id — M,,. We prove that both the entry of the matrix of cofactors and
the determinant are rational power series (when w spans over A*), therefore the behaviour of
the two-way Q-automaton is the Hadamard quotient of two rational series, i.e. a Hadamard
series.

5.1 Weighted two-way automata

There are different models of two-way automata. If reading the left and right endmarks is
allowed, they are all equivalent; depending on the model, the computation can start (resp.
stop) at the beginning, the middle or the end of the word, and the move of the reading head
can be performed in each state or during each transition traversal.
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1 1 F a b b -
50,, < Za, — P §CL
34,
. P2
— I,
2b, < 30
(a) The automaton A;. (b) A run over the word abb.

Figure 1 A two-way automaton and one run over the word abb.

For convenience in the conversion from two-way Q-automata to rotating Q-automata, we
use in this paper two-way Q-automata where computations start and stop at the left end of
the word.

Formally, if A is an alphabet, a two-way Q-automaton over A is a tuple A = (Q, F,I,T),
where

(@ is the finite set of states;

E is the transition function: @ x (AU{F, 1} x Q — Q;

I and T are respectively the initial and final functions in Q@ — Q.

A transition is an element ¢ of Q x (AU {F, 4} x @ such that E(¢) is different from 0.

Likewise a state p is initial if I(p) # 0; it is final if T'(p) # 0.
The value in {—1,+41} on each transition shows the direction of the move of the head of
the automaton on the current letter. If it is equal to +1, the head moves forward and we

can denote it by —, if it is equal to —1, the head moves backward and it can be denoted <.

There is no transition with backward move and label F; likewise, there is no transition with
forward move and label .
A path compatible with a word w = wy ... wy in A* is a sequence of consecutive transitions
p = (Pi—1, i, M4, Pi)icq;ep Such that there exists a function pos : [0; £] — [0; k+-1] satisfying
for every i > 0, pos(i) = pos(i — 1) + my;
for every i € [1;4], if pos(i — 1) =0, x; =k, and if pos(i — 1) = k + 1, x; =, otherwise
T = Wpos(i—1)-
If furthermore, pg is initial, pos(0) = 1, p, is final, and pos(¢) = 0, then p is a run (over w).

‘

The weight of such a run is I(pp). (H E(pil,xi,mi,pi)> T (pe)-

Notice that with this model, a runl olver the empty word w can exist; it contains at
least one transition. For instance, if p is an initial state, ¢ a final state and (p,H, <+, q) is a
transition, there is a run over the empty word formed with this single transition.

The weight computed by A on a word w in A* is the sum (if defined) of the weights of
all runs over w. The automaton A is valid if for every word w, the sum of the weights of
runs over w is defined.

» Example 20. Let A; be the two-way automaton of Figure la. A run of this automaton
over the word abb is described in Figure 1b; it is the path (p,a, —,¢)(q, b, <, p)(p, a, +,p):
it starts at position 1 in an initial state, and ends at position 0 in a final state.

We use a classical extension of the model of adjacency matrices for graphs. We suppose
from now that @ = [1;n] where n is a positive integer. For every letter a in AU {-, 4} we
define F'(a) (resp. B(a)) as the matrix of size n x n such that F(a),, = E(p,a,—,q) (resp.
B(a)p,q = E(p,a,4,q)).

6:9
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These matrices represent paths of length 1. In graphs or one-way automata, paths of
length k are represented by the k-th power of the adjacency matrix. In the case of a two-way
automaton, the position of the head (given by the function pos) must be taken into account,
and since there may exist runs with arbitrary large length for a given input, all the powers
of the suitable matrix must be considered.

To this end, we define the star of a (square) matrix M as the (infinite) sum of its powers,
if it is defined. It satisfies M™* = Id + M.M™*, where Id is the identity matrix, and it can be
inductively computed (cf [3]):

(4 2]-

We fix from now w as a word with length k: w = wy ... wg. To study paths involved in
the runs over w, we consider block matrices with dimension (k + 2) x (k + 2) where every

(A*BD*C)* A* A*(BD*CA*)*BD*

11
D*C(A*BD*C)*A*  D* + D*CA*(BD*CA*)*BD* (1

entry is itself a n x n matrix. We assume that indices of blocks are integers in [0; k + 1]. If
X is such a matrix, X; ; is a matrix and (X ;)p 4 represents some subpaths of runs over w
which start in position ¢ and state p, and end in position j and state q.

We first consider the matrix M, that represents subpaths of runs over w with length 1:

My, = 0 | Bws) 0 (12)
0 F(wk)
0 0 B(H| o

During the computation, if the automaton reads the letter w; (in position i) and follows a
forward transition, the head moves to position i + 1. Hence, for every i, the matrix F(w;) is
the block (4,7 4+ 1) of M,,; likewise the matrix B(w;) is the block (i,¢ — 1), F'(F) is the block
(0,1), and B(H) is the block (k + 1, k).

We show that (M}); ; represent all the subpaths of runs over w which start in position ¢
and end in position j.

For r in [0;k + 1], let C™) be the (r + 1) x (r + 1) block matrix where CZ-(Z) isanxn
matrix such that the entry at position (p, q) is the sum of the weights of the paths compatible
with w from position i and state p to position j and state ¢ with no position larger than r.

» Lemma 21. With the notations above, M, = ck+1),

The proof is by induction on k and on the star of the restriction of M, to the k+ 1 first row
blocks and the k + 1 column blocks.

On a two-way automaton, the initial and final functions can respectively be seen as row
and column vectors in Q™. We let L; denote the 1 x (k + 1) block matrix where every block
is null, except the i-th block, which is the identity matrix. Proposition 22 follows then from
Lemma 21:

» Proposition 22. The weight of w computed by A is equal to I.Lo.M;."Ly.T.
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If A is valid, the star of M, is defined for every word w, hence Id — M, is invertible.
Otherwise, there would exist a non zero vector v such that M,,.v = v; since M, is defined,
M:wv=(d+ M:M,)v=v+ M:v, and v = 0 which is a contradiction. Therefore, for
every word w,

1 .
det (Id — M,,) pge:Q Ip-(adj (1d = Muw))ntp.g- Ty, (13)

(Ayw) = I.Ly.(I1d — M,) 'Ly . T =

where adj (X) is the adjugate matrix of X and det (X) is the determinant of X. For every
p,q in Q, let oy 4 be the series defined by (a4, w) = (adj (Id — My))n+p,q and let § be the
series defined by (4, w) = det (Id — M,,). We show in the next part that all these series are
Q-rational.

5.2 Inductive computation of a determinant of a tridiagonal block
matrix

Inductive computations of determinants of tridiagonal block matrices have already been
studied [14]. We give here a new presentation of this computation in order to show that it
can be realized by a (one-way) Q-automaton.

Let n and k be two positive integers. We consider two families (A;);ef1;x) and (A})iefo:x]
of matrices in Q™*".

For every r in [0; k], we consider the matrix N() in Qr+1nx(r+2)n defined as:

[AL Id, A, 0 7
0 A, ld, A,
N(7) = ) (14)
Al d, A
L0 Al id,, |

where Id,, is the identity matrix with size n.
We introduce now some notations.
For every set X and every positive integer i, P; X denotes the set of subsets of X with 4
elements.
If M is a matrix, the determinant of M is denoted |M].
If X is a set of indices, X is its complementary set, and XX is the sum of elements of X.
If X and Y are two subsets of indices of a matrix M, Mxy is the restriction of M to
rows in X and columns in Y.
For every C' in P,[1;2n], we let G (C) denote the square matrix N©

[1;(r+1)n]xC"
For every C, D in P,[1;2n],

!
koo = oy . (15)
0 r—1 n =1 J[1;2n] x (CN[1;2n])U(D+2n)
» Lemma 23. For every r € [2;k], for every C in P,[1;2n],
‘G(”(O)‘ = Y (cpyEOE, ‘K(T)(C, D)‘ . ‘G“—?) (D)‘ (16)
DeP,[1;2n]
n(n+1)

where sig(D +n) = +X¥D.

2
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The proof is an application of the Laplace expansion of the determinant:

YN eQUYX Clid),  INl= Y (U Nl Ngy|. (D)
Y ePx|[1;d]

We apply now Lemma 23 to the computation of the determinant of Id — M,,. For every
matrix X, we let ©X denote the rotation of X by half-turn; notice that | X| = |°X|. For
every word w = wy ... wy, we set Ag = —°B(H), A}, = —°F(F), 4 = —°B(w;), and
Al = —OF(w;), for every i in [1; k], then G*+V([1;n]) is equal to ©(Id — M,,).

5.3 The transformation automaton

We describe the (one-way) automaton that computes det (Id — M,,), based on the induction
described in Lemma 23. The set of states is {i} U P, [1;2n] U A x P,[1;2n]. The order of
the induction is 2; there are two different kinds of initial states, depending on the parity of
the length of the input.
State 4 is initial with weight 1 and, for every D in P, [1;2n] and every a in A, there is a
transition from ¢ to D with label a and weight

(18)

—O%F(a) Id,, —%B(a)
| [ 0 —OF(F) Idy,

:l [1;2n]xD .

For every D in P,[1;2n], D is initial with weight ) [—CF(F) Id, | [1n]xD|’ and for every
a in A, there is a transition from D to (a, D) with label @ and weight (—1)58(P+7),
For every C, D in P,[1;2n] and every a,b in A, there is a transition from (a, D) to C

with label b and weight

HOF(b) I, —°B®b) 0 19)

(a)} [1;2n] x (CN[1;2n])U(D+2n)

_o
Every state (a, D) is final with weight [ ldn B(H) 0

—“F(a)  dy OB(“)] [L;2n] % ([1;n]UD+n)
By Lemma 23, this automaton computes det (Id — M,,) for every word wj; it realizes the
series 0 which is thus QQ-rational.

Likewise, for every p,q in [1;n], (adj(ld — My))p4n,q is equal to the determinant of
C{P*™  which is the matrix Id — M, where every coefficient of the g-th row and every
coefficient of the p + n-th column is replaced by 0, except the coefficient in (g, p + n) which
is replaced by 1. The determinant of C"*™™ can be computed with the same induction as
for det (Id — M,,) with different initial conditions.

Hence, for every p, ¢ in @, the series o, 4 is rational; so is the series a = Zp}qu Ip.op ¢ T
Finally, the series realized by the two-way Q-automaton is the Hadamard quotient of two
rational series. It is therefore a Hadamard series that can be realized by a rotating Q-

automaton.

» Theorem 24. The set of series realized by two-way Q -automata is exactly the set QHad A*
of series realized by rotating Q -automata.

Notice that the conversion of two-way Q-automata to rotating Q-automata is effective,
hence the decidability of equivalence of rotating Q-automata extends to two-way Q-automata.

» Theorem 25. The equivalence of valid two-way Q -automata is decidable.
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6 Conclusion

The results presented in this paper can be extended to other fields. Section 5 actually
shows that the behaviour of a two-way automaton over a field is the Hadamard quotient of
two rational series. It extends to any field. Notice that the definition of the behaviour of
a two-way automaton involves infinite sums; hence, a structure (topology for instance) is
required to handle these sums, and this structure must transfer to matrices to define the star
of a matrix.

To show that two-way automata are equivalent to rotating automata, it must be proved
that every Hadamard quotient of two rational series can be realized by a rotating automaton
(Theorem 18), and Proposition 7 is crucial in this proof. This proposition applies to Q and
R; it can also be used to prove Theorem 18 in C. For other fields, dedicated proofs should
be provided.

The conversion from two-way Q-automata to rotating Q-automata heavily relies on
the inversion of a matrix describing the computations in the two-way Q-automaton. This
inversion is considered as the quotient between some coefficients of the adjugate matrix and
the determinant and we exhibit one-way Q-automata that realize this computation. It is still
an open question to find a more combinatorial argument to the equivalence between the two
models. It could help in characterizing semirings where two-way and rotating automata are
equivalent. It could also lead to more efficient algorithms to convert two-way Q-automata
into rotating Q-automata or to compute Q-Hadamard expressions of the series they realize.
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