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Abstract
Many succinct data structures on the word RAM require precomputed tables to start operating.
Usually, the tables can be constructed in sublinear time. In this time, most of a data structure is
not initialized, i.e., there is plenty of unused space allocated for the data structure. We present
a general framework to store temporarily extra buffers between the user defined data so that
the data can be processed immediately, stored first in the buffers, and then moved into the
data structure after finishing the tables. As an application, we apply our framework to Dodis,
Pǎtraşcu, and Thorup’s data structure (STOC 2010) that emulates c-ary memory and to Farzan
and Munro’s succinct encoding of arbitrary graphs (TCS 2013). We also use our framework to
present an in-place dynamical initializable array.
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1 Introduction

Small mobile devices, embedded systems, and big data draw the attention to space- and
time-efficient algorithms, e.g., for sorting [4, 23], geometry [1, 3, 10] or graph algorithms
[2, 6, 7, 9, 12, 14, 15, 16]. Moreover, there has been also an increased interest in succinct
(encoding) data structures [8, 11, 12, 20, 18, 24, 22].

On a word RAM, succinct data structures often require precomputed tables to start
operating, e.g., Dodis, Pǎtraşcu, and Thorup’s data structure [8]. It emulates c-ary memory,
for an arbitrary c ≥ 2, on standard binary memory almost without losing space. Before we
can store any information in the data structure, suitable lookup tables have to be computed.
Hagerup and Kammer [12, Theorem 6.5] showed a solution that allows us to store the
incoming information in an extra buffer and read and write values immediately. However,
their solution scrambles the data so that extra mapping tables have to be built and used
forever to access the data, even after the lookup tables are built. Moreover, Farzan and
Munro [11] described a succinct encoding of arbitrary graphs. To store a dense graph, an
adjacency matrix is stored in a compact form by decomposing the matrix in tiny submatrices.
Each submatrix is represented by an index and the mapping is done via a lookup table.
Assume that the tables are not ready, but the information of the graph already arrives in a
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stream. One then can use an extra buffer and store the small matrices in a non-compact
way and operate on these matrices until the tables are ready. At the end, the non-compact
matrices can be moved from the buffers to the data structure that stores the encoded graph.

Usually, the tables can be constructed in sublinear time. In this time, most of the
data structure is not initialized, leaving plenty of allocated space unused. We present a
general framework to store a temporarily extra buffer within the initial memory. Even if
the initialized space changes, the content in the extra buffers do not change for the user.
Intuitively, we describe a way how to use the uninitialized space to store a usual array with
random access. In particular, if the buffer is not needed any more and thus is removed, our
implementation ”leaves” the data structure as if the extra buffer has never existed.

As another application of our framework, we show that in-place initializable arrays can be
made dynamic and with every increase of the array size, the new space is always initialized.
Our model of computation is the word RAM model with a word length w that allows us to
access all input words in O(1) time. Thus, to operate on a dynamic initializable array of
maximum size nmax we require that the word size w = Ω(lognmax).

To obtain a dynamic initializable array, we additionally assume that we can expand and
shrink an already allocated memory. The memory can come from an operating system or
can be user controlled, i.e., the user can shrink an initializable array temporarily, use the
space for some other purpose, and can increase it again if it is needed later.

1.1 Previous Array Implementation
The folklore algorithm [5, 19], which uses two arrays with pointers pointing to each other
and one array storing the data, uses O(nw) bits of extra space. Navarro [21] showed an
implementation that requires n+ o(n) bits of extra space. Recently, Hagerup and Kammer
[13] showed that d(n(t/(2w))t)e extra bits for an arbitrary t suffice if one wants to support
access to the array in O(t) time. In particular, by choosing t = O(logn), the extra space is
only one bit. Very recently, Katoh and Goto [17] showed that also constant access time is
possible with one extra bit. All these array implementations are designed for static array
sizes.

1.2 Our Contributions
First, we present our framework to extend a data structure by an extra buffer. We then apply
the framework to two known algorithms [8, 11]. Finally, we make Katoh and Goto’s in-place
initializable arrays dynamic. For this purpose, we identify problems that happen by a simple
increase of the memory used for the array and stepwise improve the implementation to make
our array dynamic. Our best solution supports operations read, write, and increase in
constant time and an operation shrink in amortized constant time.

Why do we support the shrink operation only in amortized time? The rest of this
paragraph is not a precise proof, but gives some intuition what the problems are if the goal is
to support constant non-amortized time for initialization, writing and shrinking. To support
constant-time initialization of an array we must have knowledge of the regions that are
completely written by the user and these regions must store the information which words
are written. If we now allow arbitrary shrink operations, then we do not have the space
to keep all information. Instead, we must clean the information, but keep this information
of the written words that still belong to the dynamic array. If we want to run the shrink
operation in non-amortized constant time, the information must be sorted in such a way that
the cleaning can be done by simply cutting away a last part of the information. This means
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the writing operation must take care that the information is stored “almost sorted”. Since
we can not sort a stream of elements in O(1) time per element in general, it seems plausible
that the writing operation takes ω(1) time.

The remainder of this paper is structured as follows. We begin with summarizing the
important parts of Katoh and Goto’s algorithm in Section 2. In Section 3 we present our
framework to implement the extra buffer stored inside the unused space of a data structure
without using extra space. In Section 4, we extend our framework to dynamic arrays. As
an application, we show in Section 5.1 how to increase the array size in constant time. In
Sections 5.2 and 5.3, we present the final implementation that also allows us to decrease the
array size.

2 In-Place Initializable Array

Katoh and Goto [17] introduced the data structure below and gave an implementation that
uses nw + 1 bits and supports all operations in constant time.

I Definition 1. An initializable array D is a data structure that stores n ∈ IN elements of
the universe Z ⊆ IN and provides the following operations:

read(i) (i ∈ IN): Returns the i-th element of D.
write(i, x) (i ∈ IN, x ∈ Z): Sets the i-th element of D to x.
init(x) (x ∈ Z): Sets all elements of D to initv := x.

Let D[0, . . . , n] be an array storing D. D[0] is used only to store one bit to check if the
array D is fully initialized. If D[0] = 1, D is a normal array, otherwise the following rules
apply.

The idea is to split a standard array into blocks of b = 2 words and group the blocks into
two areas: The blocks before some threshold t ∈ IN are in the written area, the remaining
in the unwritten area. Moreover, they call two blocks chained if the values of their first
words point at each others position and if they belong to different areas. In the following, we
denote by d(B) the block chained with a block B. Note that d(d(B)) = B.

In our paper, we also use chains. Therefore, we shortly describe the meaning of a
(un)chained block B in [17]. Compare the following description with Figure 1. If B is in the
written area and chained, then B is used to store a value of another initialized block and is
therefore defined as uninitialized. If B is in the unwritten area and chained, B contains user
written values and the words of B are divided among B and d(B). In this case d(B) was not
written by the user. In detail, the second word of B is stored in this word of B, but the first
word is stored in the second word of d(B) since the first word is used to store a pointer. If B
is in the written area and unchained, B contains user written (or initial) values. If B is in
the unwritten area and unchained, B has never been written by the user. Every time the
user writes into a block for the first time, i.e., into a word of an (un)chained block in the
(un)written area, the written area increases by moving the first block of the unwritten area
into the written area and by possibly building or correcting chains.

3 Extra Space during Initialization of Succinct Data Structures

We now consider an arbitrary data structure D∗. The only assumption that we make is that
D∗ accesses the memory via a data structure D realizing an n-word array. For the time
being, assume D is the data structure as described in Section 2 with D[0, . . . , n] being an
array storing D. We define |U | as the number of blocks of the unwritten area. As long as

MFCS 2018



65:4 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

γ δ

γ δ

· · · j α

initv initv

i i+ 1

· · ·

t

i β

α β

j j + 1

· · ·

initv initv

i i+ 1

D[ ]

D[ ]

written area unwritten area

Figure 1 The different states of blocks inside the written and unwritten area. D represents
the users view on the data with initv being the initial value, α, β, γ and δ as user written values.
D represents the internal view with i and j as indices of D.
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Figure 2 The block size b = 3 allows us to move α and β to the chained block such that each
block of the unwritten area has one unused word to store the extra data of E.

D is not fully initialized, i.e, not all array locations have been written since the last init
operation, and only m ∈ IN with m < n words are written in D, Theorem 2 shows that the
unused storage allocated for D allows us to store information of an extra array E inside D
by increasing the block size to b > 2 (Figure 2). The size of E depends on |U | and thus on
the current grade of initialization of D. In contrast to D, E is an uninitialized array. Clearly,
we can build an initialized array on top of E.

The array size n is not always a multiple of the block size b. By decreasing n and handling
less than b words of D separately, we assume in this paper that n is a multiple of b.

I Theorem 2. We can store an extra array E of (n/b−m)(b− 2) ≤ |U |(b− 2) words inside
the unused space of an initializable array D of size n, split into blocks of size b where m is
the number of writing operations since the last init operation. E dynamically shrinks from
the end whenever the number of user defined values m increases.

Proof. Let us consider a block B inside the unwritten area. B and d(B) together provide
space for 2b words, but the chain between them exists only because the user wrote inside
one block (block B, but not in d(B)), and thus we need to store b words of user data.
Furthermore, B and d(B) each needs one word to store a pointer that represents the chain.
By storing as much user data as possible of B in d(B), we have b− 2 unused words in B –
say, words 2 to b− 1 are unused. Note that, if a block B is unchained, then it contains no
user values at all and we have even b unused words. If the user wrote m different words in
D, then the threshold t of D (t is the number of blocks in the written area) is expanded
at most m-times. The written area consists of at most m blocks of a total of n/b blocks.
Consequently, the unwritten area has (n/b−m) ≤ |U | blocks with each having (b−2) unused
words. If we start storing E[0], E[1], ... in the unwritten area strictly behind t, the indices of
E will shift every time the unwritten area shrinks. Therefore, we store E in reverse and E
loses with every shrink the last b− 2 words, but get static indices. J

Note that values like the threshold t and the initial value can be easily stored at the
beginning of E. However, we require the size of D to determine the beginning of E. To store
the size we therefore move D[1] also into E and store the size of the array in D[1]. During
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the usage of D we have to take this into account, but for simplicity we ignore this fact. If
the array is fully initialized and thus D[0] = 1, we can not store the size anymore, but in
this case we do not need to know it.

3.1 Application: c-ary Memory
To use Dodis et al.’s dictionary [8] on n elements, a lookup table Y with O(logn) entries
consisting of O(logn) bits each must be constructed, which can be done in O(logn) time.
Using tables of the same kind to store powers of c, we can assume that c = Ω(n) by combining
consecutive elements of the input into one element.

Hagerup and Kammer extended Dodis et al.’s dictionary to support constant-time initial-
ization by storing the k = Θ(logn) elements that are added first to the dictionary in a trie
DT of constant depth d ≥ 4 and out degree n1/d using O(nε+1/d + logn log c) bits for any
ε > 0. Interleaved with the first k operations on the dictionary, first the table Y is built and
afterwards, the elements in DT are moved to the dictionary.

Since DT is required only temporarily, it is stored within the memory allocated for the
dictionary – say in the last part of the memory. The problem that arises is that the last part
of the memory can not be used as long as it is still used by DT. This problem is solved by
partitioning the memory allocated for the dictionary into sectors and using a complicated
mapping function that scrambles the elements to avoid the usage of the last part of the
memory. Unfortunately, even after computing the table Y and moving all elements from DT

over to the dictionary, the data is still scrambled and each access to the dictionary has to
start evaluating the mapping function.

With Theorem 2 as an underlying data structure it is easily possible to implement the
dictionary with constant initialization time. Use the extra array E to store temporarily the
table DT. Even if we use block size b = 3, E has enough space (at least (n(log c)−k logn)/3 ≥
(n − k)(logn)/3 bits at the end of the construction of Y ) to store DT. The mapping
function becomes superfluous because the data is not scrambled by the usage of Theorem 2.
Furthermore, working on a copied and slightly modified algorithm after the full initialization
of D, we can avoid checking the extra bit in D[0].

3.2 Application: Succinct Encoding of Dense Graphs
Farzan and Munro [11] showed a succinct encoding of an n× n-matrix that represents an
arbitrary graph with n vertices and m edges. Knowing the number of edges they distinguish
between five cases: An almost full case, where the matrix consists of almost only one entries,
an extremely dense case, a dense case, a moderate case and an extremely sparse case. For each
case, they present a succinct encoding that supports the query operations for adjacency and
degree in constant time and iteration over neighbors of a vertex in constant time per neighbor.

We consider only the dense case where table lookup is used. Dense means that ∃δ > 0 :
n2/ log1−δ n ≤ m ≤ n2(1 − 1/(log1−δ n). As shown in [11], a representation in that case
requires log

(
n2

m

)
+ O(n2(log1−δ n)) = log

(
n2

m

)
+ o(log

(
n2

m

)
) bits of memory. To encode the

matrix of a graph Farzan and Munro first divide the matrix into small submatrices of size
log1−δ n × log1−δ n for a constant 0 < δ ≤ 1. For each row and column of these smaller
submatrices they calculate a summary bit that is 1 if the row and column, respectively, of the
submatrix contains at least one 1. The summary bits of a row and column, respectively, of
the whole matrix are used to create a summary vector. On top of each summary vector they
build a rank-select data structure [24] that supports queries on 0’s and 1’s in constant time.
They also build a lookup table to map between possible submatrices and indices as well as to
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answer all queries of interest in the submatrix in O(1) time. In a further step, they replace
each submatrix by its index. By guaranteeing that the number of possible submatrices is
o(logn), the construction of the lookup table can be done in O(n) time. To simply guarantee
this, we restrict δ to be larger than 1/2. We generalize the result to dynamic graphs by
replacing the rank-select data structures with choice dictionaries [12, Theorem 7.6] as follows.
We assume that the graph has initially no edges and that there is a stream that consists
of edge updates and query operations. With each edge update, the index of the submatrix
with the edge changes. To realize the index transition we use a translation table that maps
both, the current index of the submatrix and the edge update made, to the new index. We
store for each summary vector an edge counter, i.e., the number of 1’s that was used to
calculate each summary bit of it. Whenever an edge is created between two nodes we set
the corresponding bit of the row and column, respectively, inside the summary vector to 1
and increment the edge counter. If an edge is removed we decrement the edge counter and
determine, using a lookup table, if the submatrix containing this edge has still 1’s in the
updated row and column, respectively. If it does not, we set the corresponding summary bit
inside the summary vector to 0.

If the lookup tables for the submatrices are computed, we can easily answer queries to
the current graph similar to [11] since we still use the summary vectors. We can ask for
membership to answer adjacency queries. To iterate over the neighbors of a vertex (i.e., over
the 1’s in the summary vector), we can use the iterator function of the choice dictionary
instead of using the select function of the rank-select data structure. The degree query is
answered by returning the edge counter.

In the rest of this subsection, the goal is to extend the data structure such that it supports
the queries without a delay for the construction of the lookup tables. The idea is to store a
submatrix with a 1 entry in the usual, non-compact way in the extra buffer and to add a
pointer from the submatrix to a place in the buffer where it is stored. To reduce the space
used for the pointers, we group logδ n submatrices together to get a group matrix of size
log1−δ n× logn. Moreover, we use an array A in which we store a pointer of O(logn) bits for
each group. With the first writing operation to one submatrix in a group, the group matrix
is stored in the usual, non-compact way in an initialized array, which is stored in the extra
buffer (Theorem 2). In the array A, we update the pointer for the group. In addition, we
build a choice dictionary on top of each non-empty column and each non-empty row of the
group matrix. With each choice dictionary, we also count the number of 1 entries.

Using the counts we can update the summary vectors and the non-compact submatrix
allows us to answer adjacency queries. Both can be done in constant time without using
lookup tables. To support the neighborhood query, we use choice dictionaries on top of
the group matrices. In detail, whenever updating an edge, update the summary vector,
add or follow the pointer to the non-compact representation, update it including the choice
dictionary and the degree counter.

After O(n) operations the lookup table is computed and, in the same time, the entries in
the non-compact matrices are moved to the compact submatrices.

The array A requires n2(logn)/((log1−δ n)(logn)) = O(n2/ log1−δ n) bits, which is negli-
gible. Moreover, a group matrix with the choice dictionaries requires O(log2 n) bits to be
stored. Thus, after O(n) operations, the total extra space usage is O(n log2 n) bits, which
easily fits in the extra buffers of size Ω(log

(
n2

m

)
− n logn) = Ω(n2/ log1−δ n − n logn) bits

after O(n) operations.
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I Theorem 3. A graph with n vertices can be stored with log2
(
n
m

)
+ O(n2/ log1−δ n) bits

supporting edge updates as well as adjacency and degree queries in constant time and iteration
over neighbors of a vertex in constant time per neighbor where m = n2/ log1−δ

2 n and δ > 1/2.
A startup time for constructing tables is not necessary.

Note that, if the whole memory of a graph representation must be allocated in the
beginning, i.e., if we do not allow a change of the space bound during the edge updates, then
our representation of the dynamical graph (with possibly n2/ log1−δ

2 n edges) is also succinct.

4 Extra Space for Dynamic Arrays

We now extend our framework to dynamic arrays. The data structure D (Definition 1) of
Katoh and Goto is not dynamic, but assume it is. Then the unwritten area of D may become
larger and smaller and with it the size of the array extra array E (Theorem 2).

Since we start indexing the words belonging to E from the end of D, changing the size of
D will change the index of the words in E. If we start indexing E from the beginning of the
unwritten area, all indices change every time the unwritten area shrinks.

To realize an indexed array we introduce a fixed-length array F . To handle the shrink
operation, we store F strictly behind the written area so that there is nothing to do if we
shrink or expand the size of D. Recall that b is the size of a block words and m is the number
of write operations. If the written area grows, we lose b− 2 unused words of the unwritten
area and therefore b− 2 used words in F . As long as there are unused words in the unwritten
area behind F we move the b− 2 words that we would lose to the first unused words behind
F . This will rotate F inside the unwritten area of D.

I Lemma 4. We can store a fixed-length array F consisting of ` words in the unused space
of D as long as ` ≤ (n/b−m− 1)(b− 2) ≤ (|U | − 1)(b− 2). If the condition is violated, then
F is destroyed.

Proof. Let the size of F be smaller than the unused space of D. Whenever the user writes
an additional word in D, m increases and the number of the unused words becomes less.
Therefore, before extending the written area by one block, we move the b− 2 words in that
block to the unused space of D behind F . We use the last block in the unwritten area to store
the size and a counter to calculate the rotation. Thus, we have one block less in contrast to
Theorem 2. F can be of size ` ≤ (n/b−m− 1)(b− 2) ≤ (|U | − 1)(b− 2). J

For some applications it is interesting to have a dynamic extra storage even if D is dynamic.
We introduce a dynamic set in Lemma 5 that can be stored inside the unwritten area of D
and supports the operations add, remove, and iterate. The last operation returns a list
of all elements in the data structure. The size of dynamic extra storage is dynamically upper
bounded by |U |.

I Lemma 5. We can store a dynamic (multi-)set of maximal ` ≤ (|U | − 1)(b− 2) elements
in the unused space of D. If the condition is violated by write operations of D, elements of
the set are removed until the condition holds again.

Proof. We store a dynamic list strictly behind the written area and shift it cyclically as in
the proof of Lemma 4. The difference here is that we have no fixed order so that we can
store new elements simply at the beginning of the unused words of D and increase the size `.
The removal of an element may create a gap that can be filled by moving an element and
decreasing `. J
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· · · · · · · · · · · · · · · · · ·
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S3[2]

I[1]:
I[2]:
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Figure 3 The figure shows a dynamic family consisting of three dynamic sets. The first element
of each set can be found in section to which I[1], I[2] and I[3], respectively, points.

For our implementation described in Section 5 we require a (multi-)set with direct access
to the elements. We can use the position in D as an address for direct access, but this
requires that the user implements a notification function, which is called by our data structure
whenever an element in the list changes its position to inform the user.

I Fact 6. Having two chained blocks B and d(B) and a suitable block size b, we can rearrange
the user data in the two blocks such that we can store O(1) extra words (information as, e.g.,
pointers) in both B and in d(B).

We next show that an algorithm can use several extra data structures in parallel.

I Lemma 7. For a b ≥ 2, D can have k ∈ IN extra data structures in parallel where each is
of size at most |U |b(b− 2)/kc.

Proof. Every block of the unwritten area has b− 2 unused words and every unused word
can be used for another data structure. J

As we see later, it is useful to have several dynamic sets of elements that are all the same
size. The sets can also be (multi-)sets.

I Corollary 8. For b > 2, D can store a dynamic family F consisting of dynamic sets where
the sets have in total at most b(|U | − 3)(b− 2)/(s+ 3)− 1c elements each of size s.

Proof. We use the unused words in the unwritten area of D and partition it into sections
of s+ 3 words. Every first word of a section is used for an array I, then s words are used
to store an element of a set, and the last two words store pointers of a doubly linked list
that connect the element in a doubly-linked list with all other elements in the set. I[i] points
to the an element of the ith set. The element is stored in one section. Using the pointers
at the end of each section, we can find the next element of the set. The realization is also
sketched in Figure 3. The unused words in the last 3 blocks (possibly, fewer blocks suffice) of
the unwritten area are used to store some constants: the size t of the written area, the initial
value of D, some parameter p ∈ IN , the number of sets in S, and the total number q of items
over all sets. Using q we can simply find the section of a new element.

If the written area of D increases, we have to start moving the first section to a new
unused section. We store the position of the new section in p. By knowing t we know how
much of the first section has been already moved and where to find the information of the
first section. J
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5 Dynamical Initializable Array

In the next three subsections, we provide implementations to make the in-place initializable
array dynamic. Therefore, we extend the initializable array D by the following two functions
to change the current size of the array.

increase(nold, nnew, initv) (nold, nnew ∈ IN): Sets the size of D from nold to nnew. All
the elements behind the noldth element in D are initialized with initv, the initial value of
D defined by the last call of init.
shrink(nold, nnew) (nold, nnew ∈ IN): Sets the size of D from nold to nnew.

In our implementation we handle the array D differently, according to its size. Recall that
w is the word size. As long as D consists of n′ = O(w) elements, we use a bit vector stored
in O(1) words to know which words are initialized. On the word RAM we can manipulate it
in constant time. To have immediate access to the bit vector we store it in the beginning of
the array and move the data located there to the first unused words. If we increase the size
of D to more than ω(w) elements, we keep the bit vector in some unused words until the
first n′ words of D are completely initialized. Having such a bit vector we assume that this
is taken into account whenever there is a reading or writing operation, but do not mention it
explicitly in the rest of the paper.

If the array D consists of at least ω(w) elements, we can not use the solution with the bit
vector. Instead, we use chains so that we can distinguish between initialized and uninitialized
blocks, even after several shrink and increase operations. We assume in the following that D
consists of ω(w) elements.

5.1 Increasing the size of D
An increase of the size of D means allocating additional memory that gives us several new
blocks inside the unwritten area. These blocks may contain arbitrary values and these values
can point at each other such that they create a so-called unintended chain between a block
Bw (written area) and a block Bu (unwritten area). Katoh and Goto break such unintended
chains by creating a self-chain (pointer at its own position) with Bu whenever they write a
value to a block of the written area. Because the increase of D may be arbitrary, we can not
destroy such chains in constant time.

To support large increases of D, we eliminate the possibility of unintended chains by
introducing another kind of chain, called verification chain. To distinguish the two kinds of
chains we name the chain introduced in Section 2 a data chain. We define a chain between
two blocks Bw and Bu as intended exactly if Bw has also a verification chain, otherwise as
unintended.

To use the verification chain, we first distribute the user data among two chained blocks
such that each block of the written area has an unused word (Fact 6). Let L be a dynamic
list with direct access stored in D (Lemma 5). Whenever the block B in the written area has
a data chain with a block d(B), we additionally require that it also must have a verification
chain with an element of the list L (Figure 4). We denote by v(B) a pointer to the element
in L chained with B and use an unused word of B to store v(B). Recall that, whenever
the unwritten area shrinks, some elements in L change their position in D. To ensure the
validity of the verification chains, we use the notification function of L to update the pointer
k ∈ IN in the effected blocks. The verification pointers in L, stored behind the written area,
are not affected by increasing the size of D.

Finally, note that L has enough space to store all verification pointers since only one
verification chain is required for each block in the unwritten area, i.e, L is of size O(|U |).
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D[ ]

D[ ]

j α k β

initv initv initv initv

· · · · · · i γ δ

α β γ δ

· · ·

L[ ] j

address k

· · ·

Figure 4 The block Bw (left) has a verification chain with an element of a dynamic list L to
verify that the data chain between block Bw and Bu (right) is intended.

5.2 Shrinking the Size of D at most O(w) Times
Shrinking the size of D means to free some memory that may be used to store information.
We distinguish between two cases. In the first case we shrink the size of D so much that L is
destroyed. In this case we make a full initialization of D as follows.

Since we lose the ability to check for unintended data chains, we first destroy them by
iterating over the verification list L, following its pointer to a block Bw, checking if the block
Bu = d(Bw) is behind the new size of D. If it is, we initialize Bw with the initial value.
Writing the initial value into Bw may created an unintended data chain, which we break.
Now the verification list is superfluous and we can iterate over the unwritten area and check
for a data chain. If there is one, we move the user values from d(B) into B and initialize
d(B), otherwise we initialize B. After the iteration, we set D[0] = 1.

Since L will be destroyed by the shrinking operation, the size |U | of the unwritten area
behind the shrinking is bounded by |L|. Thus, by using the potential function ψ = (c · length
of L) for some constant c ≥ 2, the amortized cost of the write operation increases by at
most c = O(1) and we can easily pay for the full initialization.

In the second case, we reduce the size of D such that the verification list L is still
completely present in D. In this case, all blocks of the written area remain and they still
have a verification chain. However, the data chain can point outside of D. If we subsequently
re-increase D, some blocks may still have a data chain and also a verification chain. This
violates our definition of the increase operation.

To resolve this problem we invalidate the data chains of all blocks outside D as follows.
As long as there is no shrinking operation, we store the same version number v ∈ IN to all
data chains. More exactly, let B be a block in the unwritten area chained with a block d(B)
in the written area. Then we store the version inside an unused word of d(B) using Fact 6.

Before we execute a shrink operation, we set nv to the current size of D and remember it
as the size for the current version v. With the shrink operation, we increment the version
number by one. Let v′ be the version of the chain between B and d(B). We call the chain
valid if B is before the boundary n∗v′ = min{nv|v ≥ v′}. Note that n∗v′ is the minimal
boundary that D ever had after introducing version number v′.

We obtain the boundaries n∗v from a data structure M that provides an operation to add
the new size of D after a shrink operation and another operation minbound to check if a
chain is valid, i.e., if one endpoint of the chain is or was outside of D. For later usage, M
also supports an operation remove.

add(n) (n ∈ IN): Increments an internal version counter v by one and set the boundary
n∗v = n. All boundaries n∗i (i ∈ {1 . . . v − 1}) larger than n are overwritten by n.
remove(j) (0 ≤ j ≤ v): Decrements v by j and removes the boundaries of the largest j
versions.
minbound(v) (0 ≤ v < w): Returns n∗v, the minimal boundary for v.
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I Lemma 9. M can be implemented such that it uses O(w) words, add runs in amortized
constant time, and minbound and remove run in constant time as long as there are only
O(w) versions.

Proof. We have a version counter v∗ and a table T where we store the initial boundary
for each version. Moreover, we use a stack S that additionally allows us to access the
elements of the stack directly and the data structure R from Pǎtraşcu and Thorup [25].
All three data structures can be implemented using a fixed size array and stored in extra
buffers (Lemmas 4 and 7). R consists of all versions v with nv = n∗v. The stack S store
the boundaries of the versions in R in ascending order from the bottom to the top. For a
technical reason, S stores also the version with each boundary.

To answer the minbound operation for a version v, we first determine the successor v′ of
v in R and then return n∗v = T [v′].

Assume that a new boundary nv = n is added to M for a next version v. Set T [v] = n.
Before adding a new boundary nv to S we remove all boundaries from S as long as the top
of S is larger than nv. Whenever removing such a boundary, we remove the corresponding
version from R. Finally, we add the new boundary to S and to R. By doing this, we remove
all boundaries that are larger than nv. Now all the versions of these boundaries get nv as
their new boundary.

Finally, it remains to check the running time. We use the potential function φ = |S|
with |S| ≤ w being the current size of S. Determining the boundary for a specific version
requires looking into R and to check one word in S and T . This does not change φ and runs
in O(1) time. If the running time for adding or removing versions is not constant, then in all
except a last iteration, we remove an element from the stack. Thus, the decrease of φ pays
for this. J

I Corollary 10. For every data chain, we can check in constant time if it is valid or not.

Proof. A chain between some blocks B and d(B) is valid exactly if d(B) ≤ minbound(v) is
true, where v is the version of the chain and d(B) is the position of the block that belongs to
the unwritten area. J

Whenever a block in the unwritten area has an invalid chain (caused by shrinking and
re-increasing D; determined by minbound), we return the initial value for all words of the
block. We want to remark that the structure M can maintain only O(w) versions since it
uses a dictionary from Pǎtraşcu and Thorup [25]. The dictionary is dynamic and supports
modification and access in constant time, but only for O(w) entries.

We have to make sure that we have only O(|U |) chains (counting both valid and invalid
chains) so that we are able to store them. The problem is that a shrink can invalidate many
chains. Therefore, we have to clean-up our data structure D as follows: Whenever we add a
chain, we check the validness of three old chains, i.e., chains with an old version number that
are stored at the beginning of the unwritten area in L. Invalid chains are removed whereas
valid chains are assigned to the current version. To have the time for the clean-up, we also
modify the shrink operation such that, after each shrink operation, we make sure that we
store at most |U |/2 chains. If this is not the case, we run a full initialization. By assuming
that every insert into D pays a coin, this can be done in amortized constant time since the
number of chains that we have is bounded by the number of insert operations.
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B1 d(B1) B2 d(B2) · · · v

w chains for blocks B1, B2, . . . version P&T data s. prev next

Figure 5 A subgroup that is embedded as an element of the dynamic doubly linked list containing
several block positions of a version v that are indexed with a dictionary.

5.3 The General Case
The goal in this section is to limit the number of versions to O(w) such that the data
structure M from Lemma 9 can be always used. We achieve this goal by purifying the chain
information, i.e., for some old version v′, we iterate through the chains with a version larger
than v′, remove invalid data chains and store the remaining chains under v′. Finally, we take
v′ as the current version. We so remove all versions larger than v′, which now can be reused.

Since we have no data structure to find invalid chains out of a large amount of all chains,
we partition the chains of each version into small subgroups and use also here the dictionary
from Pǎtraşcu and Thorup [25] to index the block positions B and d(B) that represent the
chain. The dictionary from the subgroup with a version v allows us to find a block that lies
behind a boundary n∗v in constant time as long as such a block exists.

In detail, a subgroup always has space for Θ(w) chains (block positions), the version v,
and a data structure from Pǎtraşcu and Thorup [25] (Figure 5). To organize the subgroups
we use a dynamic family S from Corollary 8. For each version v, we create a dynamic set in
S. Each set consists of all subgroups of the same version. Instead of having a verification
chain with a list L, each chained block in the written area has now a pointer to its subgroup.
If the block is indexed in the subgroup, then its chain is verified.

As in the previous section we use the data structure M to store and check the boundaries.
Additionally, we store the version v and a table T . The table is used to store, for each version,
the number of chains that are currently used. The updates of T are not described below
explicitly. Based on the information in T we determine how many versions we can purify.
The details of the purify operation are described on the next page.

Note that M and T are of O(w) words and the size of S is linear in the size of the
number of chains and thus bounded by O(|U |). Choosing the block size b large enough,
but still b = O(1), we can guarantee that all data structures fit into |U | unless |U | = O(w).
By running the clean-up of the last section, M and T can be removed if to many writing
operations shrink the unwritten area of D so much that |U | = O(w).

initialize(n, initv) Allocate nw + 1 bits. Partition the array into blocks of size b = 6. If
n is not a multiple of b, initialize less than b words and treat them separately. Use the
last block(s) to store the threshold t = 0, initv, and v = 1 in the unused words. Initialize
the data structure M and S, store their internally required single words also in the last
block(s) and their sets and lists in parallel (Lemma 7).
read(i): If D[0] = 1, return D[i]. Else, check to which area B = bi/bc belongs. If B is
inside the written area, check if B is verified. If it is, return initv, otherwise D[i].
If B is inside the unwritten area, check if B is chained with a block d(B). If it is not,
return initv, otherwise proceed with checking if d(B) is verified. If it is not, return initv,
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otherwise follow the verification pointer and read the version v out of the subgroup. Call
M.minbound(v) and return initv if it returned a boundary that is larger than the block
position B, otherwise return the right word out of B and d(B).
write(i, x): If D[0] = 1, write at D[i]. Otherwise, clean-up three chains as described
in the last subsection. Then check to which area B = bi/bc belongs. If B is inside the
written area, check if B is verified. If it is not, write at D[i] directly. Otherwise, the block
may have a data chain with a block d(B). If so, unchain it (like in [17]) by expanding
the written area that gives us a new unused block that we use to relocate all values and
chains from B. Correct also the chains in the subgroups. If not, just remove B and d(B)
from its subgroup. In both cases, B becomes an unused block afterwards. We initialize it
and write at D[i] directly. If B is inside the unwritten area, check if B is chained with a
block d(B). If it is, check if d(B) is verified and if its chain belonging to a version v is
valid (test M.minbound(v) ≥ B). If all is true, then write x at the right position of B
and d(B). If the chain is invalid, delete it from its subgroup and move it into the latest
subgroup of the current version. Finally, initialize B and write x as described above.
But if B is not chained, expand the written area and chain it with the new block.
Write both blocks inside the latest subgroup of the current version. Set a verification
pointer to the subgroup where the chain is stored. As before, initialize B and write
x as described above.
In all cases, whenever the unwritten area disappears, set D[0] = 1.
increase(nold, nnew, initv): If D[0] = 0, then copy the words of the last block(s) into
the new last block(s). Otherwise, initialize the required data structures as described in
initialize, but set the initial values for the threshold t to t = bnold/bc. If |U | = O(w),
use the bit vector solution described in the beginning of Section 5.
purify(nnew): Iterate from the current version v = dwe in S down and add up the
number of chains stored under a version. Stop at the first version v′ that has fewer chains
as twice the total number of chains of all versions visited before. Consider versions v′ + 1
to v and iterate over all subgroups with that version. In each subgroup, check for an
invalid chain (B, d(B)) by using M , remove it from the subgroup, from the index of the
subgroup, and initialize B with initv and repeat this on the subgroup until it has no
invalid chains. In the special case where the subgroup has less than w chains, clear the
subgroup by moving all chains into the latest subgroup of the version v′.
Then, change the version number of this subgroup to v′, unlink it from its old set and
link it into the set of v′. When finished, set the current version number v to v′.
shrink(nold, nnew): If the new size of D either cuts the space used to store the data
structures S or M or leaves less than Θ(w) unused words in the unwritten area, run the
full initialization.
If we do not fully initialize D, we proceed as follows: If we have dwe versions, call purify.
Otherwise, create a new set inside S and increment the current version number v by one
and check if the last used subgroup has less than w entries. If so, we reuse this subgroup
by removing all invalid chains. (In purify we already described the removal.)

Who pays for the purification? The idea is to give a gold coin to each previous set in S,
whenever we insert an element. Whenever a set of size x has at least x/2 coins, we clean
up the set and all sets with a larger version number. Algorithmically we can not check fast
enough if a set already has enough coins. Therefore, we wait with the purification until we
have dwe versions and check then the condition for every version from the largest version to
the smallest until we found the first version with enough coins.
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I Theorem 11. There is a dynamic array that works in-place and supports the operations
initialize, read, write as well as increase in constant time and shrink in amortized
constant time.

Proof. It remains to show the running times of the operations. Take ψ as the total number
of verification chains similar to Subsection 5.2, ci as the number of chains with the version
i ∈ {0, . . . , v − 1} and g =

∑v−1
i=0

6i·ci

w . Moreover, choose τ as the total number of missing
elements such that all subgroups are full and f = (1−D[0]) max{0, 2w − |U |}. We use the
following potential function φ = ψ + v + g + τ + f . Note that g corresponds to the usage of
the gold coins and f is non-zero only if there are very few blocks in the unwritten area U ,
but D is not completely initialized.

initialize: We have to set the threshold t and the current version in O(1) time. Thus,
φ = v = 1 – note that f = 0 by using the bit-vector solution if necessary.

read: Checking chains, reading the version number and calling the minbound function
of M can be done in constant time and φ does not change.

write: We possibly have to check if a block is chained, verified and valid. We also may
create a chain, a verification and insert it into S. All these operations require O(1) time.
In total, the number of chains may increase by one ∆ψ = O(1), ∆g = 6v

w with v being
the current version. Thus, ∆φ = O(1).

increase: Copying a few blocks runs in O(1)) time and ∆φ = 0 since ∆f = 0.

purify: Whenever we run purify we remove the last v − i versions for the largest
i with vi/2 ≤ y :=

∑v−1
i+1 ci is valid. Thus, we first have to search for version i, i.e,

we consider v − i versions. Moreover, we then have to iterate over 3y chains in 6y/w
subgroups – a subgroup is always at least half full. In each subgroup we spend 1 + d

time, where d is the number of deleted chains in each subgroup. This can be done in at
most (v − i) + 6y/w + d∗ time units where d∗ is the total number of deleted chains. In
addition, we may have deleted half empty subgroups and moved their chains to the latest
subgroup. This can be done in O(m) time if m is the number of moved chains.
We can pay for the running time since the value of the potential function decreases as
follows. By deleting versions larger than i, ∆v = −(v− i). Since we change the version of
all subgroups with a version larger than i to i, i.e., we shrink the version of y chains by
at least one, ∆g = −6y/w. In addition, ∆(ψ + τ) ≤ −2d∗ + (d∗ −m) = −d∗ −m where
the −m comes from the fact that half empty subgroups disappear, i.e, are not taken into
account in τ . To sum up, the amortized running time is O(1).

shrink: In Subsection 5.2, we already analyzed the case that D is fully initialized – the
only change is that we have further parts in the potential function, but their change is
either zero or negative. Otherwise, we have to delete invalid chains in the latest subgroup
and update it to the new version, which can be done in O(1) amortized time since ∆ψ
drops linear in the number of deleted chains. Moreover, we have to add a new version
to M and possibly delete several older versions. All this can be done in O(1) amortized
time. And finally, we may run a purify; again in O(1) amortized time.

We thus have shown all running times as promised in the theorem. J
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24 Mihai Pǎtraşcu. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), pages 305–313. IEEE Computer Society, 2008. doi:10.
1109/FOCS.2008.83.
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