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Abstract
Let f be a Boolean function on n variables, ρ a random p-restriction that independently keeps
each variable unset (or free) with probability p and otherwise uniformly sets it to 0 or 1, and
DTdepth(f) denote the depth of the smallest depth decision tree for f . Let Rd(f |ρ) be the
resilience of f to ρ for depth d, defined as

Rd(f |ρ) = Pr
ρ←ρ

[DTdepth(f |ρ) ≥ d].

If d� pn, all functions have resilience close to 0 since less than d variables would remain unset
with high probability. For d� pn, most functions f on n variables have resilience close to 1, and
some functions, like AND and OR, have resilience close to 0. Håstad’s Switching Lemma states
that for t-DNFs, the resilience Rd(f |ρ) is upper bounded by (5pt)d, and from known upper bounds
on the size of constant depth circuits computing the parity function, it follows that there exist
t-DNFs whose resilience is close to the bound obtained by Håstad. However, the exact bounds
for such maximally resilient DNFs or their structure is unclear, and moreover, the argument is
non-constructive.

In this work, we give an explicit construction of functions called Tree Tribes parameterized
by an integer t and denoted Ξt (on n variables), such that

Rd(Ξt|ρ) ≤ (4p2t)d,

and more importantly, the resilience is also lower bounded by the same quantity up to constants,

Rd(Ξt|ρ) ≥ (c0p2t)d,

for 0 ≤ p ≤ cp2−t and 0 ≤ d ≤ cd
logn

2tt log t (where c0, cp, cd are universal constants). As a result,
for sufficiently large n and small d, this gives a hierarchy of functions with strictly increasing
resilience, and covers the entire region between the two extremes where functions have resilience
(close to) 0 or 1.
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1 Introduction

One useful and powerful idea to separate a Boolean function g from some set F of Boolean
functions over {0, 1}n is to use restrictions. By showing that restricted to some subset of
{0, 1}n, the functions in F become simple, but the function g does not become simple, it can
be concluded that g 6∈ F . The extent to which functions in F become simple is captured by
Restriction Lemmas, which informally try to answer the following question: Given a family
F of Boolean functions characterized by some parameter t, and a family S of distributions
over subsets of {0, 1}n characterized by some parameter p, how complex does a function
f ∈ F remain after it is restricted to a subset S chosen according to some distribution σ ∈ S?
Defining the measure of complexity of a function and the sets F and S gives a Restriction
Lemma of a particular type.

To make more concrete statements, let f be a Boolean function on n variables, σ a
distribution over subsets of {0, 1}n, and let f |σ denote the partial function obtained by
restricting f to a subset σ chosen according to σ. In general, we will use the boldface symbol
σ to denote both the distribution over subsets and a subset chosen according to σ, and the
interpretation will be clear from context. Let M : {0, 1}2n → [0, 1] be some function such
that M(f) measures the complexity of a (total) Boolean function f . For a partial function g,
M(g) is defined naturally to be the minimum value of M(f) for any total function f that is
an extension of g. Given these definitions, we define the resilience of a Boolean function f to
σ for the measure M and threshold γ ∈ [0, 1] as follows:

RMγ (f |σ) = Pr
σ←σ

[M(f |σ) ≥ γ] = Pr[M(f |σ) ≥ γ].

It is possible to study the variation in the resilience of functions restricted to various
different distributions σ under measures of complexity M , and in this work, we study it
for a particular choice of M and σ. We will let M(f) be the depth of the smallest depth
decision tree for f , and since M(f) ∈ [n] = {0, 1, ..., n}, denoting the threshold specifically
as d instead of γ, we will also modify the range of the threshold d and let d ∈ [n]. The
restriction ρ is defined as follows: independently for every variable xi, leave xi unset with
probability p and otherwise uniformly set it to 0 or 1. Note that ρ← ρ chooses a p-biased
subset of {0, 1}n. Under the measure M and ρ defined thus, the resilience can be written as:

Rd(f |ρ) = Pr
ρ←ρ

[DTdepth(f |ρ) ≥ d] = Pr[M(f |ρ) ≥ γ]

where the measure M is understood to be DTdepth when omitted from the superscript.
Note that since every variable is independently left unset with probability p, there are

≈ pn variables that are left unset with high probability, and so if d � pn, then for any
function f , Rd(f |ρ) ≈ 0. Thus, to understand the resilience of different functions, the
interesting range is d � pn, and in general, it will be worthwhile for us to intuitively
understand d to be tiny, or about O(log logn), since even the statements we make for d = 1
will be interesting in themselves. For one extreme, let f be the AND (or OR) function on n
bits, and note that DTdepth(f) = n. However, since setting any bit or f to 0 (or 1) reduces it
to a constant function, DTdepth(f |ρ) > 0 with probability ( 1+p

2 )n ≈ e−n ≈ 0 (since p� 1
2 ),

and thus Rd(f |ρ) ≈ 0 for all d ≥ 1. On the other extreme, if f is the parity function, it is
still the case that DTdepth(f) = n, but under the action of ρ, there will be ≥ 1

2pn variables
that are unset with high probability, and f |ρ will be the parity function on the subset of
variables, and if d < 1

2pn, then Rd(f |ρ) ≈ 1. In fact, since most functions require a circuit of
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large size to decide them, it turns out that for most functions f on n variables, Rd(f |ρ) ≈ 1.
As a consequence of this, the property of not being reduced to a constant function when
restricted to ρ satisfies the largeness condition of natural proofs [8].

This motivates the question about the type of Boolean functions f that have resilience
between the two extremes of 0 and 1, and our main interest in this paper would be to
understand the structure of such functions in the intermediate region. Upper bounds on
Rd(f |ρ) are traditionally called Restriction or Switching Lemmas, which originated with
the works of [2] and [1], and were proved in their strongest form by Håstad [3], who showed
that if f is a DNF where each term has width t, then Rd(f |ρ) is upper bounded by (5pt)d.
Further, this bound can be used to prove tight lower bounds on the size of constant depth
circuits deciding the parity function, and since there exist matching upper bounds, it implies
that there exist t-DNFs whose resilience is close to (5pt)d (else it would be possible to get
a better lower bound for the size of constant depth circuits deciding parity leading to a
contradiction). However, the exact bounds achieved in terms of p, t and d are not known, and
even the structure of such maximally resilient t-DNFs is unclear. Moreover, the argument is
non-constructive.

Our result
Our main result is an explicit construction of functions for which we can prove tight lower
and upper bounds on the resilience. The functions that we construct are called Tree Tribes,
since they are similar to the Tribes function but on a tree-like structure, and are denoted by
Ξt where t is an integer parameter. Our main theorem is the following.

I Theorem 1. For every integer t ≥ 1, for every n, there is an explicit function Ξt on n

variables, such that for all p, t, and d,

Rd(Ξt|ρ) ≤ (4p2t)d,

and for 0 ≤ p ≤ cp2−t and 0 ≤ d ≤ cd
(

logn
2tt log t

)
,

Rd(Ξt|ρ) ≥ (c0p2t)d,

where cp, cd and c0 are universal constants.

We would like to remark that the lower bound holds for d at most ∼ 2−t logn, which is
meaningful for t ∈ O(log logn). However, the non-trivial part of the lower bound is that d is
upper bounded by a function not only of t (which in general would be small), but of both t
and n. Henceforth, when we consider the resilience of different functions, n will be assumed
to be very large, and t and d will assumed to be small (about O(log logn)) compared to n.

An immediate corollary of Theorem 1 is the following:

I Corollary 2. Let d and n be fixed. Let i1, . . . , ir be a sequence of integers such that
ct0 < i1 < . . . < ir < ct1(log logn − log d) and 0 ≤ p ≤ cp2−ir . Then the sequence of
functions {Ξij}rj=1 (each on n variables) has strictly increasing resilience, i.e.

Rd(Ξij |ρ) < Rd(Ξij+1 |ρ),

where ct0, ct1, cp are universal constants.

And similarly, we can get a resilience heirarchy in the following sense:
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I Corollary 3. Let d, n and r be fixed. Let t be an integer variable such that ct0 ≤ t ≤
ct1(log logn − log d)/r and p a variable that is some function of t, i.e. p = p(t) and
0 ≤ p ≤ cp2−rt. Then the sequence of functions {Ξit}ri=1 (each on n variables) has strictly
increasing resilience, i.e.

Rd(Ξit|ρ) ∈ o(Rd(Ξ(i+1)t|ρ),

where ct0, ct1, cp are universal constants.

The proof of the resilience upper bound in Theorem 1 uses a method of conditioning
on variables, and thus avoids the complex conditioning in [3, 4], and also the combinatorial
reasoning in [7, 6], and as a consequence, is simpler than both methods. The proof of the
resilience lower bound is recursive, and proceeds by analyzing the coefficients of polynomials
that arise in the analysis of Tree Tribes. Note that in Theorem 1, since we want to lower
bound the probability of the event DTdepth(Ξt|ρ) ≥ d, we require that the decision tree with
the least depth (and thus every decision tree) for Ξt|ρ must have depth greater than d with
sufficient probability. To achieve this, our proof proceeds as follows: If T is the decision tree
for Ξt, we lower bound the probability of finding “paths with a split” in T |ρ. A “path with a
split” is a subtree of T |ρ, which consists of a path of distinct variables y1, . . . , yd (where y1
is closest to the root in T |ρ), such that yd is connected to two leaves with different values
(more specifically, yd has a path to a leaf labelled 0 and a leaf labelled 1). Any decision tree
for such a subtree of T |ρ must have depth at least d (at least if the variables y1, . . . , yd do
not appear elsewhere in the tree), since the OR function is embedded in T |ρ and all the
variables of T would be distinct in our construction. However, we need a sufficient number
of vertices in the tree before we get sufficient probability mass for the event of finding such a
path with a split, and this is the reason we get an upper bound on the depth d for which
Theorem 1 holds.

We state the Preliminaries in Section 2, the construction of Tree Tribes in Section 3,
prove the resilience upper bound in Theorem 1 in Section 4, and the resilience lower bound
in Section 5. Due to space constraints, the proofs are relegated to the full version [5].

2 Preliminaries

The extended preliminaries, including the standard definitions of decision trees and random
p-restrictions are given in the full version [5], and we state only the non-standard definitions
here.

I Definition 4 (Resilience). Let f be a Boolean function on n variables, and ρ a random
p-restriction. For d ∈ [n], we let Rd(f |ρ) be the resilience of f to ρ at depth d, defined as

Rd(f |ρ) = Pr[DTdepth(f |ρ) ≥ d].

If T is some decision tree for some function f , we alternately write Rd(T |ρ) to mean
Rd(f |ρ).

I Definition 5 (Clipped decision trees, [6]). A decision tree T is t-clipped, if any vertex of T
is at a distance of at most t from some leaf.

I Definition 6 (Operators on polynomials). For a univariate polynomial Q in the variable p,
denoted as Q =

∑
i≥0 cip

i with a finite number of non-zero coefficients, define the operator
[pi] as [pi]Q = ci and the operator [↑ pi] as

[↑ pi]Q =
∑
j≥i

(
[pj ]Q

)
pj−i.
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I Definition 7 (Absolute maximizer). Given a closed set D ⊆ [0, 1] and some polyno-
mial Q in R[p], we define the absolute maximizer of [↑ pi]Q by functions Gi as Gi(Q) =
maxp∈D

∣∣[↑ pi]Q∣∣ .
3 Tree Tribes

We now formally define Tree Tribes and their variants. A specific variant, t-clipped xor Tree
Tribe, will be the function that will help us achieve the bounds in Theorem 1.

I Definition 8 (Tree Tribe). A Boolean function f is called a Tree Tribe, denoted by Ξ, if
there is a decision tree T deciding f , such that all the variables at all the vertices of T are
distinct, and from every vertex of T , there is a path to a leaf labeled 0 and a path to a leaf
labeled 1.

An example for a Tree Tribe is the OR function. Given the above definition, it is possible
to derive a variety of different Tree Tribes by imposing additional structure, and we define
the specific structure that we’ll need.

I Definition 9 (Complete clipped decision trees). Denote a complete t-clipped decision tree
T on r levels by Wt(r), and define it recursively as follows: Wt(0) is a leaf. Wt(r) consists
of vertices {v1, ..., vt}, a leaf denoted by vt+1, and edges ei,0 and ei,1 for i ∈ {1, ..., t}. The
vertices v1 to vt will be said to belong to layer or level 1. Each edge ei,0 is labelled 0 and it
will be called a 0-edge, and it connects vi and vi+1. Each edge ei,1 is labelled 1 and it will
be called a 1-edge, and it connects vi to the root of a copy of Wt(r − 1) on distinct variables.

I Definition 10 (Clipped xor Tree Tribe). A Boolean function f is called a t-clipped xor Tree
Tribe, denoted by Ξt(r) for an integer t, if T (f) is a Tree Tribe, and can be expressed as a
complete t-clipped decision tree, in which the leaves are labeled by the parity of the edges on
the path from the root to the leaf.

Note that we define the level of some variable x in Ξt(r) by the recursive step at which
it was added to Ξt(r). The variables at level 1 are x1 to xt, each of which is connected
to a copy of ¬Ξt(r − 1) on distinct variables. The first t variables in each of the t copies
of¬Ξt(r − 1), a total of t2 variables, are at level 2, and each of them is connected to a copy
of Ξt(r − 2), and so on. An examples for Ξ2(3) is shown in the figure below.

Since our aim was to understand the structure of functions that are resilient towards
random restrictions, we show that the functions Ξt(r) exhibit many nice properties (given in
the full version [5]). For instance, the Fourier coefficient of a subset S ⊆ {0, 1}n depends
only on the parameters (level in the tree and distance from root) of the variable in S that
represents the vertex farthest from the root in S. These and other properties can be found in
[5] along with some remarks on why they turn out to be resilient towards random restrictions.

We now proceed to show that these functions achieve the bounds stated in Theorem 1.

4 Resilience upper bound

We start by by showing the resilience upper bound in Theorem 1. Our bound will hold in
general for any function f that has a t-clipped decision tree. It was shown in [6] that for any
Boolean function f that has a t clipped decision tree, Rd(f |ρ) ≤ O(pt2t)d, and we improve
the bound to Rd(f |ρ) ≤ (4p2t)d, an improvement that is necessary for us since it matches the
resilience lower bound. As stated earlier, our proof uses a method of conditioning on variables
that is different and simpler from the complex conditioning in [3, 4], and the combinatorial

MFCS 2018
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Figure 1 A 2-clipped xor tree tribe on 3 levels, or Ξ2(3). The variables at each of the vertices
are distinct, and the leaves are labelled by the parity of the edges along the root to leaf path. Note
that there are 2 vertices at level 1, 4 vertices at level 2, and 8 vertices at level 3.

reasoning in [7, 6], and is also amenable to extension to more general restrictions. The proofs
of the lemmas in this section are given in the full version [5].

Let f be a Boolean function that has a t-clipped decision tree T .

I Definition 11. A decision tree T is (t0, t)-clipped for t0 ≤ t, if the root has distance at
most t0 from some leaf, and every other vertex has distance at most t to some leaf.

I Definition 12. For positive integers t0, t, n, d, define the probabilities γd,n(t0, t) as follows:

γd,n(t0, t) = max
(t0,t)-clipped trees T that

decide any function on n variables

Rd(T |ρ)

It is simple to see that γ is monotone in n.

I Lemma 13. If n′ ≤ n, then γd,n′(t0, t) ≤ γd,n(t0, t).

4.1 Recurrence for γ
We proceed by writing a recurrence for γd,n(t0, t).

Let T be the (t0, t)-clipped decision tree for which γd,n(t0, t) has maximum value. Let
x1 be the root, and let T0 and T1 be subtrees out of the 0 and 1 edges of x1. Under the
action of a random p-restriction ρ← ρ, if x1 is assigned 0 by ρ, we get a (t0 − 1, t) clipped
decision tree T0 on n0 variables where n0 < n. By the definition of decision trees, since x1
appears as the root of T , it cannot appear again as a variable in T0, and thus T0 is indeed a
(t0 − 1, t)-clipped tree. If x1 is assigned 1 by ρ, similarly, we get a (t, t) clipped decision tree
T1 on n1 variables where n1 < n.

Let the event ET,d be defined as follows:

ET,d ≡ DTdepth(T |ρ) ≥ d.
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I Lemma 14. In case x1 is assigned ∗ by a random p-restriction ρ← ρ,

ET,d = ET0,d−1
⋃
ET1,d−1.

Let ρ = ρx1ρ
′ where ρ′ is a random restriction on variables different from x1, and

q = (1− p)/2. Thus, we can write the following,

Pr
ρ←ρ

[ET,d] = Pr
ρ←ρ

[ET,d|ρ(x1) = 0] Pr
ρ←ρ

[ρ(x1) = 0] + Pr
ρ←ρ

[ET,d|ρ(x1) = 1] Pr
ρ←ρ

[ρ(x1) = 1]

+ Pr
ρ←ρ

[ET,d|ρ(x1) = ∗] Pr
ρ←ρ

[ρ(x1) = ∗]

= Pr
ρ′←ρ′

[ET0,d]q + Pr
ρ′←ρ′

[ET1,d]q + Pr
ρ′←ρ′

[ET0,d−1
⋃
ET1,d−1]p

≤ Pr
ρ′←ρ′

[ET0,d]q + Pr
ρ′←ρ′

[ET1,d]q + Pr
ρ′←ρ′

[ET0,d−1]p+ Pr
ρ′←ρ′

[ET1,d−1]p (1)

where the second line follows from Lemma 14 and the fact that the subtrees at x1 do not
contain x1, and the last line follows from the union bound. Further, rewriting the above
inequality in terms of γd,n(t0, t) and using Lemma 13, we can write,

γd,n(t0, t) ≤ qγd,n0(t0 − 1, t) + qγd,n1(t, t) + pγd−1,n0(t0 − 1, t) + pγd−1,n1(t, t)
≤ qγd,n(t0 − 1, t) + qγd,n(t, t) + pγd−1,n(t0 − 1, t) + pγd−1,n(t, t).

The parameters n and t above are implicit, and we can rewrite the recurrence succinctly as

γd(t0) ≤ qγd(t0 − 1) + qγd(t) + pγd−1(t0 − 1) + pγd−1(t) (2)

and for every integer d, we set

γd(0) = 0. (3)

We get the following recurrence for γ.

I Lemma 15. After m iterations, the recurrence is,

γd(t0) ≤
m∑
i=0

(
m

i

)
qm−ipiγd−i(t0 −m) +

m∑
i=1

qiγd(t) +
m∑
j=1

pjγd−j(t)
(
m−j∑
i=0

(
j + i

i

)
qi

)
(4)

4.2 Upper bound on γ
Setting t0 = t and m = t in equation 4 and using 3, we get,

1− 2q + qt+1

1− q γd(t) ≤
t∑

j=1
pjγd−j(t)

(
t−j∑
i=0

(
j + i

i

)
qi

)
.

Using the induction hypothesis, for µ = κ2t, we have that γd−c(t) ≤ (µp)d−c for all p, c, d, t
where p ≤ 1

µ . Note that γ is a probability and since p ≤ 1
µ , it is also valid when c > d. 1

Then we have,

1− 2q + qt+1

1− q γd(t) ≤ (µp)d
 t∑
j=1

t−j∑
i=0

(
1
µ

)j (
j + i

i

)
qi

 . (5)

The next lemma is important, but the proof is relegated to the full version [5].

1 In fact, whenever d < t, we can indeed get much fewer terms in the summation, and get a better bound,
although asymptotically it does not make a difference.

MFCS 2018
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I Lemma 16. For µ = 4.2t, t∑
j=1

t−j∑
i=0

(
1
µ

)j (
j + i

i

)
qi

( 1− q
1− 2q + qt+1

)
≤ 1.

Using Lemma 16 in equation 5, we get that γd(t) ≤ (4p2t)d, which concludes the proof of
the resilience upper bound in Theorem 1.

5 Resilience lower bound

We now prove the lower bound on resilience in Theorem 1 which is the main contribution of
this work. We prove the bound for t-clipped xor Tree Tribes or Ξt(r), by induction on d.
However, we cannot use d = 0 as the base case, and we discuss this when we do the inductive
step. The base case will be d = 1, which we solve next. The proofs from this section are
given in the full version [5].

5.1 The case for d = 1
This base case will turn out the most interesting. Here, we want to show the following.

R1(Ξt(r)|ρ) ≥ c0p2t.

If r is small, i.e., if the function has fewer than ∼ 2t variables, then the number of variables
assigned ∗ by ρ← ρ will be low on average, and the event DTdepth(Ξt(r)|ρ) ≥ 1 would be
extremely unlikely. Thus, we would like to show the following.

I Lemma 17. For some universal constants c0 and cp, for r ∈ Ω(t2t) and 0 ≤ p ≤ cp2−t, if
ρ is a random p-restriction, then

R1(Ξt(r)|ρ) ≥ c0p2t.

Note that in Lemma 17, we require that the decision tree with the smallest depth that
can compute Ξt(r)|ρ has depth greater than 1 with good probability, which means that we
require that any decision tree representing Ξt(r)|ρ must query at least one variable. This
will be made possible by a simple observation.

I Lemma 18. DTdepth(Ξt(r)|ρ) ≥ 1 if and only if there is a path in Ξt(r)|ρ from the root
to a leaf that evaluates to 0 and to a leaf that evaluates to 1.

I Definition 19. Let Ξt(r) be a t-clipped xor tribe on r levels and ρ a random p-restriction.
Letting the parameters p and t be implicit, let P0(r), P1(r) and P∗(r) be defined as follows.

P0(r) = Pr
ρ

[Ξt(r)|ρ ≡ 0],

P1(r) = Pr
ρ

[Ξ(r)|ρ ≡ 1],

P∗(r) = R1(Ξt(r)|ρ)
= 1− P0(r)− P1(r). (6)

Given Lemma 18, the proof for Lemma 17 proceeds as follows:

Step 1. We write the exact expressions for P0(r) and P1(r) as a polynomial in p by using
counting arguments and recursion.
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Step 2. In the next step, we reason about the constant coefficients of P0(r) and P1(r). We
derive the expressions for [1]P0(r) and [1]P1(r), using which we show:

[1]P0(r) + [1]P (r) = 1.

Step 3. In the third step, we first compute the recursive expressions for [p]P0(r) and [p]P1(r)
and show the the following two claims.

I Lemma 20. For every r ≥ 1, −2.2t ≤ [p]P0(r) ≤ 0 and −2.2t ≤ [p]P1(r) ≤ 0.

I Lemma 21. For r ∈ Ω(t2t), [p](P0(r) + P1(r)) ≤ −c12t where c1 = 1
3 .

The proofs of all the above lemmas are given in the full version [5]. Lemma 21 stated
above is an important one, and it states there there is sufficient mass, ∼ 2t in the coefficient
of p in P0(r) + P1(r). Combining lemma 20 and 21, we get that

−4.2t ≤ [p](P0(r) + P1(r)) ≤ −c12t.

Step 4. In the equation at the end of step 3 above, we almost have sufficient information
to conclude Lemma 17, however, we need to reason that higher powers of p in P0(r) + P1(r)
cannot substantially affect the coefficient of p. We do so by showing that the absolute value
of [↑ p2] (P0(r) + P1(r)) is bounded by O(22t). Here we will use the fact that p ≤ cp2−t
where cp is some universal constant. This lemma is also important, and its proof is given in
the full version [5].

I Lemma 22. For every r ≥ 1, for 0 ≤ p ≤ pmax = 1
200.2t ,

G2(P0(r) + P1(r)) ≤ 30.22t.

Step 5. Finally we prove Lemma 17.

Proof of Lemma 17. The probability that the decision tree with r levels has depth more
than or equal to 1, i.e. it does not become constantly 0 or 1 after being hit by a random
restriction is given by

P∗(r) = 1− P0(r)− P1(r).

For r ∈ Ω(t2t), we can write

P∗(r) = 1− [1] (P0(r) + P1(r))− ([p]P0(r) + [p]P1(r)) p−
(
[↑ p2] (P0(r) + P1(r))

)
p2

= − ([p]P0(r) + [p]P1(r)) p−
(
[↑ p2] (P0(r) + P1(r))

)
p2

≥ c12tp− pmax2.30.22tp

= p2t
(

1
3 −

60
200

)
≥ 1

30p2
t

where in the second line we used the fact that [1]P0(r) + [1]P (r) = 1, and in the third line
we used Lemmas 21 and 22. Note that we get c0 = 1

30 . J
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5.2 Inductive step
We remark that d = 0 cannot be taken as the base case for induction. In a decision tree T
with x1 as the root and having subtrees T0 and T1 out of the 0 and 1 edges respectively, if
ρ← ρ assigns ∗ to x1, then T0|ρ or T1|ρ having depth greater than 0 does not imply that T
has depth greater than 1. If both T0|ρ and T1|ρ are constant functions, we would additionally
require that they evaluate to different values. Thus we cannot use d = 0 as the base case.

Doing the inductive step recursively is tricky. This is because we already need about
∼ t2t levels in the tree for the base case to work. Thus, any induction must take care of the
fact that once the number of levels are too few, the base case would not hold.

Let us write the recurrence first. Let γd(r) be the probability that Ξt(r) has depth greater
than or equal to d under the action of a random restriction.

I Lemma 23. Let µ = 1− γd−1(r − 1). Then,

γd(r) ≥
t−1∑
k=1

q

k∑
i=1

(
k

i

)
qk−ipi(1− µi+1) +

t∑
i=0

(
t

i

)
qt−ipi(1− µi) +

t−1∑
k=0

qk+1γd(r − 1). (7)

Note that we would use the above recurrence for m steps, since we need to pick up
sufficient probability mass from each step. As such, we would want the inductive hypothesis
to hold for all the m steps. The inductive steps will be different for the cases t ≥ 2 and
t = 1, shown in the following lemma.

I Lemma 24. For r ∈ Ω(dt2t), γd(r) ≥ (c0p2t)d.

In the proof of Lemma 24, we use O(2t) steps to take the induction from d to d− 1 levels,
and the final d = 1 case can be carried out with O(t2t) levels. Thus, the maximum depth for
which our conclusions hold is

dt2t ≤ O(r) ≤ cd
logn
log t

or

d ≤ cd
(

logn
2tt log t

)
.

This concludes the proof of Theorem 1.
I Remark. If we unroll the induction and see how it worked, for depth d, we find some vertex
that is unset by ρ and is connected to a tree that has depth d− 1 under the action of ρ. For
depth d− 1, we again find an unset variable connected to a tree of depth d− 2. This carries
on until the last step, where we want to find a vertex that has depth greater than or equal
to 1, i.e., has a path to both a 0-leaf and a 1-leaf. Thus, as described in the introduction,
the whole proof essentially finds a “path with a split”.
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