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Abstract
The central conjecture of parameterized complexity states that FPT 6= W[1], and is generally
regarded as the parameterized counterpart to P 6= NP. We revisit the issue of the plausibility of
FPT 6= W[1], focusing on two aspects: the difficulty of proving the conjecture (assuming it holds),
and how the relation between the two classes might differ from the one between P and NP.

Regarding the first aspect, we give new evidence that separating FPT from W[1] would be
considerably harder than doing the same for P and NP. Our main result regarding the relation
between FPT and W[1] states that the closure of W[1] under relativization with FPT-oracles
is precisely the class W[P], implying that either FPT is not low for W[1], or the W-Hierarchy
collapses. This theorem also has consequences for the A-Hierarchy (a parameterized version of
the Polynomial Hierarchy), namely that unless W[P] is a subset of some level A[t], there are
structural differences between the A-Hierarchy and the Polynomial Hierarchy. We also prove
that under the unlikely assumption that W[P] collapses to W[1] in a specific way, the collapse
of any two consecutive levels of the A-Hierarchy implies the collapse of the entire hierarchy to a
finite level; this extends a result of Chen, Flum, and Grohe (2005).

Finally, we give weak (oracle-based) evidence that the inclusion W[t] ⊆ A[t] is strict for t > 1,
and that the W-Hierarchy is proper. The latter result answers a question of Downey and Fellows
(1993).
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1 Introduction

The central conjecture of parameterized complexity theory states that FPT 6= W[1]. The
complexity class FPT is a generalization of P, and it also contains this class in the sense
that regardless of which parameter we associate with the instances of a problem in P, the
resulting parameterized problem is in FPT. This inclusion is strict, as FPT also contains
parameterized versions of problems that are provably not in P. The class W[1] can be
regarded as a parameterized counterpart to NP. It can be defined in different ways, all
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of them quite technical, but the most common definition is in terms of a parameterized
version of a particular NP-complete problem (much like NP can be defined in terms of a
Boolean circuit satisfiability problem). However, W[1] is not known or believed to contain
all parameterized versions of problems in NP, and by defining complexity classes in terms
of parameterizations of other NP-complete problems, one actually obtains a large set of
seemingly distinct parameterized analogues of NP, some of which we list here:

A[1] = W[1] ⊆W[2] ⊆W[3] ⊆ . . . W[t] . . . ⊆W[P] ⊆ para-NP.

Among these, the most interesting classes are W[1] (a.k.a. A[1]) and W[P], due to having
many natural complete problems.

The basic intuition for why W[1] (and hence all classes in the above sequence) should
differ from FPT is the same as for P 6= NP, namely that we do not know of any way to
efficiently simulate nondeterministic computations deterministically. This intuition is often
used to justify considering the W[1]-hardness of a problem as evidence for its intractability.
But because FPT is strictly larger than P, while W[1] does not appear to capture all of the
complexity of NP, it seems that proving the central conjecture of parameterized complexity
theory may be harder than separating P and NP. We investigate qualitative differences
between the two conjectures, as well as the more general question of whether FPT occupies
the same place within W[1] as P does within NP. We start by giving a brief summary of
some relevant prior results.

That the central parameterized conjecture is at least as strong as its classical counterpart is
easy to prove: If NP = P, then, as noted above, every parameterized version of every problem
in NP(= P) must be in FPT, hence W[1] = FPT (and, in fact, para-NP = W[P] = . . . = FPT).
Thus we have that FPT 6= W[1]⇒ P 6= NP. The converse of this implication is not known to
hold, but Downey and Fellows [9] were the first to observe that a collapse of W[1] to FPT
would at least imply the existence algorithms with sub-exponential running time for the
NP-complete problem 3Sat. This would contradict the Exponential Time Hypothesis (ETH),
first introduced by Imagliazzo, Paturi, and Zane [13], which states that for some constant
c > 0, 3Sat can not be solved in time O∗(2cn) by deterministic Turing machines (TMs).
This conjecture has enjoyed much popularity recently, because, assuming ETH, for many
problems it is possible to prove a complexity lower bound that matches that of the best
known algorithm up to lower-order factors (see [14] for a survey of such results). Nevertheless,
one should keep in mind that ETH is a much stronger statement than P 6= NP, since it rules
out not only the existence of polynomial-time algorithms for 3Sat, but also of those that
run in up to exponential-time (for some bases). Putting all of these facts together, we have:

ETH =⇒ FPT 6= W[1] =⇒ . . . =⇒ FPT 6= W[P] =⇒ FPT 6= para-NP =⇒ P 6= NP.

The above sequence relates parameterized complexity conjectures to two classical ones, but
it does not say which of them are closer in strength to ETH and which are closer to P 6= NP.
The only known fact here is that FPT 6= para-NP⇔ P 6= NP (see [11, Corollary 2.13]), but
there is strong evidence suggesting that all of the other parameterized conjectures listed above
are considerably stronger than P 6= NP (although possibly still weaker than ETH1). First,
Downey and Fellows [8] construct an oracle relative to which P and NP differ while W[P]

1 There is, in fact, a subclass of W[1], called M[1], of which it is known that FPT 6= M[1] is equivalent to
ETH (see [10]). The similarities between M[1] and W[1] can be seen as a further indication that the
conjecture FPT 6= W[1] is nearly as strong as ETH, but, evidently, both FPT 6= M[1] and M[1] 6= W[1]
are wide open conjectures.
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collapses to FPT, so we know that any proof of the implication P 6= NP⇒ FPT 6= W[P] can
not be as simple as the proof of the converse implication sketched above. More importantly,
FPT 6= W[P] can be related much more precisely to other classical complexity conjectures.

How strong the assumption FPT 6= W[P] is, can be elegantly expressed in terms of limited
nondeterminism. If f is a poly-time-computable function, denote by NP[f(n)] the class of
problems that can be solved by a nondeterministic TM in polynomial-time by using at most
O(f(n)) bits of nondeterminism (n denotes the size of the input). Note that NP[log n] = P,
since a deterministic TM can cycle through all possible certificates of length O(log n) in
polynomial-time. A remarkable theorem of Cai, Chen, Downey, and Fellows [6] states that
FPT 6= W[P] holds if and only if for every poly-time-computable non-decreasing unbounded
function h, we have that P 6= NP[h(n) log n] (see [11, Theorem 3.29] for a proof of the theorem
in this form). The class of functions referred to in this theorem contains functions with
very slow growth, such as the iterated logarithm function, log∗. In fact, there is no poly-
time-computable non-decreasing unbounded function that has the slowest growth, because if
some function h satisfies these conditions, then so does log∗ h. It is not even intuitively clear
whether P is different from NP when the amount of allowed nondeterminism is arbitrarily
close to trivial. At the very least, the fact that an infinite number of increasingly strong
separations must hold in order for W[P] to not collapse to FPT, suggests that separating
these two classes is much farther out of our reach than a separation of P and NP.

The evidence we have seen so far indicates that proving a separation of W[1] and FPT may
be harder than proving P 6= NP. But assuming that both conjectures hold, it is meaningful
to ask whether the internal structure of W[1] resembles that of NP, and there is indeed some
positive evidence in this direction. For example, a parameterized version of Cook’s Theorem
connects Boolean circuit satisfiability to W[1]-completeness (see [9]), a parameterized version
of Ladner’s Theorem states that if FPT 6= W[1], then there is an infinite hierarchy of problems
with different complexities within W[1] (see [9]), and the machine-based characterizations
of this class, due to Chen, Flum, and Grohe [7], establish that W[1] can indeed be defined
in terms of nondeterministic computing machines. Nevertheless, there are also previously
unexplored ways in which W[1] may not behave the same way as NP.

Our main goal in this work is to provide further evidence that the classes FPT and W[1]
are close not only in the sense of being difficult to separate, but also in the sense that the
relationship between the two differs from that of P and NP, in a way that indicates that FPT
is larger within W[1] than P is within NP (assuming the latter pair does not collapse). These
results contrast with those in [4], where we showed how certain theorems about FPT and the
levels of the A-Hierarchy can be proved in the same way as for their classical counterparts.

1.1 Summary of our results
The difficulty of separating W[P] from FPT. Assuming that we could prove a separation
of the form P 6= NP[h(n) log n] for a particular, slow-growing function h, how much progress
would we have made towards proving the separation where h(n) is replaced by log h(n)?
Intuitively, the difficulty of proving non-equality should increase when a function with a
slower growth is chosen. On the other hand, if FPT 6= W[P] holds, then all such classical
separations hold as well (by the above-mentioned theorem of Cai et al. [6]), and therefore
any one of them implies the others. It is not clear, however, whether a proof of FPT 6= W[P]
with P 6= NP[h(n) log n] as a hypothesis would be significantly simpler than a proof from
scratch. We show that this is unlikely to be the case, by proving (Theorem 9) that for any
poly-time-computable non-decreasing unbounded function h, there exists a computable oracle
Oh such that:

POh 6= NP[h(n) log n]Oh , but W[P]Oh = FPTOh .
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Theorem 9 is an improvement over the above-mentioned oracle construction of Downey
and Fellows [8]2. It is weak as a barrier result, since the relativization barrier has been
repeatedly overcome in the last three decades, but nevertheless the theorem succinctly
expresses how much harder the conjecture FPT 6= W[P] is compared to classical questions
regarding nondeterministic vs. deterministic computation: No matter how small the amount
of nondeterminism that provably yields a class strictly containing P, we will always be a
non-trivial proof step away from separating W[P] (or W[1]) from FPT.

The structure of W[1] and its relation to FPT. The class A[1](=W[1])3 can be character-
ized in terms of random access machines that perform tail-nondeterministic computations
[7]. Such computations consist of two phases: 1. a (deterministic) FPT-computation; 2.
a short nondeterministic computation that can use any data computed in phase 1. Tail-
nondeterministic machines that perform only the second phase of the computation (without
a longer deterministic computation preceding it), can not solve every problem in FPT, but,
paradoxically, they can solve many problems that are complete for A[1] (we give an example
in Section 4). As we will see, this simple observation has important consequences for the
structure of this class.

A first consequence is that giving an A[1]-machine very restricted oracle access to even
a tractable (FPT) problem, may increase its computational power, because then the use
of nondeterminism can be combined with the ability to solve instances of an FPT-problem
via the oracle. Thus, FPT-computations appear to constitute a non-trivial computational
resource for A[1] (unlike P-computations for NP). Somewhat suprisingly, we can actually
identify the complexity class resulting from endowing A[1] with FPT-oracles, if a suitable,
highly restricted type of oracle access is used. We have (Theorem 12, Corollary 13) that:

A[1]FPT = W[P] and ∀t ≥ 1 : W[t]FPT = W[P],

where we used the common notation CC2
1 :=

⋃
Q∈C2

CQ
1 . This means that either W[P] = W[1],

in which case W[P] is smaller than generally believed, or FPT is larger within W[1] than P is
within NP.

Putting the known and new facts together, Theorem 9 and the result of Cai et. al. [6]
mentioned in the introduction indicate that W[P] is likely to be closer to FPT than any
class NP[h(n) log n] is to P (see Figure 1). The case for this figure being accurate is further
strengthened by Theorem 12 and Corollary 13, which exhibit another way in which at least
two of the classes FPT, W[1], and W[P] are close.

Theorem 12 and the observation preceding it also have consequences for the A-Hierarchy,
which is a parameterized analogue of PH. Although they share some essential properties
[7, 4], a corollary of Theorem 12 is that, unless some unlikely inclusions between complexity
classes occur, the two hierarchies have structural differences that indicate that consecutive
levels of the A-Hierarchy are closer to each other than the corresponding levels of PH (see

2 Actually, Downey and Fellows [8] use a different computational model to define and relativize W[P], so
the two results, although in the same spirit, may not be directly comparable at a technical level.

3 W[1] and A[1] coincide as complexity classes, but in [7], Chen, Flum, and Grohe give two machine-based
characterizations, one which can be generalized to get the levels of the W-Hierarchy, and one which
generalizes to the levels of the A-Hierarchy. The machine model for A[1] is easier to handle when working
with oracles, so we typically use this model when relativizing this class, and write “A[1]” to emphasize
this fact. However, oracle W[1]-machines can also be defined so that our theorems hold for this model
as well (see Section 3).
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P

NP[(log n)2]

NP

FPT

para-NP

FPT

W[P]

...

W[1]
W[2]

Figure 1 The mutual closeness of the parameterized complexity classes, compared to that of
their classical analogues, as suggested by [6, 8], Theorems 9 and 12, and Corollary 13. Regardless of
which class NP[h(n) log n] we choose to represent between P and NP on the left side (whether it is
NP[(log n)2] as in the picture, NP[log∗ n log n], or something even smaller), it will be much larger
compared to P than W[P] is compared to FPT.

Section 4). Conversely, using a similar idea as in the proof of Theorem 12, we can show
(Theorem 15) that if W[P] were to collapse to W[1] in a specific way, we would get a downward
separation theorem for the A-Hierarchy (i.e., that if two levels collapse, the entire hierarchy
collapses to the smaller of the two). Proving such a theorem for the A-Hierarchy has been a
long-standing open problem in parameterized complexity theory, and although our theorem
falls short of this goal (since it requires an unlikely collapse to occur), it marks the first
progress on this front in over a decade (since [7]).

Level-by-level relativized separations of the W- and the A-Hierarchy. We also give some
evidence that certain collapses do not occur. The only relations that are known to hold
between the classes W[t] and A[t] are that W[1] = A[1] and that W[t] ⊆ A[t] for t ≥ 2.
We show that in a relativized setting, the known inclusions can be made strict and some
unexpected inclusions can be ruled out.

Separations of complexity classes relative to oracles count only as very weak evidence
that the unrelativized versions of the classes are distinct, due to the fact that such oracles
can in some cases be constructed even when two classes coincide (the most famous example
being IP = PSPACE [16] – see [12] for an oracle separating the two). Nevertheless, there are
a few reasons why level-by-level relativized separations for the W- and the A-Hierarchy are
interesting: First, since it is generally assumed that these hierarchies are proper and distinct,
we should expect to have at least this weak form of evidence supporting the assumption.

MFCS 2018



73:6 On W[1]-Hardness as Evidence for Intractability

Second, we have seen a number of results which suggest that the levels of these hierarchies are
in various ways close to each other, so proving even relativized separations between them may
be non-trivial. Finally, relativization in the parameterized setting is still mostly unexplored,
and although the proofs of the following theorems rely on standard diagonalization arguments,
the details of the machine models and how they are allowed to access oracles require special
care in order to make the arguments work.

In Section 5 we show (Theorem 16, Corollary 17) that there exists a computable parame-
terized oracle O such that

∀t ≥ 2 : A[t]O 6⊂W[t]O.

Note that this is a single oracle relative to which all inclusions are simultaneously made strict.
Also note that, although we use machine-based characterizations of classes A[t] and W[t]
which result in distinct characterizations of the class A[1] = W[1], fortunately, this oracle
does not appear to separate A[1] from W[1]. Such a separation would have suggested that
the strict inclusions are mere artifacts of the machine models used.

Finally, we give evidence which suggests that the W-Hierarchy is not contained within
any finite level of the A-Hierarchy (Theorem 18): For all t ≥ 1, there exists a computable
parameterized oracle Ot such that

W[t + 1]Ot 6⊂ A[t]Ot .

Since it holds that W[t]Ot ⊆ A[t]Ot , each oracle Ot separates two consecutive levels of the
W-Hierarchy. This answers a question of Downey and Fellows [8], although we do not have a
single oracle that simultaneously separates the entire hierarchy.

2 Preliminaries

We assume familiarity with standard facts and notations from both classical and parameterized
complexity theory, and refer to [2] and to [11] for the necessary background in the respective
branches. Since the characterizations of various parameterized complexity classes in terms of
computing machines [7] are less well known, we give a brief overview of the main definitions.

Many parameterized complexity classes can only be naturally characterized in terms of
random access machines (RAMs), which can store entire integers in each of their registers,
perform the operations addition, subtraction, and division by 2 on integers in unit time, and
can access any part of their memory in constant time (see [15] or the introduction of [7]).
The input of a RAM can be a sequence of non-negative integers, and we allow the instances
of problems to be encoded in this way whenever we are working only with RAMs (as opposed
to TMs). Since the size of a sequence of non-negative integers is calculated as the sum of the
length of the binary representations of the individual numbers, RAMs have no significant
computational advantage over TMs [15, Theorem 2.5]. However, this encoding does make a
difference when considering oracle RAMs, because the query instances will also be encoded
in this fashion.

We give two examples of definitions of complexity classes in terms of RAMs. It is not
difficult to see that these are equivalent to the standard (TM-based) definitions (see [11]).
Note that we use the Downey-Fellows definition of parameterized problems [9], where the
parameter value, encoded in unary, is given together with the input.



R. C. Bottesch 73:7

I Definition 1. Let Q be a parameterized problem. We say that Q ∈ FPT if and only if
there exists a RAM M , a computable function f , and a constant c ≥ 0, such that for every
input (x, k) with x ∈ N∗ and k ≥ 0, M runs in time f(k)(|x|+ k)c and accepts if (x, k) ∈ Q,
otherwise it rejects. The class para-NP is defined similarly, except with RAMs which can
nondeterministically guess, in unit time, positive integers of size upper-bounded by the
f(k)(|x|+ k)c (the bound on the running time).

We also collect several useful definitions and notations in the following:

I Definition 2. Let C1, C2 be complexity classes, where C1 is defined in terms of computing
machines that can be given access to an oracle, and let P0, P1 ⊆ {0, 1}∗ be classical languages.
We define: CC2

1 :=
⋃

P∈C2
CP

1 and P0 ⊕ P1 := {0x | x ∈ P0} ∪ {1x | x ∈ P1}. We say that P0

is low for C1 if CP0
1 = C1, and we say that C2 is low for C1 if CC2

1 = C1.

2.1 The A-Hierarchy and the W-Hierarchy
The following classes are defined in terms of alternating random access machines (ARAMs),
which are RAMs that can nondeterministically guess, in unit time, integers of size bounded
by the running time of the machine on a given input, either in the existential or the universal
mode (see [7]).

I Definition 3 ([7]). For each t ≥ 1, let A[t] be the class of parameterized problems that are
solved by some ARAM A which, for some computable functions f and h, and a constant
c ≥ 0, satisfies the following conditions on every input (x, k):
1. A runs in time at most f(k)(|x|+ k)c;
2. throughout the computation, the values in A’s registers do not exceed f(k)(|x|+ k)c;
3. all nondeterministic guesses are made during the last h(k) steps of the computation;
4. the first nondeterministic guess is existential and the machine alternates at most t− 1

times between existential and universal guesses.
The class co-A[1] is defined in terms of ARAMs which satisfy conditions 1–3, but only make
universal nondeterministic guesses (one can verify, just as in the classical setting, that a
problem is in co-A[1] if and only if it is the complement of a problem in A[1]). ARAMs
satisfying conditions 1 and 2 are called parameter-bounded in [4], those satisfying conditions
3 and 4 are called, respectively, tail-nondeterministic and t-alternating [7].

The classes W[t] (t ≥ 1) can be defined in terms of A[t]-machines (parameter-bounded
tail-nondeterministic t-alternating ARAMs) that are further restricted so that: 1. Every
block of nondeterministic guess instructions of the same kind, except the first one, is made
up of at most c′ guess instructions, where c′ is a constant that is independent of the input.
2. All nondeterministically guessed integers are placed in a special set of guess registers,
which can not be read from directly, and can only be accessed via special instructions that
use the guessed values as indices for accessing standard registers. We will not need further
details regarding these machines, and therefore refer the reader to [7] or [5] for more complete
definitions. We will, however, define oracle W[t]-machines (Definition 10).

I Definition 4 ([4]). An oracle (A)RAM is a machine with an additional set of registers
called oracle registers, instructions that allow the machine to copy values from its standard
registers to the oracle registers, as well as a QUERY instruction, the execution of which
results in one of the values 1 or 0 being placed into the first standard register of the machine,
depending on whether the instance encoded in the oracle registers at that time constitute a
‘yes’- or a ’no’-instance of a problem for which the machine is said to have an oracle.

MFCS 2018



73:8 On W[1]-Hardness as Evidence for Intractability

An oracle (A)RAM has balanced oracle access to a parameterized oracle, if there is a
computable function g such that on every input (x, k), the machine queries the oracle only
with instances whose parameter value is ≤ g(k) (in other words, the parameter values of the
instances for which the oracle is called should be upper-bounded by some function of k, but
may not depend on n, even though the machine may have time to construct such a query
instance). An oracle (A)RAM has tail-restricted oracle access, if its access to the oracle is
balanced and, furthermore, there is a computable function h such that the machine makes
oracle queries only within the last h(k) steps of the computation on input (x, k). Note that
tail-restricted access is also balanced.

For a parameterized complexity class C that is defined in terms of (A)RAMs, we write C(O)
if C has unrestricted access to the oracle O, C(O)bal if it has balanced access, and C(O)tail

if it has tail-restricted access. If C is defined in terms of tail-nondeterministic ARAMs, we
also write CO instead of C(O)tail (so A[1]O means A[1] with tail-restricted access to O). Note
that for C(O), the oracle can be either classical or parameterized, but for balanced or more
restricted oracle access, it must be parameterized.

2.2 W[P] and the W[P]-Hierarchy

We define W[P] both in terms of TMs and in terms of RAMs, and use both definitions at
different points in the paper.

I Definition 5 ([7]). Let Q be a parameterized problem. We say that Q ∈W[P] if and only if
there exists a nondeterministic TM M , computable functions f and h, and a constant c ≥ 0,
such that for any input (x, k) with x ∈ {0, 1, #}∗ and k ≥ 0, M runs in time f(k)(|x|+ k)c,
uses at most h(k)dlog(|x|+ k)e nondeterministic bits, and accepts if and only if (x, k) ∈ Q.

The following problem is complete for W[P] under fpt-reductions.

p-WSatCircuit
Input: A Boolean circuit C with n input bits, k ∈ N.

Parameter: k

Problem: Decide whether C has a satisfying assignment of weight k.

The class W[P] can also be defined in terms of RAMs [7]. One can also define a hierarchy
that is similar to PH, except in terms of alternating nondeterminism that matches the
nondeterminism of W[P].

I Definition 6 ([4]). For each t ≥ 1, let Σ[P ]
t be the class of parameterized problems that

are solved by some ARAM A which, for some computable functions f and h, and a constant
c ≥ 0, satisfies, on every input (x, k), conditions 1, 2, and 4 from Definition 3, as well as:
3’. A nondeterministically guesses at most h(k) numbers throughout the computation.
We denote the class

⋃∞
t=1 Σ[P ]

t by W[P]H, the W[P]-Hierarchy.

It is not difficult to see that W[P] = Σ[P ]
1 . Note that we will use the term “W[P]-machine”

to designate both the TMs from Definition 5 as well as the Σ[P ]
1 -machines from Definition 6

(which are RAMs), but it should be clear from the context which type of machine is meant.
For each t ≥ 1, the following generalizations of the problem p-WSatCircuit can easily

be seen to be, respectively, complete problems for Σ[P ]
t .
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p-AWSatCircuitt

Input: A Boolean circuit C with n input bits, k ∈ N, and a partition of
the input variables of C into t sets I1, . . . , It.

Parameter: k

Problem: Decide whether there exists a set J1 ⊆ I1 of size k such that for
all subsets J2 ⊆ I2 of size k there exists ... such that setting
precisely the variables in J1∪. . .∪Jt to ‘true’ results in a satisfying
assignment of C.

As in the case of the Polynomial Hierarchy, and unlike the case of the A-Hierarchy, it is
known that the collapse of levels of the W[P]-Hierarchy would propagate upward:

I Fact 7 (Corollary 17 of [4]). If for any t ≥ 1, Σ[P ]
t+1 = Σ[P ]

t , then W[P]H = Σ[P ]
t .

I Definition 8 ([4]). An oracle ARAM has parameter-bounded oracle access to a parameter-
ized oracle, if its access to the oracle is balanced and, furthermore, there is a computable
function g such that on every input (x, k), the machine makes at most g(k) oracle queries.

If C is a class that is defined in terms of ARAMs, we write C(O)para to denote that C has
parameter-bounded access to the oracle O. If C = Σ[P ]

t , for some t ≥ 1, we may also write
CO to mean C(O)para (so W[P]O = W[P](O)para).

3 The difficulty of separating W[P] from FPT

In this section we show that there is likely no shortcut to proving FPT 6= W[P] via any finite
number of separations of the form P 6= NP[h(n) log n]. Due to space restrictions, the proofs
of the theorems in this section can be found in the full version of the paper.

To prove the theorem, we need to construct an oracle relative to which two conditions
hold simultaneously: the collapse of one pair of complexity classes and the separation of
another. One approach to achieving this is to construct the oracle in stages, and to work
towards one goal in the odd-numbered stages and towards the other in the even-numbered
ones, while ensuring that the two constructions do not interfere with each other (see [3,
Theorem 5.1] for one example of an application of this technique). However, this approach
does not always work, and in this case it fails because one pair of classes is parameterized
(specifically, it is not possible to computably list all FPT- or W[P]-machines, but this appears
to be necessary in this type of staged construction). To overcome this obstacle, we use an
idea of Allender [1], who constructs an oracle with two parts: the first part is designed so as
to ensure that one pair of classes collapses regardless of what the second part of the oracle
is; the second part can then be freely used in a diagonalization argument to separate the
remaining pair of classes.

I Theorem 9. For every polynomial-time-computable non-decreasing unbounded function h,
there exists a computable oracle B such that

PB 6= NP[h(n) log n]B, but W[P](B) = FPT(B).

For this result we have used unrestricted oracle access to relativize the parameterized
complexity classes, rather than the parameter-bounded type that we argued is natural for
W[P] [4]. This is because restricting the oracle access to being balanced (or more) makes
it possible to collapse even para-NP to FPT, with the classical separation unchanged. Thus
we would get an oracle relative to which NP and P differ while para-NP and FPT coincide,
which is clearly an artifact of the restrictions placed on the oracle access, since we know that,
unrelativized, a collapse of para-NP to FPT is equivalent to a collapse of NP to P (see [11]).
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It seems reasonable to expect that if W[P] collapses to FPT relative to some oracle, then so
should any class W[t]. But to show that this is indeed the case, we first need to define oracle
W[t]-machines. Recall that a W[t]-machine is similar to an A[t]-machine, but the numbers it
guesses nondeterministically are placed in a special set of guess registers, to which the machine
has only limited access [7] (see also [5]). Naturally, an oracle W[t]-machine should then have
three sets of registers: the standard registers, guess registers (which the machine can not read
from directly), and oracle registers. For such machines, the usual way to read from or write to
the oracle registers is very limiting, because the machines’ nondeterminism would only weakly
be able to influence the query instances. For example, nondeterministically guessed numbers
could not be written to the oracle registers. The interaction between the nondeterminism
of such machines and their ability to form query instances can be strengthened without
allowing the W[t]-specific restrictions to be circumvented. We achieve this by making the
oracle registers write-only, and adding instructions that allow the machine to copy values
from the guess registers to the oracle registers and to use numbers from the guess registers
to address oracle registers. In this way, the machine can still not read the guessed numbers
directly or use them in arithmetic computations, but can nevertheless use them for oracle
queries. In many cases, this allows oracle W[t]-machines to match A[t]-machines in the way
the oracle is used.

I Definition 10. An oracle W[t]-machine is a W[t]-machine that, in addition to the standard
registers r0, r1, . . ., and guess registers g0, g1, . . . (to which the machine has only restricted
access), also possesses a set of oracle registers o0, o1, . . .. The contents of oracle registers are
never read from and are only affected by the following new instructions:

SO_MOVE - copy the contents of standard register r0 to oracle register or1 ;
GO_MOVE - copy the contents of guess register gr0 to oracle register or1 ;
ADDR_GO_MOVE - copy the contents of register r0 to ogr1

;
OO_MOVE - copy the contents of or0 to or1 .

Additionally, the machine has a QUERY instruction that places either the value 0 or 1 into
r0, depending on whether the contents of the oracle registers at the time when the instruction
is executed represent a ‘no’- or a ’yes’-instance of the problem to which the machine has
oracle access.

Note that for such machines, it again makes sense to speak of unrestricted, balanced,
parameter-bounded, or tail-restricted oracle access. With the above definition in mind, we
can now prove Corollary 11, where oracle access is unrestricted.

I Corollary 11. For any function h as in Theorem 9, and the corresponding oracle B, we
have that FPT(B) = W[1](B) = A[1](B) = W[2](B) = A[2](B) = . . . = W[P](B).

4 The structure of W[1] and its relation to FPT

Under the assumption that P 6= NP, it is meaningful to ask whether the relation between the
two classes is the same as the one between FPT and W[1]. So far, we have seen evidence that
the two parameterized classes are closer to each other in the sense that proving a separation
between them is more difficult than proving P 6= NP. In this section we look at other ways
in which W[1] is closer to FPT than NP is to P.

In this section, the definitions of classes in terms of RAMs are used, instances of problems
and oracles query instances are encoded as integer sequences, and oracles are parameterized.

Is FPT low for W[1]?
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Given that FPT is the class of tractable problems in parameterized complexity, and
that P-oracles add no computational power to NP (or to any class NP[h(n) log n]), one
might expect FPT to also be low for W[1]. It turns out, however, that allowing tail-
nondeterministic machines to make even tail-restricted queries to an FPT-oracle can increase
their computational strength to that of W[P]. We prove this for A[1] first, since this machine
model is more easily relativizable.

I Theorem 12. A[1]FPT = W[P]. Therefore, FPT is low for A[1] if and only if W[P] = A[1]
and the W-Hierarchy collapses to its first level.

Proof. We have that A[1]FPT ⊆ A[1](FPT)bal ⊆W[P](FPT)bal = W[P], with the final equality
holding because a W[P]-machine can replace balanced oracle calls to FPT-problems by
fpt-length computations.

To show that W[P] ⊆ A[1]FPT, we define the following problem:

p-WSatCircuit-with-assignment
Input: A circuit C with n inputs, k ∈ N, and vector v ∈ {0, 1}n of

weight k.
Parameter: k.
Problem: Decide whether v is a satisfying assignment for C.

Since the output of a circuit can be computed in time polynomial in its size, the above
problem is obviously in FPT4. Any problem Q ∈W[P] can be solved by some A[1]-machine
A with tail-restricted access to p-WSatCircuit-with-assignment as an oracle: First, A

reduces in fpt-time the input instance (x, k) to an instance (y, k′) of p-WSatCircuit, where
k′ depends computably only on k. Let m be the number of input bits of the circuit encoded
in y. If m < k′, A rejects, otherwise it writes y, 0m, and 1k′ to its oracle registers, thus
forming a valid instance of p-WSatCircuit-with-assignment, except that the assignment
vector has weight 0. Now A enters the nondeterministic phase of its computation by guessing
k′ pairwise distinct integers i1, . . . , ik′ ∈ [m]. It then modifies the assignment vector in the
oracle registers by changing the zeroes at positions i1, . . . , ik′ of the vector 0m to 1, queries
the oracle, and accepts if the answer is ‘yes’, otherwise it rejects.

It is easy to see that what this machine actually does is nondeterministically guess
a satisfying assignment of the p-WSatCircuit-instance, if one exists, and delegate the
verification to the oracle. The trick here is that the all-zero assignment vector must be
written to the oracle registers deterministically, because during the nondeterministic phase at
the end of the computation there may not be enough time to do so. Then the machine only
needs to change the vector at k′ positions to obtain an assignment with the right weight,
which takes only O(k′) steps with random access memory. J

Note that the proof that a W[P]-machine can simulate A[1]-machines with FPT-oracles only
works if the oracle access of the A[1]-machines is tail-restricted or at least parameter-restricted.
On the other hand, the proof that A[1]FPT ⊃W[P] only requires tail-restricted oracle access.
We regard this as further evidence (in addition to the results from [4]) that tail-restricted
oracle access is the natural type to consider for the class A[1].

4 In fact, this problem is clearly in P, meaning that we can actually prove the stronger statement
W[P] ⊆ A[1]P. However, we choose FPT instead of P because the instance with which the oracle is
queried will be fpt-sized, and because it is more natural to have A[1]-machines query a parameterized
oracle, rather than a classical one.
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Since A[1] ⊆ W[t] ⊆ W[P] holds for all t ≥ 1, and by Theorem 12 we have that
A[1]FPT = W[P] = W[P](FPT)tail, it seems reasonable to expect that W[t]FPT = W[P] holds
for all t as well. In order to prove that this is indeed the case, we need to use oracle
W[t]-machines (Definition 10), with tail-restricted access to the oracle. Then the proof is
based on a combination of ideas from the proofs of Corollary 11 and Theorem 12.

I Corollary 13. For every t ≥ 1 it holds that W[t]FPT = W[P].

In [4] we showed that for every t ≥ 1 the class A[t + 1] can be obtained as A[1]Ot , where
Ot is a specific A[t]-complete oracle, but we also observed that A[1]FPT does not appear to
be a subset of A[t] for any t. Theorem 12 provides support for this intuition by identifying
A[1]FPT as a class which is not known or believed to be a subset of any class A[t].

I Corollary 14. For every t ≥ 1 we have that if A[t + 1] = A[1]A[t], then W[P] ⊂ A[t + 1]. In
particular, if W[P] 6⊂ A[2], we have that A[1]A[1] 6= A[2].

Corollary 14 shows that the above-mentioned oracle characterization of the A-Hierarchy from
[4] can probably not be improved significantly: Although it may be possible to obtain A[t + 1]
by providing A[1] with other A[t]-complete oracles, it is unlikely that Ot can be replaced by
the entire class A[t], for the somewhat counter-intuitive reason that A[t] contains all tractable
problems. More importantly, Corollary 14 implies, assuming W[P] 6⊂ A[t + 1] and that PH is
proper, that each class A[t + 1] is closer to the class A[t] than ΣP

t+1 is to ΣP
t , in the precise

sense that A[t + 1] ( A[1]A[t], whereas ΣP
t+1 = NPΣP

t . The use of a highly restricted type of
oracle access for the parameterized classes can only make this conclusion more legitimate.

A weak downward separation theorem for the A-Hierarchy.

It is a long-standing open problem whether the collapse of any class A[t + 1] to A[t] would
cause all higher levels of the A-Hierarchy to coincide with A[t] (or, equivalently, whether a
separation of two classes A[t + 1] and A[t] would imply that all levels below A[t] are distinct,
whence the name “downward separation”). Given the similarities with PH, one might expect
such a theorem to hold for the A-Hierarchy as well. Nevertheless, the proof of the downward
separation theorem for the Polynomial Hierarchy does not appear to carry over directly to the
parameterized setting. So far, the best result in this direction has been a theorem of Chen et
al. [7], who showed that W[P] = FPT implies FPT = A[1] = A[2] = . . .. This result is already
non-trivial, since A[t] is not known to be a subset of W[P] for t > 1, and can be viewed as a
parameterized version of P = NP⇒ PH = P, except that the stronger collapse W[P] = FPT
is required instead of A[1] = FPT (in fact, the proof of the parameterized theorem in [7] is
adapted from the proof of the corresponding classical theorem). Previously it was not known
whether assuming a weaker collapse, for example W[P] = A[1], might also suffice to prove
that ∀t ≥ 1 : A[t] = A[t + 1]⇒ A-Hierarchy = A[t]. In what follows we prove such a theorem.

Let A[1]c be the class of parameterized problems Q such that there exists an A[1]-machine
that solves any instance (x, k) of Q in a number of steps depending only on k. This subclass
of A[1] contains the problems that can be solved by A[1]-machines without the need for a
precomputation that runs in fpt-time. It is provably not closed under fpt-reductions, but
contains many important W[1]-complete problems, provided that the input is given in an
appropriate format. For example, p-IndependentSet ∈ A[1]c, if the input graph is given in
the form of an adjacency matrix, because then an A[1]-machine can first guess k vertices
(recall that a nondeterministic RAM can guess an integer between 1 and n in a single step;
see Section 2.1) and use its random access memory to verify in O(k2) steps that none of
the edges between two guessed vertices are in the graph. One can similarly show that
p-ShortTMAcceptance and other W[1]-complete problems are in A[1]c.
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If W[P] were to collapse to A[1], then the W[P]-complete problem p-WSatCircuit
would also be A[1]-complete, and therefore it would seem reasonable to expect that it is
also in A[1]c, given an appropriate, efficiently computable encoding of the input. Thus,
p-WSatCircuit ∈ A[1]c seems only slightly less likely than W[P] = A[1] (although, strictly
speaking, both p-WSatCircuit ∈ A[1]c and p-WSatCircuit ∈ FPT (used by Chen et al.
[7]) are strictly stronger assumptions than p-WSatCircuit ∈ A[1], and probably mutually
incomparable). Under this assumption, we can prove the following:

I Theorem 15. Assume that p-WSatCircuit ∈ A[1]c, meaning that there exists an A[1]-
machine which solves any instance (x, k) of p-WSatCircuit in a number of steps depending
computably on k alone. Then ∀t ≥ 1 we have that A[t] = A[t + 1]⇒ (∀u ≥ 1 : A[t] = A[t + u]).

Proof. We show that under the first assumption in the theorem statement, we have for every
t ≥ 1 that A[t + 1] = Σ[P ]

t+1. Since we already have a downward separation theorem for W[P]H
(Fact 7), it follows that the desired conclusion holds for the A-Hierarchy.

First, we have for every t ≥ 1 that Σ[P ]
t+1 ⊆ A[t]p-WSatCircuit, by a similar proof as

that of Theorem 12: To solve a problem Q ∈ Σ[P ]
t+1, an A[t]p-WSatCircuit-machine will first

compute a reduction to the canonical Σ[P ]
t+1-complete problem p-AWSatCircuitt+1, and, if

t is odd, modify the resulting circuit so that its output is flipped. The machine then uses
its t-alternating nondeterminism to guess the variables to set to 1 in the first t sets of the
partition of the circuit’s inputs, and hardwires this partial assignment into the circuit. The
result is an instance of p-WSatCircuit, which can be solved with a single query to the
oracle, and the oracle A[t]-machine now outputs the oracle’s answer if t is odd, otherwise it
outputs the opposite answer. It is easy to verify that this solves the problem Q.

Finally, we outline the proof that A[t]p-WSatCircuit ⊆ A[t + 1], under the assumption
that the algorithm for p-WSatCircuit mentioned in the theorem statement exists. This
inclusion is proved in the same manner as A[1]p-MC(Σt[3]) ⊆ A[t + 1] [4, Theorem 13], which
is itself a parameterized version of the proof of the well-known fact that NPΣtSAT ⊆ ΣP

t+1
(see [2, Section 5.5]). An A[t + 1]-machine can first perform the deterministic part of the
oracle A[t]-machine’s computation, and then use its (t + 1)-alternating nondeterminism to
guess the answers to the subsequent oracle queries of the simulated machine (existentially),
all of its t-alternating nondeterministic guesses, as well as (suitably quantified) witnesses
for the query instances. Oracle queries are then replaced by computations in which the
guessed witnesses are used instead of nondeterministic guesses. The fact that evaluations of
p-WSatCircuit-queries can be performed in this manner, is due to the assumption that
this problem has a nondeterministic algorithm running in time dependent on k alone.

Since A[t + 1] ⊆ Σ[P ]
t+1 holds unconditionally, we conclude that the two classes are equal,

which completes the proof. J

5 Level-by-level relativized separations of the W- and the
A-Hierarchy

In this section we give oracle-based evidence that the main parameterized hierarchies do
not collapse in unforeseen ways. We start by constructing a single oracle relative to which
the inclusion of every W[t] in A[t] is strict, except for the first level. In fact, we accomplish
this by proving the strongest possible relativized separation between co-nondeterminism and
(existential) nondeterminism in the parameterized setting: the weakest co-nondeterministic
class with tail-restricted oracle access, against the strongest nondeterministic class with
unrestricted oracle access.
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The proofs of the theorems in this section are based on standard diagonalization arguments
that have been adapted to the parameterized setting, and can be found in the full version of
the paper.

I Theorem 16. There exists a computable oracle O such that co-A[1]O 6⊂ para-NP(O).

Since co-A[1]O ⊆ A[t] for all t ≥ 2, and W[t]O ⊆ para-NP(O) for all t ≥ 1, we immediately
get the next corollary. Note, however, that the oracle constructed here does not appear
to separate A[1] from W[1], since the separating problem in co-A[1]O \ para-NP(O) is not
in A[1]O. Had a separation of two coinciding classes occured, this would have made the
conclusion of Theorem 16 much less convincing.

I Corollary 17. There exists a computable oracle O such that for every t ≥ 2, W[t]O ( A[t]O.

Finally, we show that the W-Hierarchy is not likely to be contained in any finite level of the
A-Hierarchy.

I Theorem 18. There exists for each t ≥ 1 a computable oracle Ot such that W[t + 1]Ot 6⊂
A[t]Ot , where both machines have tail-restricted access to Ot, but the W[t]-machine has the
stronger type of oracle access mentioned in Section 3.

As mentioned in the introduction, each oracle Ot also separates the classes W[t] and
W[t + 1] in the relativized setting, since W[t]Ot ⊆ A[t]Ot but W[t + 1]Ot 6⊂ A[t]Ot .

6 Conclusions

Our results, together with the previously known theorems mentioned in the introduction,
strongly indicate that if the central conjecture of parameterized complexity theory holds at
all, proving it may be hard even under the additional assumption of a separation between
arbitrarily-weakly-nondeterministic polynomial-time and P (and, in particular, that P 6= NP).
Of course, the same also applies to the nowadays “standard” conjecture ETH. Additionally,
we have seen that W[1] and FPT are in some ways unexpectedly close, unless much of
what is generally assumed in parameterized complexity theory (such as the W-Hierarchy
not collapsing) is false. All of this suggests that the hardness of a problem for up to W[P]
should not be treated as strong evidence of intractability, at least not with a similar level of
confidence as when NP-hardness is considered evidence of computational intractability.
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