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Abstract
In this paper we investigate the (effective) dimension spectra of lines in the Euclidean plane. The
dimension spectrum of a line La,b, sp(L), with slope a and intercept b is the set of all effective
dimensions of the points (x, ax + b) on L. It has been recently shown that, for every a and b

with effective dimension less than 1, the dimension spectrum of La,b contains an interval. Our
first main theorem shows that this holds for every line. Moreover, when the effective dimension
of a and b is at least 1, sp(L) contains a unit interval.

Our second main theorem gives lower bounds on the dimension spectra of lines. In particular,
we show that for every α ∈ [0, 1], with the exception of a set of Hausdorff dimension at most α,
the effective dimension of (x, ax + b) is at least α + dim(a,b)

2 . As a consequence of this theorem,
using a recent characterization of Hausdorff dimension using effective dimension, we give a new
proof of a result by Molter and Rela on the Hausdorff dimension of Furstenberg sets.
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1 Introduction

This paper is concerned with the algorithmic dimension of points on a given line in the
Euclidean plane. The most well-studied algorithmic dimensions for a point x ∈ Rn are
the effective Hausdorff dimension, dim(x), and its dual, the effective packing dimension,
Dim(x) [3, 1]. Given the pointwise nature of effective dimension, it is natural to consider the
dimension spectrum, sp(A), of a set A ⊆ Rn, which is defined to be the set of dim(x) for all
x ∈ A.

In this paper, we study the behavior of sp(La,b), where La,b is the line with slope a and
intercept b. Turetsky [13] gave the first result on the dimension spectra of lines, showing
that, for every n ≥ 2, the set of all points in Rn with effective Hausdorff 1 is connected,
implying that 1 ∈ sp(La,b). It was then asked by J. Lutz, with the expectation of a negative
answer, if there were lines in the plane whose dimension spectrum was the singleton {1}. N.
Lutz and Stull [9] showed that this cannot happen by proving the following theorem.

I Theorem 1 (N. Lutz and Stull [9]). For all a, b, x ∈ R,

dim(x, ax+ b) ≥ dima,b(x) + min{dim(a, b), dima,b(x)} .

Theorem 1 implies that, when dim(a, b) < 1, the dimension spectrum of La,b contains the
interval [2 dim(a, b), dim(a, b) + 1]. With this result, it is natural to conjecture that the
dimension spectrum of every line La,b contains an interval. Indeed, in a recent survey on
effective dimension, N. Lutz [7] proposed the question of whether every line La,b has a
dimension spectrum containing a unit interval. Building upon the techniques of [9], N. Lutz
and Stull [10] showed that this is the case for a restricted class of lines.
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79:2 Results on the Dimension Spectra of Planar Lines

Table 1 Previously known results about the dimension spectra of lines.

∀a, b 1 ∈ sp(La,b)
[13]

dim(a, b) = 2 sp(La,b) = [1, 2]
dim(a, b) ≥ 1 sp(La,b) infinite

[10]
dim(a, b) = d < 1 [2d, 1 + d] ⊆ sp(La,b)

[9]
dim(a, b) = 0 sp(La,b) = [0, 1]

dim(a, b) = Dim(a, b) = d [min{1, d}, 1 + min{1, d}] ⊆ sp(La,b)
[10]

I Theorem 2 (N. Lutz and Stull [10]).
1. If dim(a, b) = Dim(a, b), then sp(La,b) contains a unit interval.
2. If dim(a, b) ≥ 1, then sp(La,b) is infinite.
The second item, combined with Theorem 1, shows that for every line La,b, the dimension
spectrum of La,b is infinite. Table 1 gives a summary of these results.

The question of whether the dimension spectrum of every line contains an interval has
remained open. Our first main theorem settles this question.

I Theorem 3. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Then, for every real number d ∈ [0, 1],
there is a point x such that

dim(x, ax+ b) = 1 + d.

Our second main theorem deals with providing lower bounds on the dimension spectrum of a
given line in the plane. The previously discussed theorems have all focused on results proving
that the spectrum of a given line contains certain values. However, very little is known about
the lower bound of sp(La,b) for arbitrary lines La,b. Our second main theorem gives a lower
bound of the spectrum of arbitrary lines, disregarding a set of small Hausdorff dimension.

I Theorem 4. For every a, b ∈ R and α ∈ (0, 1), the set

A = {x | dim(x, ax+ b) ≤ α+ dim(a, b)
2 }

has Hausdorff dimension at most α.

Apart from being intrinsically interesting, the study of the effective dimension of points
on a line has strong connections to important problems in the field of Fractal Geometry.
This connection is mediated by the following theorem relating the two notions of the effective
dimension of points with the Hausdorff and packing dimension of sets.

I Theorem 5 (Point-to-set principle [4]). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

Recent work has used effective dimension and the point-to-set principle to prove new results
in Fractal Geometry [6, 8]. In particular, the point-to-set principle combined with Theorem
1 gives improved lower bounds on the Hausdorff dimension of a certain class of Furstenberg
sets [9], an important open problem in Fractal Geometry (see Section 5 for definitions). As
our final result, we show that our second main theorem, Theorem 4, gives a new proof of a
result by Molter and Rela [12] on the dimension of Furstenberg sets.
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2 Preliminaries

2.1 Kolmogorov Complexity in Discrete Domains
The conditional Kolmogorov complexity of σ ∈ {0, 1}∗ given τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{`(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and `(π) is the length of π. Any π
that achieves this minimum is said to testify to the value K(σ|τ). The Kolmogorov complexity
of σ is K(σ) = K(σ|λ), where λ is the empty string. An important property, due to Levin,
of Kolmogorov complexity is the symmetry of information:

K(σ|τ,K(τ)) +K(τ) = K(τ |σ,K(σ)) +K(σ) +O(1) .

Kolmogorov complexity extends naturally to other discrete domains (e.g., integers, rationals,
etc.) via standard binary encodings.

We will also frequently use relativized Kolmogorov complexity. Letting U be a universal
oracle machine, we may relativize the definition in this section to an arbitrary oracle set
A ⊆ N. The definitions of KA(σ|τ) and KA(σ) are then identical to those above, except
that U is given oracle access to A.

2.2 Kolmogorov Complexity in Euclidean Spaces
In this section we show how to lift the definition of Kolmogorogov complexity to Euclideans
spaces by introducing precision parameters [5, 4]. Let x ∈ Rm, and let r, s ∈ N.1

The Kolmogorov complexity of x at precision r is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩Qm} .

The conditional Kolmogorov complexity of x at precision r given q ∈ Qm is

K̂r(x|q) = min {K(p|q) : p ∈ B2−r (x) ∩Qm} .

The conditional Kolmogorov complexity of x at precision r given y ∈ Rn at precision s is

Kr,s(x|y) = max
{
K̂r(x|q) : q ∈ B2−r (y) ∩Qn

}
.

We abbreviate Kr,r(x|y) by Kr(x|y).
We will frequently use the following lemma, which shows that increasing an estimate of a

point is at most linearly correlated with the number of extra bits.

I Lemma 6 (Case and J. Lutz [2]). There is a constant c ∈ N such that for all n, r, s ∈ N
and x ∈ Rn,

Kr(x) ≤ Kr+s(x) ≤ Kr(x) +K(r) + ns+ as + c ,

where as = K(s) + 2 log(d 1
2 logne+ s+ 3) + (d 1

2 logne+ 3)n+K(n) + 2 logn.

In Euclidean spaces, we have a weaker version of symmetry of information.

1 If we are given a nonintegral positive real as a precision parameter, we will always round up to the next
integer. For example, Kr(x) denotes Kdre(x) whenever r ∈ (0,∞).

MFCS 2018
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I Lemma 7 (J. Lutz and N. Lutz [4], N. Lutz and Stull [9]). Let x ∈ Rm and y ∈ Rn. For all
r, s ∈ N with r ≥ s,
1. Kr(x, y) = Kr(x|y) +Kr(y) +O(log r).
2. Kr(x) = Kr,s(x|x) +Ks(x) +O(log r).

As in the case of Kolmogorov complexity in discrete domains, we can relativize the
definitions of this section. We define KA

r (x) and KA
r (x|y) as before, except we replace the

unrelativized complexity K with KA.

2.3 Effective Dimensions
Although effective Hausdorff dimension was initially developed by J. Lutz using generalized
martingales [3], it was later shown by Mayordomo [11] that it may be equivalently defined
using the Kolmogorov complexity of Euclidean points of the previous section. We will be
using this Kolmogorov characterization here as a definition.

The effective Hausdorff dimension and effective packing dimension of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

Intuitively, these dimensions measure the density of algorithmic information in the point x.
Recently, J. Lutz and N. Lutz [4], developed the lower and upper conditional dimension of
points x ∈ Rm given y ∈ Rn, defined by

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

and Dim(x|y) = lim sup
r→∞

Kr(x|y)
r

.

Again, we can relativize the definitions of this section. We define dimA(x), DimA(x)
dimA(x|y), and DimA(x|y) as before, except we replace the unrelativized complexity Kr

with KA
r .

Of particular importance in this paper is the complexity of a point x relative to another
point y, written Ky

r (x). This is achieved by encoding the binary expansion of y into an oracle
Ay ⊆ N in the standard fashion. We then write Ky

r (x) for KAy
r (x). J. Lutz and N. Lutz

showed that Ky
r (x) ≤ Kr,t(x|y) +K(t) +O(1) [4].

3 Dimension Spectra of Lines of High Dimension

3.1 Approach and Previous Work
In this section we state the technical lemmas that underlie the proof of our first main theorem
(Theorem 3). These lemmas were first stated and proved by N. Lutz and Stull [9, 10]2.

I Lemma 8. Let a, b, x ∈ R, k ∈ N. Suppose that r1, . . . , rk ∈ N, δ ∈ R+, and ε, η1, . . . , ηk ∈
Q+ satisfy the following conditions for every 1 ≤ i ≤ k.
1. ri ≥ log(2|a|+ |x|+ 6) + ri−1.
2. Kri(a, b) ≤ (ηi + ε) ri.
3. For every (u, v) ∈ R2 such that t = − log ‖(a, b)− (u, v)‖ ∈ (ri−1, ri] and ux+ v = ax+ b,

Kri
(u, v) ≥ (ηi − ε) ri + δ · (ri − t).

2 Lemma 8 is stated here in a slightly stronger form than the version of [10]. The proof, however, is nearly
identical. For completeness we give a proof in the Technical Appendix.
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Then for every oracle set A ⊆ N,

KA
rk

(a, b, x |x, ax+ b) ≤ 2k
(
K(η1, . . . , ηk) +K(ε) + 4ε

δ
rk +O(log rk)

)
.

We will briefly describe the intuition behind Lemma 8. For k = 1, Lemma 8 roughly states
that, if x and (a, b) satisfy the following properties, then we can compute an approximation
of (a, b) given an approximation of (x, ax+ b).
1. Kr(a, b) is small.
2. For every (u, v) such that ux+ v = ax+ b either

Kr(u, v) is large, or
(u, v) is close to (a, b)

This follows outputting a (u, v) of low complexity such that ux + v = ax + b. Under the
above assumptions, any such pair must be close to (a, b), and so we can recover (a, b) with a
small amount of extra information. Roughly, when k > 1, we do this procedure iteratively.
That is, we begin by computing (a, b) to precision r1 in the manner described above. Having
done so, we do the same procedure, except that we restrict to finding a pair (u, v) within
2−r1 of (a, b), and so on. This is useful when we can only guarantee that Kr(u, v) is large
when (u, v) is somewhat close to (a, b), which is the case in the proof of Theorem 3.

The next two lemmas will ensure that item (1) and (2) hold for a given pair (a, b).

I Lemma 9 (N. Lutz and Stull [9]). Let a, b, x ∈ R. For all (u, v) ∈ R2 such that ux+v = ax+b
and t = − log ‖(a, b)− (u, v)‖ ∈ (0, r],

Kr(u, v) ≥ Kt(a, b) +Ka,b
r−t(x)−O(log r) .

I Lemma 10 (N. Lutz and Stull [10]). Let z ∈ Rn, η ∈ Q ∩ [0, dim(z)], and k ∈ N. For all
r1, . . . , rk ∈ N, there is an oracle D = D(r1, . . . , rk, z, η) such that
1. For every t ≤ r1, KD

t (z) = min{ηr1,Kt(z)}+O(log rk)
2. For every 1 ≤ i ≤ k,

KD
ri

(z) = ηr1 +
i∑

j=2
min{η(rj − rj−1),Krj ,rj−1(z | z)}+O(log rk) .

3. For every t ∈ N and x ∈ R, Kz,D
t (x) = Kz

t (x) +O(log rk).

3.2 First Main Theorem
In this section we prove our first main theorem, Theorem 3. To do so, we will break the
proof into two cases. In the first we assume that, for arbitrarily long intervals, Kr(a, b) is
arbitrarily close to 1. In this case, it is “locally” as if dim(a, b) = Dim(a, b), and we can use
a similar proof to that of Theorem 2 in [10]. This case is formalized in the following lemma,
whose proof if deferred to the appendix.

I Lemma 11. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Assume that, for every τ > 0 and
every M ∈ N there are infinitely many R ∈ N such that

Ks(a, b) ≤ (1 + τ)s,

for every natural number s ∈ [R,MR]. Then, for every real number d ∈ (0, 1], there is a
point x such that dim(x, ax+ b) = 1 + d.

MFCS 2018
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Proof. Let d ∈ (0, 1]. For every n ∈ N, let τn = 1
n and Mn = 2n

d . Let R1, R2, . . . be a
sequence of natural numbers such that the following hold.
1. 2Rn < Rn+1.
2. For every n, Rn satisfies the hypothesis for the choices of τn and Mn.

We now define a real number x such that

dim(x, ax+ b) = 1 + d. (1)

Let y ∈ R be a real number that is random relative to (a, b). That is, for every r ∈ N,

Ka,b
r (y) ≥ r − log r.

For every n ∈ N, define hn = (Mn−1)Rn

2 . For every r ∈ N, let

x[r] =
{

0 if r
hn
∈ (d, 1] for some n ∈ N

y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary expansion.
We first claim that the dimension of (x, ax+ b) is at most 1 + d. For every n ∈ N, by our

construction of x and choice of y,

Khn
(x) = Kdhn

(x) +O(log hn)
= Kdhn

(y) +O(log hn)
≤ dhn +O(log hn).

Therefore, by the above bound and Lemma 7,

dim(x, ax+ b) = lim inf
r→∞

Kr(x, ax+ b)
r

= lim inf
r→∞

Kr(x) +Kr(ax+ b |x) +O(log r)
r

≤ lim inf
r→∞

Kr(x) + r +O(log r)
r

≤ lim inf
n→∞

Khn
(x) + hn +O(log hn)

hn

= d+ 1.

To complete the proof, it suffices to show that, for every η ∈ Q ∩ (0, 1) and ε ∈ Q+,

dim(x, ax+ b) ≥ η + d− ε. (2)

To that end, let η ∈ Q ∩ (0, 1) and ε ∈ Q+. To prove inequality (2), we will partition N into
intervals, and focus on the complexity of (x, ax+ b) at each precision r in these intervals.
For every n ∈ N, let In = (dhn, dhn+1].

Fix n ∈ N, and let m = 1−d
1−η . We will first consider r ∈ (dhn,mhn]. Let k = r

dhn
, and

define ri = idhn for every 1 ≤ i ≤ k. It is important to note that k is bounded by a constant
depending only on η and d. In particular, this implies that o(rk) is sublinear for all ri. Let
Dr = D(r1, . . . , rk, a, b, η) be the oracle defined in Lemma 10. We first note that, by our
assumption of (a, b) on the interval [Rn,MRn] and Lemma 7,

Kri,ri−1(a, b | a, b) = Kri
(a, b)−Kri−1(a, b)−O(log ri)

≥ ri − o(ri)− (1 + 1
n

)ri−1 −O(log ri)

= ri − ri−1 −
ri−1

n
− o(ri),
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for all sufficiently large r. Since k is bounded by a constant, for all sufficiently large n, we
have

Kri,ri−1(a, b | a, b) > η(ri − ri−1)− o(ri).

Hence, by Lemma 10,

|KDr
ri

(a, b)− ηri| < o(rk), (3)

for all 1 ≤ i ≤ k.
We now show that the conditions of Lemma 8 are satisfied relative to Dr. Item 1 of

Lemma 8 holds for all sufficiently large r. For item 2, by the construction of Dr, for every
1 ≤ i ≤ k,

KDr
ri

(a, b) = ηr1 +
i∑

j=2
min{η(rj − rj−1),Krj ,rj−1(z | z)}+O(log rk)

≤ ηr1 +
i∑

j=2
η(rj − rj−1 +O(log rk)

≤ ηri +O(log rk)
≤ (η + ε)ri,

for all sufficiently large r.
Let δ = 1− η. To see that item 3 of Lemma 8 is satisfied for i = 1, let (u, v) ∈ B1(a, b)

such that ux+ v = ax+ b and t = − log ‖(a, b)− (u, v)‖ ≤ r1. Then, by Lemmas 9 and 10,
and our construction of x,

KDr
r1

(u, v) ≥ KDr
t (a, b) +KDr

r1−t,r1
(x|a, b)−O(log r1)

≥ min{ηr1,Kt(a, b)}+Kr1−t(x)− o(rk)
≥ min{ηr1, t− o(t)}+ (η + δ)(r1 − t)− o(rk)
≥ min{ηr1, ηt− o(t)}+ (η + δ)(r1 − t)− o(rk)
≥ ηt− o(t) + (η + δ)(r1 − t)− o(rk) ,

We conclude that KDr
r1

(u, v) ≥ (η − ε)r1 + δ(r1 − t), for all sufficiently large r. To see that
that item 3 is satisfied for 1 < i ≤ k, let (u, v) ∈ B2−ri−1 (a, b) such that ux+ v = ax+ b and
t = − log ‖(a, b)− (u, v)‖ ≤ ri. Since (u, v) ∈ B2−ri−1 (a, b),

ri − t ≤ ri − ri−1 = idhj − (i− 1)dhj ≤ dhj + 1 ≤ r1 + 1 .

Therefore, by Lemma 9, inequality (3), and our construction of x,

KDr
ri

(u, v) ≥ KDr
t (a, b) +KDr

ri−t,ri
(x|a, b)−O(log ri)

≥ min{ηri,Kt(a, b)}+Kri−t(x)− o(ri)
≥ min{ηri, t− o(t)}+ (η + δ)(ri − t)− o(ri)
≥ min{ηri, ηt− o(t)}+ (η + δ)(ri − t)− o(ri)
≥ ηt− o(t) + (η + δ)(ri − t)− o(ri) .

We conclude that KDr
ri

(u, v) ≥ (η − ε)ri + δ(ri − t), for all sufficiently large r. Hence the
conditions of Lemma 8 are satisfied. Therefore, by applying Lemma 8 and appealing to

MFCS 2018
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inequality (3),

Kr(x, ax+ b) ≥KDr
r (x, ax+ b)

≥Kr(a, b, x)− 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)

=Kr(a, b) +Kr(x | a, b)

− 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)

≥dr + ηr − 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)
.

To complete the proof, we give lower bounds of Kr(x, ax+ b) for every r ∈ [mhn, dhn+1).
By Lemma 7 and our construction of x,

Kr(x) = Kr,hn
(x |x) +Khn

(x)− o(r)
= r − hn + dhn − o(r)
≥ ηr − o(r) .

The proof of Theorem 1 gives

Kr(x, ax+ b) ≥ Kr(x) + dim(x)r − o(r)
≥ ηr + dr − o(r)
≥ r(d+ η)− εr.

Putting together the lower bounds of Kr(x, ax + b) on the intervals (dhn,mhn) and
[mhn, dhn+1] shows that

dim(x, ax+ b) ≥ 1 + d,

and the proof is complete. J

If (a, b) is not of the first case, then there is a bound (1+τ) > 1 so that Kr(a, b) ≥ r(1+τ)
for some r in every sufficiently large interval. This implies that, for almost every precision r,
the conditional complexity Ks,r(a, b | a, b) > s− r, for some s at most a constant multiple of
r. This fact allows us to use the procedure outlined in Section 3.1 at precision s. We will
now formalize this intuition.

I Theorem 3. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Then, for every real number d ∈ [0, 1],
there is a point x such that

dim(x, ax+ b) = 1 + d.

Proof. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. For d = 1, we may choose an x ∈ R that
is random relative to (a, b). That is, there is some constant c ∈ N such that for all r ∈ N,
Ka,b
r (x) ≥ r − c. By Theorem 1,

dim(x, ax+ b) ≥ dima,b(x) + min{dim(a, b), 1}

= lim inf
r→∞

Kr(x)
r

+ 1

= 2,
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and the conclusion holds. For d = 0, the conclusion follows from Turetsky’s theorem [13].
We therefore assume that d ∈ (0, 1).

If (a, b) satisfy the conditions of Lemma 11, then the conclusion is immediate. So assume
that the conditions of Lemma 11 do not hold. Let τ > 0 and M > 0 be constants such that,
for almost every R ∈ N,

Ks(a, b) > (1 + τ)s,

for some s ∈ [R,MR].
Let y ∈ R be random relative to (a, b). Define the sequence of natural numbers {hn}n∈N

inductively as follows. Define h0 = 1. For every n > 0, let

hn = min
{
h ≥ 2hn−1 : Kh(a, b) ≥

(
Dim(a, b)− 1

n

)
h

}
.

Note that hn always exists. For every r ∈ N, let

x[r] =
{

0 if r
hn
∈ (d, 1] for some n ∈ N

y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary expansion.
Then Kdhn

(x) = dhn +O(log dhn).
Claim 1: dim(x, ax+ b) ≤ 1 + d.
Let η ∈ Q ∩ (0, 1), ε ∈ Q, n ∈ N, and let m = 1−d

1−η . We first give lower bounds of the
complexity of Kr(x, ax + b) on the interval (dhn,mhn). To begin, consider r = hn. Let
k = r

dhn
= 1

d , and define ri = idhn for every 1 ≤ i ≤ k. As in the proof of Lemma 11, is
important to note that k is bounded by a constant depending only on η and d.

Claim 2: Khn
(x, ax+ b) ≥ dhn + ηhn − 2k

(
K(ε) + kK(η) + 4ε

1−ηhn +O(log hn)
)
.

With this bound on the complexity of (x, ax+ b) at precision hn, we will use a symmetry
of information argument to give a lower bound on the complexity at precision r ∈ (dhn, hn).
We defer the proof of this claim to the appendix.

Claim 3: For all r ∈ [dhn, hn),

Kr(x, ax+ b) ≥ r(d+ η)− 2k
(
K(ε) +K(η) + 4ε

1− ηhn +O(log hn)
)
.

Note that this lower bound is useful for r ∈ (dhn, hn), since hn is a fixed constant multiple
of r.

We now turn to proving lower bounds for the complexity of (x, ax+ b) on the interval
(hn,mhn). To do so, we will make use of our assumption that the complexity of Ks(a, b) is
at least (1 + τ)s. In particular, this assumption implies that there is a fixed constant c such
that Kchn,hn

(a, b | a, b) ≥ η(chn − hn). Moreover, this constant is independent of η and ε.
To see this, let s > hn be a precision such that Ks(a, b) ≥ (1 + τ)s. By Lemma 7 and our
assumption of a, b,

Ks,hn(a, b | a, b) ≥ Ks(a, b)−Khn(a, b)−O(log s)
≥ (1 + τ)s−Dim(a, b)hn −O(log s)
≥ (1 + τ)s− 2hn −O(log s).

Thus,

Ks,hn
(a, b | a, b) ≥ η(s− hn),

MFCS 2018



79:10 Results on the Dimension Spectra of Planar Lines

for any such s > chn, for some fixed constant c depending only on τ . With this fact we are
able to show the following, whose proof is deferred to the appendix.

Claim 4: There is a precision hn < j ≤ chn such that

Kj(x, ax+ b) ≥ j − (hn − dhn) + ηj − 2k
(
K(ε) + kK(η) + 4ε

1− η j +O(log j)
)
.

With this bound, we will again prove lower bounds at precisions r ∈ (hn, j) using symmetry
of information arguments. While this is similar in spirit to the proof of Claim 3, there is an
important difference. At precisions greater than hn, the complexity of x begins increasing
again. In particular, the construction of x and Lemma 6 implies the following.

Kj(x, ax+ b) ≤ Kr(x, ax+ b) + 2(j − r).

We are still, however, able to achieve the required lower bounds on the complexity of (x, ax+b)
for all r ∈ (hn, j). The proof of this claim is deferred to the appendix.

Claim 5: For every r ∈ (hn, j),

Kr(x, ax+ b) ≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)
.

This lower bound is useful since j ≤ chn, and c is a constant depending only on τ . In
particular, this allows us to make cr(1−η)

r arbitrarily small by having η go to 1.
To complete the proof for the interval (dhn,mhn), we will apply the same method as in

Claims 4 and 5, except that we use j instead of hn. Specifically, we choose the first j2 > j

such that

Kj2,j(a, b | a, b) ≥ η(j2 − j),

and note that j2 ≤ cj. We then apply the proof of Claim 4 to Kj2(x, ax+ b), and the proof
of Claim 5 to the interval (j, j2). We then repeat this argument until we have given the
appropriate lower bound for all r ∈ (hn,mhn).

Finally, taking Claims 1, 2, 3, 4 and 5 together yields the following. For every r ∈
(dhn,mn),

Kr(x, ax+ b) ≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)
. (4)

To complete the proof, we bound Kr(x, ax+ b) for every r ∈ [mhn, dhn+1). By Lemma 7
and our construction of x,

Kr(x) = Kr,hn
(x |x) +Khn

(x) + o(r)
= r − hn + nhn + o(r)
≥ ηr + o(r) .

The proof of Theorem 1 gives Kr(x, ax+b) ≥ Kr(x)+dim(x)r−o(r), and so Kr(x, ax+b) ≥
r(d+ η)− εr. Combined with inequality (4), for every r ∈ (dhn, dhn+1),

Kr(x, ax+ b)
r

≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)

= d+ η − 2k
(
K(ε)
r

+ K(η)
r

+ 4ε
1− η c+ O(log cr)

r

)
≥ d+ η − 2 m

d

(
K(ε)
r

+ K(η)
r

+ 4ε
1− η c+ O(log cr)

r

)
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for all sufficiently large n. Since η and ε were chosen arbitrarily and independently,

dim(x, ax+ b) ≥ d+ 1,

and the proof is complete. J

4 Lower Bounding the Dimension Spectrum of a Line

In this section we give the first nontrivial lower bounds of the dimension spectrum of an
arbitrary line. For intuition behind the proof, first note the following simple observation.

I Observation 12. For every x, y, a, b ∈ R,

Kr(x, y, a, b) ≤ Kr(x, ax+ b) +Kr(y, ay + b) + 2t,

where t = − log ‖x− y‖.

Essentially, this is true since any two points identify a line, and this can be done in a
computable way. The 2t extra information is due to the fact the precision which we can
compute (a, b) to is linearly correlated to the distance between x and y. This immediately
suggests an approach to give the lower bound

dim(x) + dim(a, b)
2 ≥ dim(a, b).

While this observation is at the core of the proof of our second main theorem, it alone does
not suffice. The principle issue is that the values of Kr(x, ax+ b), Kr(y, ay + b) might be
“out of phase”; that is, Kr(x, ax+ b) is small when Kr(y, ay+ b) is large, and vice versa. Our
main theorem will show that the set of these points has low Hausdorff dimension.

Our first lemma builds upon Observation 12. In particular, it shows that, if Kr(x, ax+ b)
is small, then every other y such that Kr(y, ay + b) is small must satisfy certain properties.

I Lemma 13. Let α ∈ (0, 1), x, a, b ∈ R, and n, r ∈ N such that 2r− 1
2 < 1

n . Assume
that Kr(x, ax + b) < αr + Kr(a,b)

2 − r
n , and Ka,b

r (x) ≥ αr. Then, for every y ∈ R, if
Kr(y, ay + b) < αr + Kr(a,b)

2 , at least one of the following holds.
1. t := − log ‖x− y‖ ≤ r 1

2 .
2. Kr(y | a, b, x) < αr.

Proof. Assume the hypothesis, but assume that neither condition is satisfied for some y.
Then,

Kr(a, b, x, y) ≤ Kr(x, ax+ b) +Kr(y, ay + b) + 2t

< 2αr +Kr(a, b)−
r

n
+ 2t.

However, by our hypothesis and Lemma 7 we have

Kr(a, b, x, y) ≥ Kr(a, b) +Kr(x | a, b) +Kr(y | a, b, x)− log r
≥ Kr(a, b) + 2αr − log r.

Since condition (1) was assumed to not hold, we see that

1
n
< 2r− 1

2 ,

a contradiction. J
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For every a, b ∈ R and α ∈ (0, 1), define the set

A(α, a, b) = {x | dim(x, ax+ b) < α+ dim(a, b)
2 }.

I Theorem 4. For every a, b ∈ R and α ∈ (0, 1), dimH(A(α, a, b)) ≤ α.

Proof. Our goal is to show that dimH(A(α, a, b) ≤ α. We will actually prove a stronger
theorem. For every n, define

An(α, a, b) = {x | (∃∞r)Kr(x, ax+ b) < αr + Kr(a, b)
2 − r

n
}.

Note that to prove dimH(A(α, a, b) ≤ α, it suffices to show that dimH(An(α, a, b)) ≤ α for
every n. To see that A(α, a, b) ⊆ ∪nAn(α, a, b), let x ∈ A. Then there is an ε > 0 such that,
for infinitely many r,

Kr(x, ax+ b) < αr + dim(a, b)
2 r − εr

< αr + Kr(a, b) + g(r)
2 − εr,

where g is a sublinear function. Therefore, for sufficiently large n and r, x ∈ An(α, a, b). Since
the Hausdorff dimension of a countable union of sets ∪nAn is the supremum of dimH(An),
it suffices to show that, for every n, dimH(An(α, a, b)) ≤ α.

Define the set

U = {x | (∃∞r)Ka,b
r (x) ≤ αr}.

It is immediate that dima,b(x) ≤ α, for all x ∈ U .
For every r ∈ N, choose xr such that

Ka,b
r (x) ≥ αr

Kr(x, ax+ b) < αr + Kr(a, b)
2 − r

n
,

if such an xr exists. To reduce the notational burden we will, without loss of generality,
always assume that such an xr does exist. We then define

V = {y | (∃∞r) y ∈ (xr − 2−r
1
2 , xr + 2−r

1
2 )}.

Define oracle R ⊆ N which encodes the sequence x1, x2, . . . in the standard manner. Let
y ∈ V , and let r ∈ N such that y ∈ (xr − 2−r

1
2 , xr + 2−r

1
2 ). Then,

KR

r
1
2

(y) ≤ O(log r)

= O(log r 1
2 ).

Thus

dimR(y) = 0.

Let x1, x2, . . . be the sequence chosen above. Define

W = {y | (∃∞r)Kr(y | a, b, xr) < αr}.
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Let y ∈W , and let r ∈ N such that Kr(y | a, b, xr) < αr. Then we have

KR,a,b
r (y) ≤ Kr(y | a, b, xr) +O(log r)

< αr +O(log r).

Thus

dimR,a,b(y) ≤ α.

We now show that An(α, a, b) ⊆ U ∪ V ∪ W . Let y ∈ An(α, a, b), and assume that
y /∈ U ∪ V . So then y has the following properties.
1. For infinitely many r, Kr(y, ay + b) < αr + Kr(a,b)

2 − r
n

2. For almost every r, Ka,b
r (y) > αr.

3. For almost every r, y /∈ (xr − 2−r
1
2 , xr + 2−r

1
2 ).

Let r ∈ N be a sufficiently large integer such that item (1) holds. Then by Lemma 13, we
must have that

Kr(y | a, b, xr) < αr.

Therefore, y ∈ W , and An(α, a, b) ⊆ U ∪ V ∪W . Hence dimR,a,b(y) ≤ α, and the proof is
complete. J

5 Applications to Furstenberg Sets

In this section we will use the point-to-set principle, Theorem 5, in conjunction with the
theorem of the previous section to give a new proof of a result by Molter and Rela on
Furstenberg sets. Let α ∈ [0, 1]. A set of Furstenberg type with parameter α is a set E ⊆ R2

such that, for every e ∈ S1, there is a line `e in the direction e satisfying dimH(E ∩ `e) ≥ α.
It is an important open problem in Fractal Geometry to find the minimum possible dimension
of a set of Furstenberg type with paramater α.

Molter and Rela [12] have recently introduced a generalization of Furstenberg sets, by
removing the restriction that every direction must intersect the set. A set E ⊆ R2 is in the
class Fαβ if there is some set J ⊆ S1 such that
1. dimH(J) ≥ β, and
2. for every e ∈ J , there is a line `e in the direction e satisfying dimH(E ∩ `e) ≥ α.
They proved the following lower bound on the dimension of such sets.

I Theorem 14. (Molter and Rela [12]) For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α+ β

2 .

We will now give a new proof of this theorem, using the theorems of the previous section.

Proof of Theorem 14. Let α, β ∈ (0, 1], ε > 0, and E ∈ Fαβ . Let A ⊆ N be an oracle
testifying to the Hausdorff dimension of E; i.e.,

dimH(E) = sup
z∈E

dimA(z).

Let e ∈ S1 satisfy dimA(e) > β − ε. Note that such a direction exists by the point-to-set
principle. Let le be a line in direction e such that dimH(le ∩ E) ≥ α. Let a, b ∈ R be the
reals such that La,b = le. Note that dimA(a, b) = dimA(e) because the mapping e 7→ a is
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Table 2 Updated table of the dimension spectra of lines.

∀a, b 1 ∈ sp(La,b)
dim(a, b) = 2 sp(La,b) = [1, 2]
dim(a, b) ≥ 1 [1, 2] ⊆ sp(La,b) sp(La,b) ⊆ [1, 2]

Except for a set of dimension at
most 1

2

dim(a, b) = d < 1 [2d, 1 + d] ⊆ sp(La,b), sp(La,b) ⊆ [d, 1 + d]
Except a set of dimension at most
d
2

dim(a, b) = 0 sp(La,b) = [0, 1]
dim(a, b) = Dim(a, b) [d, 1 + d}] ⊆ sp(La,b),

d = min{1, dim(a, b)}

computable and bi-Lipschitz in a neighborhood of e. Let S = {x | (x, ax+ b) ∈ E ∩ le}. Note
that this implies that dimH(S) ≥ α. We then have that

dimH(E) ≥ sup
x∈S

dimA(x, ax+ b).

Therefore, to complete the proof, it suffices to show that there exists a point x ∈ S such that

dimA(x, ax+ b) ≥ α+ β

2 − ε. (5)

By Theorem 4, relativized to A, the set of all x such that dimA(x, ax + b) ≤ α + β
2 has

Hausdorff dimension at most α− ε. Since dimH(S) ≥ α, this implies that there is a point
x ∈ S which satisfies (5), and the proof is complete. J

6 Conclusion and Future Directions

In this paper, we have given two new results on the dimension spectra of lines in the plane,
summarized in Table 2.

The first gives a partial answer to the question posed by Lutz, asking whether, for every
line La,b, sp(La,b) contains a unit interval. We showed that if dim(a, b) ≥ 1, then this is true.
Together with a previous result of N. Lutz and Stull, this implies the following.

I Corollary 15. For every a, b ∈ R, sp(La,b) contains an interval.

However we still do not have complete answer to Lutz’s question. This is an important open
problem, and one that seems to require new techniques to solve.

We have also given the first nontrivial lower bound on the dimension spectrum of a given
line. An important open problem is to improve the bounds given here. This would be not
only an intrinsically interesting result, but would likely give improved bounds on Furstenberg
sets. Another interesting direction for future research is to construct lines with “many” points
of small dimension. In particular, for a given α > 0, is there a line La,b such that

dimH(A(α, a, b)) = α?
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