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Abstract
We investigate how the semantics of a hybrid automaton deviates with respect to syntactic per-
turbations on the hybrid automaton. We consider syntactic perturbations of a hybrid automaton,
wherein the syntactic representations of its elements, namely, initial sets, invariants, guards, and
flows, in some logic are perturbed. Our main result establishes a continuity like property that
states that small perturbations in the syntax lead to small perturbations in the semantics. More
precisely, we show that for every real number ε > 0 and natural number k, there is a real num-
ber δ > 0 such that Hδ, the δ syntactic perturbation of a hybrid automaton H, is ε-simulation
equivalent to H up to k transition steps. As a byproduct, we obtain a proof that a bounded
safety verification tool such as dReach will eventually prove the safety of a safe hybrid automa-
ton design (when only non-strict inequalities are used in all constraints) if dReach iteratively
reduces the syntactic parameter δ that is used in checking approximate satisfiability. This has
an immediate application in counter-example validation in a CEGAR framework, namely, when
a counter-example is spurious, then we have a complete procedure for deducing the same.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-
physical systems, Theory of computation → Timed and hybrid models, Software and its engi-
neering → Model checking

Keywords and phrases Model Checking, Hybrid Automata, Approximation, Perturbation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.26

Funding Mahesh Viswanathan was partially supported by NSF CSR 1422798, and Pavithra
Prabhakar was partially supported by NSF CAREER Award No. 1552668 and ONR YIP Award
No. N00014-17-1-257.

1 Introduction

Hybrid automata are a mathematical framework to model systems consisting of a digital
controller interacting with a continuously evolving physical process. Such cyberphysical
systems arise in a variety of applications ranging from every day smart home appliances
to safety critical systems like avionics software and self driving cars. Hybrid automata
have discrete modes corresponding to phases in the digital controller, where the physical
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(b) Timed automaton TB .

Figure 1 Example timed automata whose syntactic perturbations are not semantically close.
Continuous variables x, y are clocks, i.e., ẋ = ẏ = 1 and the invariant in each state is 0 ≤ x, y ≤ 3.
The states q3 in TA and state q1 in TB are not reachable. But q1 and q3 are reachable in infinitesimal
syntactic perturbations TA and TB , respectively.

environment evolves continuously according to physics laws based on the actuator inputs
from the controller in that phase. Transitions between modes model discrete changes to
actuator inputs from the controller based on sensor feedback.

Formal models of cyberphysical systems are typically “best effort” descriptions that may
not be 100% faithful to the actual system. There are several sources of inaccuracies. Envi-
ronment parameters, like network latency, are estimated based on extensive experimentation.
Differential equations governing the behavior of the physical plant maybe imprecise, either
because of limitations in our mathematical understanding of the physics, or because of a
conscious effort to construct a tractable model by approximating. Sensor and actuator delays
might either be unpredictable or have been ignored. Finally, inaccuracies in sensor input to
the controller may not have been faithfully modeled.

For these reasons, a system modeled by hybrid automaton H, may, in practice, behave
like the automaton Hδ which is obtained from H by syntactically perturbing constants,
constraints on mode switches, and flow equations governing continuous evolution, by some
δ > 0. A natural question to ask is if the automaton H and its perturbation Hδ are
semantically close (in some well defined sense). Can a perturbed automaton Hδ be arbitrarily
close to H? The challenge in answering this question lies in the presence of discrete mode
changes – small changes to the behavior of a hybrid automaton could result in transitions
becoming enabled that yield unexpected behavior in the perturbed automaton.

For example, consider the timed automaton TA shown in Figure 1a. Variables x, y are
clocks (i.e., ẋ = ẏ = 1), and the invariant in every location is 0 ≤ x, y,≤ 3. Observe that,
when the automaton first visits q1 from q0, x = 1 and y is set to 0. Because of this, when
the automaton switches between q1 and q2, it spends at most 1 time unit in q1 and at least
1 time unit in q2. Further since all transitions into q1 set y to 0, whenever the automaton
transitions to q2, x is set to 0, and y is at most 1. Therefore, the transition to q3 is never
enabled, and q3 is not reachable. However, perturbing TA slightly by changing the guard
from q1 to q2 to x ≤ 2 + δ and the guard from q2 to q1 to y ≥ 2− δ (for some small δ) makes
q3 reachable – in the perturbed automaton, we can ensure that the automaton stays for
1 + nδ units during its nth visit to q1, and so after visiting q1 n∗ times (for n∗ that satisfies
1 + n∗δ ≥ 2), when we reach q2, the transition to q3 will be enabled. Thus, even a small
δ-perturbation of TA, results in an automaton T δA that is not semantically close, as q3 is
reachable in T δA but not reachable in TA. The difference between TA and T δA arises when
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one considers executions with arbitrarily many transitions. Does the property of semantic
closeness hold if one considers executions of bounded number of steps? The answer once
again is no. Consider the example timed automaton TB in Figure 1b. Once again, x, y are
clocks and the invariant in every location is 0 ≤ x, y ≤ 3. The transition from q0 to q1 is not
enabled in TB and so q1 is not reachable. However, perturbing the guard to x < 2 + δ and
y > 2− δ, results in an automaton where q1 is reachable, and hence not semantically close
to TB .

The examples in Figure 1 illustrate that in general syntactic perturbations can result
in models that are not semantically close. Any affirmative results, need to account for
the subtle issues that arise in the examples of Figure 1. Our main result is that for a
fairly general class of hybrid automata, that include hybrid automata with highly non-linear
and non-deterministic dynamics, syntactic perturbations are closely related to semantic
perturbations. We consider hybrid automata H all of whose components, like flows and
invariants in modes, and guards and resets on transitions, are described using formulas in
first-order logic over reals built from constraints of the form f ≥ 0, where f is a continuous
function, and using conjunction, disjunction, and first order quantification. For a formula
ϕ in this logic, its perturbation by δ, ϕδ, is the formula obtained by replacing all atomic
constraints f ≥ 0 in ϕ by f + δ ≥ 0. Using the notion of perturbation of a constraint, we
define Hδ to be the hybrid automaton obtained from H by perturbing all constraints ϕ
appearing in H by δ. We show that for any ε ∈ R+ and k ∈ N, there is a δ ∈ R+ such that
Hδ is ε-simulated for k-steps by H. In other words, every execution ρ of Hδ (having at most
k discrete transitions) is simulated by an execution ρ′ of H such that the states of ρ and ρ′
are within distance ε at all times. Our definition of perturbation ensures that H is always
simulated (in the formal sense) by Hδ. Therefore, we show that H and Hδ are approximately
simulation equivalent for k steps. Thus, one way to informally interpret our results is as
follows. Let us consider the function JHK that maps an automaton to its transition system
semantics. Our results can be seen as saying that J·K is a “continuous” map with the metric
on the hybrid automata induced by δ perturbations.

The crux of our result is a technical lemma that maybe of independent interest. Consider
any formula ϕ in the logic defined in the previous paragraph. Let us assume that all free
variables are constrained to take values from a bounded interval I. If X is the set of free
variables of ϕ, then we can see ϕ as defining a subset (denoted JϕK) of IX in the standard
way. We show that, for any formula ϕ, and any ε > 0, there is a δ > 0 such that the set JϕδK
(ϕδ is the δ-perturbation of ϕ) is contained in the ε-ball around JϕK.

Our results on relating syntactic and semantic perturbations have implications in satis-
fiability checking as well as verification, that served as our initial motivation for studying
this problem. Our first application is in the realm of δ-complete decision procedures [10, 11],
that take as input a formula in first order logic and a parameter δ, and return either that
the formula is unsatisfiable or that a δ syntactic perturbation of it is satisfiable. Note that
in the case that the formula is unsatisfiable, but a δ-perturbation of it is satisfiable, the
procedure is allowed to return either of the answers. Our results guarantee that if the formula
is unsatisfiable, then there is a δ for which the procedure will return unsat, and such a δ can
be computed by simply starting from 1 and halving it iteratively. This has direct implications
on the bounded safety verification using a tool such as dReach [12], that uses a δ-complete
decision procedure to check the satisfiability of the formula encoding the bounded verification
problem of hybrid automata. More precisely, dReach takes as input a hybrid automaton
H, a bound on the discrete steps k, an unsafe set U and a δ, and outputs either that H is
safe with respect to U and k discrete steps, or that Hδ is unsafe. Our results imply that if
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H is safe, then there is a δ for which dReach will necessarily conclude safety, and such a δ
again can be computed. Finally, these results are relevant in the context of counter-example
guided abstraction refinement (CEGAR) based analysis for hybrid automata [26], wherein
the above guarantees on bounded safety verification imply that the validation succeeds if the
counter-example is spurious and hence the CEGAR loop makes progress.

Related Work

There has been previous work on relating syntactic perturbation of first order logic formulas
over reals to their semantic perturbation [8, 24,25]. These papers show that small syntactic
perturbations result in small semantic perturbations. However, the notion of distance between
semantic sets is different from ours. The distance between two subsets A,B of Rn is taken
to be the volume of the symmetric difference between A and B. Thus, in [8, 24, 25], the
distance between JϕK and JψK may be 0 even if JϕK 6= JψK. This is not true for us, and is one
of the reasons our proofs rely significantly on the Bolzano-Weierstrass theorem. In addition,
using the observations in [8, 24,25], one cannot prove that syntactically perturbing a hybrid
automaton results in a model that is ε-simulation equivalent.

The results in this paper are closely related to robustness verification [1,3,4,7,9,14,15,23,
27, 29]. In robustness verification, the goal is to develop algorithms to determine if a system
H and all its perturbations Hδ in some small neighborhood, satisfy the correctness property
ϕ. While establishing the semantic proximity of H and Hδ may help answer the robustness
verification question, verification per se, is not the focus of this paper. Our principal goal is to
answer the meta-mathematical question of the relationship between syntactic and semantic
perturbations of a hybrid automaton.

Another related line of work consists of methods for constructing simplified models
of hybrid systems that are semantically close to the original system [13, 17, 18, 20–22] to
reduce the complexity of verification. Semantic closeness is expressed using the notions
of approximate simulations and bisimulations which establish that every execution of one
system can be matched by a corresponding execution of the other system that stays “close”
to it. Approximate bisimulation is weaker than bisimulation, however, it allows for the
construction of simplified models that are semantically close for a large class of systems [20]
under certain stability assumptions.

2 Preliminaries

2.1 Functions and Sets
The set of natural, positive natural, real, non-negative real, and positive real numbers are
represented by N, N+, R, R≥0, and R+, respectively. For any two sets A and B, power
set of A is denoted by 2A, the Cartesian product of A and B is denoted by A × B, and
the set of functions from A to B is denoted by A → B or BA. For any two functions
f, g ∈ A→ R, and number r ∈ R, functions f ± g ∈ A→ R given by a 7→ f(a)± g(a), maps
a to addition/subtraction of f(a) and g(a), are pointwise addition/subtraction of f and g,
function rf ∈ A → R given by a 7→ rf(a) is the scalar product of r and f , and function
f + r ∈ A→ R given by a 7→ f(a) + r is f shifted by r. For any set of variables X, we denote
the set of functions and continuous functions from RX to R by FX and CX , respectively.

Let X and Y be two arbitrary disjoint sets of variables. For any two points ν1 ∈ RX and
ν2 ∈ RY , concatenation of ν1 with ν2, denoted by ν1 _ ν2, is defined to be ν ∈ RX∪Y that
maps x to ν1(x) if x ∈ X and to ν2(x), otherwise (note that ν1 _ ν2 = ν2 _ ν1). Similarly,
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for any two sets of points V1 ⊆ RX and V2 ⊆ RY , V1 _ V2 := {ν1 _ ν2 | ν1 ∈ V1, ν2 ∈ V2}. We
use X ′ to denote the primed version of X (i.e. for every x ∈ X, variable x′ belongs to X ′).

For any two numbers a, b ∈ R, we define [a, b] := {x ∈ R | a ≤ x ≤ b} to be the interval
of points between a and b. We use I to denote the set of intervals.

2.2 Extended Metric Space and Distance Functions
Let M be an arbitrary set and d ∈M ×M → R ∪ {∞} be an arbitrary function. Ordered
pair (M,d) is called an extended metric space and d is called a distance function iff for any
x, y, z ∈M the following conditions hold:
1. d(x, y) ≥ 0,
2. d(x, y) = 0⇔ x = y,
3. d(x, y) = d(y, x), and
4. d(x, z) ≤ d(x, y) + d(y, z).
Let X be a finite set of variables, and M ⊆ RX be an arbitrary set. A well-known distance
function onM , denoted by d∞(ν1, ν2), maps any two points ν1, ν2 ∈M to max

x∈X
|ν1(x)−ν2(x)|.

Let f ∈ M ×M −→ R≥0 ∪ {∞} be an arbitrary function. For any point p ∈ M and
set A ⊆ M , we define f→(p,A) to be inf

a∈A
f(p, a); note that if A = ∅, this means that

f→(p,A) =∞. Intuitively, if f is a distance function then f→(p,A) is the distance of p from
A. Furthermore, for any set B ⊆M , f→(A,B) is defined to be sup

a∈A
f→(a,B). This means

that when A = ∅, f→(A,B) = 0. Intuitively, if f is a distance function then f→(A,B) is the
asymmetric distance from A to B 1. For any ε ∈ R≥0, Bε∞(A) := {p ∈M | d→∞(p,A) ≤ ε} is
the ε-ball around A. Also, closure of A is denoted by cl(A) and is defined to be B0

∞(A). A
set is closed iff it is equal to its closure. We say A ⊆M is bounded iff sup

a1,a2∈A
d∞(a1, a2) ∈ R.

Finally, a set is compact iff it is closed and bounded.

2.3 Predicates and Perturbations
In this paper we will consider predicates described in first order logic, where the assignment
to free variables is constrained to be within a bounded, closed interval. We fix I to be this
interval bounding the domain of all variables, for the rest of this paper. Further for a finite
set of variables X, BX will denote IX , i.e. the box of dimension |X| defined by interval I.

Let us fix a finite set of variables X. An atomic predicate with free variables in X is a
constraint of the form f ≥ 0, where f ∈ CX is a continuous function. We denote the set of
atomic propositions by P and those with X as their set of free variables by PX . For any two
functions f, g ∈ FX , we use f ≥ g, f ≤ g, and f = g, to denote f − g ≥ 0, g − f ≥ 0, and
min(f − g, g − f) ≥ 0, respectively. A predicate is defined according to the following BNF
rules, where f ∈ C is an arbitrary continuous function, x is an arbitrary variable, and I ⊆ I
is an arbitrary interval:

ϕ ::= f ≥ 0 | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x ∈ I·ϕ | ∀x ∈ I·ϕ | ϕ(X ′/X)

To simplify notation, instead of writing ∃x1, x2, . . . , xn ∈ I·ϕ and ∀x1, x2, . . . , xn ∈ I·ϕ,
we write ∃Y ∈ I·ϕ and ∀Y ∈ I·ϕ, where Y := {x1, x2, . . . , xn}. Formula ϕ(X ′/X) is the
usual substitution of every free variable x ∈ X by x′, and can be found in a standard logic
book like [5, pp. 45-51]. We implicitly assume that before carrying out the substitution, all

1 max{f→(A, B), f→(B, A)} is the Hausdorff distance between A and B [19, Section 7.3].
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bound variables in ϕ are renamed using fresh variables that are also distinct from X ′. For
any predicate ϕ, the set of free variables of ϕ, denoted by fvar(ϕ), is inductively defined
according to the following rules:
1. fvar(f) is X, where f is a function from RX to R,
2. fvar(ϕ ∨ ψ) and fvar(ϕ ∧ ψ) are defined to be fvar(ϕ) ∪ fvar(ψ),
3. fvar(∃y ∈ I·ϕ) and fvar(∀y ∈ I·ϕ) are defined to be fvar(ϕ) \ {y}, and
4. fvar(ϕ(X ′/X)) is defined to be (fvar(ϕ) \X) ∪ (fvar(ϕ) ∩X)′.

For any predicate ϕ with X := fvar(ϕ), we use JϕK to refer to the subset of points in the
box BX that satisfy the predicate ϕ. We denote the set of predicates with Φ and those with
X as their set of free variables by ΦX . We may write ϕ(X) to emphasize fvar(ϕ) = X. Also,
for any point ν ∈ RX , we use ν(X ′/X) to denote the same point in RX′ , i.e. a function that
maps x′ to ν(x).

For any predicate ϕ ∈ Φ and value δ ∈ R, perturbation of ϕ by δ is denoted by ϕδ and is
a predicate constructed from ϕ by replacing all atomic predicates of the form f ≥ 0 with
f + δ ≥ 0. Note that JϕK = Jϕ0K, and for any δ1 ≤ δ2 ∈ R, we have Jϕδ1K ⊆ Jϕδ2K. For any
two predicates ϕ1 ∈ ΦX and ϕ2 ∈ ΦY , and δ ∈ R, it is easy to see that J(ϕ1∧ϕ2)δK = Jϕδ1∧ϕδ2K
and J(ϕ1 ∨ ϕ2)δK = Jϕδ1 ∨ ϕδ2K. Furthermore, if X = Y then Jϕδ1 ∧ ϕδ2K = Jϕδ1K ∩ Jϕδ2K and
Jϕδ1 ∨ ϕδ2K = Jϕδ1K ∪ Jϕδ2K.

I Definition 1 (Arbitrary Over-Approximation). For any predicate ϕ ∈ Φ, we say ϕ can be
arbitrarily over-approximated iff the following is true:

∀ε ∈ R+·∃δ ∈ R+·JϕδK ⊆ Bε∞(JϕK)

We end this section with an important result that is used many times in our proofs.

I Theorem 2 (Bolzano-Weierstrass [2]). For any finite set of variables X, a bounded set
M ⊂ RX , and τ an infinite sequence of points in M , τ has a convergent subsequence.

2.4 Transition Systems and Hybrid Automata
I Definition 3 (Transition Systems). A transition system T is a tuple (S, Σ,−→, Sinit) in which

S is a (possibly infinite) set of states,
Σ is a (possibly infinite) set of labels,
−→⊆ S× Σ× S is a transition relation, and
Sinit ⊆ S is a set of initial states.

We denote different elements of T by adding a subscript to their names. For example, we
use ST to denote the set of states of T . We may omit the subscript whenever it is clear from
the context. We write s σ−→ s′ instead of (s, σ, s′) ∈−→, and s −→ s′ to denote ∃σ ∈ Σ·s σ−→ s′.

I Definition 4 (Syntax of Hybrid Automata). A hybrid automaton H is specified by a tuple
(Q, X, E, T, I, F, S, D, R, Qinit, Xinit) in which

Q is a non-empty finite set of locations.
X is a non-empty finite set of variables that does not contain variable t.
E is a finite set of edges.
T ∈ R≥0 is a continuous transition time-bound. Wlog., we assume [0, T] ⊆ I.
I ∈ Q→ ΦX maps each location to a predicate as the invariant of that location.
F ∈ Q→ ΦX∪X′∪{t}, maps each location to a predicate as the flow of that location.
S, D ∈ E→ Q map each edge to its source and destination locations, respectively.
R ∈ E→ ΦX∪X′ maps each edge to its transition relation.
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Qinit ∈ 2Q is a set of initial locations.
Xinit ∈ Qinit → ΦX maps each initial location to a predicate as the initial valuations of that
location.

We denote different elements of H by adding a subscript to their names. For example, we
use XH to denote the set of variables of H. We may omit the subscript whenever it is clear
from the context. Finally, we define Inv(H) :=

∨
q∈Q I(q) to be the union of invariants in H.

Note that Inv(H) ∈ ΦX.

I Definition 5 (Semantics of Hybrid Automata). Semantics of a hybrid automaton H is
defined using the transition system JHK = (S, Σ,−→, Sinit) in which

S := Q× BX,
Σ := E ∪ [0, T] 2,
Sinit :=

{
(q, ν) | q ∈ Qinit ∧ ν ∈ JXinit(q) ∧ I(q)K

}
, and

−→:=−→c ∪ −→d where
→c is the set of continuous transitions and for any r ∈ R we have (q, ν) r−→c (q′, ν′) iff
1. r ∈ [0, T],
2. q = q′,
3. ν ∈ JI(q)K,
4. ν′ ∈ JI(q′)K, and
5. ν _ ν′(X′/X) _ {t 7→ r} ∈ JF(q)K,
→d is the set of discrete transitions and for any e ∈ E we have (q, ν) e−→d (q′, ν′) iff
1. q = S(e),
2. q′ = D(e),
3. ν ∈ JI(q)K,
4. ν′ ∈ JI(q′)K, and
5. ν _ ν′(X′/X) ∈ JR(e)K.

For any two states s1 := (q1, ν1), s2 := (q2, ν2) ∈ S, we extend definition of d∞(s1, s2) to be
∞ if q1 6= q2 and d∞(ν1, ν2) otherwise. For any state s ∈ S, we define CPostH(s) := {s′ ∈
S | ∃t ∈ [0, T]·s t−→ s′}. Similarly, for any state s ∈ S and e ∈ E, we define DPosteH(s) :=
{s′ ∈ S | s e−→ s′}. Also, for any set of states S ⊆ S, we define CPostH(S) :=

⋃
s∈S CPostH(s),

and DPosteH(S) :=
⋃
s∈S DPost

e
H(s). To simplify notation, we may drop the subscript H if

it is clear from the context. Finally, for any number k ∈ N, we define reachk(H) to be the
set of states in S that can be reached from Sinit through at most k function applications of
CPost or DPost.

Next, we define a notion of distance between hybrid automata and a related notion of
simulation equivalence.

I Definition 6 (k-Step Asymmetric Distance). For any two hybrid automata H1 and H2 with
the same set of locations, variables, and edges, and for any two states s1 ∈ S, and s2 ∈ S, we
define adist0(s1, s2) to be d∞(s1, s2). For any k ∈ N+, we inductively define adistk(s1, s2)
to be maximum of the following values:

d∞(s1, s2)
adist→k−1(CPostH1(s1), CPostH2(s2))

max
e∈E

adist→k−1
(
DPosteH1

(s1), DPosteH2
(s2)

)
2 Wlog. we assume E and R are disjoint.
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Whenever, H1 and/or H2 are not clear from the context, we use adist→kH1,H2
. Finally, we define

adist→k (H1,H2) to be adist→kH1,H2

(
Sinit
H1
, Sinit
H2

)
.

I Definition 7 (k-Step ε-Simulation). For any two hybrid automata H1 and H2 with the
same set of locations, variables, and edges, and value ε ∈ R≥0, a relation R ⊆ S× S is called
a 0-step ε-simulation iff ∀s1, s2 ∈ S·s1Rs2 ⇒ d∞(s1, s2) < ε. For any k ∈ N+, R ⊆ S× S is
called a k-step ε-simulation iff there exists R′ ⊆ S× S, a k − 1-step ε-simulation, such that
for any s1, s2 ∈ S, if s1Rs2 then d∞(s1, s2) < ε and both the following conditions hold:
∀s′1 ∈ S, e ∈ E·s1

e−→ s′1 ⇒ ∃s′2 ∈ S·s2
e−→ s′2 ∧ s′1R′s′2

∀s′1 ∈ S, t ∈ R·s1
t−→ s′1 ⇒ ∃s′2 ∈ S, t′ ∈ R·s2

t′−→ s′2 ∧ s′1R′s′2
We say H1 is k-step ε-similar to H2, denoted by H1 �εk H2 iff there is a k-step ε-simulation
relation R such that ∀s1 ∈ Sinit

H1 ·∃s2 ∈ Sinit
H2 ·s1Rs2.

I Proposition 8 (Equivalence of k-Step Distance and ε-Simulation). For any two hybrid
automata H1 and H2, numbers k ∈ N and ε ∈ R+, H1 �εk H2 iff adist→k (H1,H2) < ε.

I Definition 9 (Perturbation of hybrid automata). For any hybrid automaton H and pertur-
bation δ ∈ R≥0, perturbation of H by δ, denoted by Hδ, is obtained from H by perturbing
all of its predicates by δ. More precisely, QHδ := QH, XHδ := XH, EHδ := EH, THδ := TH,
SHδ := SH, DHδ := DH, and Qinit

Hδ := Qinit
H . Furthermore, for any q ∈ Q and e ∈ E, we

have IHδ(q) := (IH(q))δ, FHδ(q) := (FH(q))δ, RHδ(e) := (RH(e))δ, and if q ∈ Qinit then
Xinit
Hδ(q) := (Xinit

H (q))δ.

It is easy to see, for any hybrid automaton H, perturbation δ ∈ R≥0, states s, s′ ∈ S,
time t ∈ R, and edge e ∈ E, we have s t−→JHK s

′ implies s t−→JHδK s
′, and s e−→JHK s

′ implies
s

e−→JHδK s
′. Also, if δ = 0 then JHδK = JHK. Finally, for any k ∈ N, it is easy to see

adist→k (H,Hδ) = 0. However, adist→k (Hδ,H) is not necessarily 0.

2.5 Encoding States, CPost, and DPost as Predicates

Since in Section 2.3, we only allow variables to be quantified over intervals, wlog., for the
rest of this paper and for any hybrid automaton H, we assume
1. QH is the set {0, 1, . . . , |Q| − 1}, and
2. XH contains variable xQ.
Variable xQ is used to model the current location. For any location q ∈ Q and edge e ∈ E,
wlog., we assume

JI(q)K = JxQ = q ∧ I(q)K
JF(q)K = JxQ = q ∧ F(q)K
JR(e)K = JxQ = S(e) ∧ x′Q = D(e) ∧ R(e)K
q ∈ Qinit ⇒ JXinit(q)K = JxQ = q ∧ Xinit(q)K

Let ϕ ∈ ΦX be a predicate encoding a subset of states in SJHK. For any edge e ∈ E, we
define DPosteH(ϕ) to be (∃X ∈ I·ϕ ∧ ψ1(X) ∧ ψ2(X′) ∧ ψ3(X ∪ X′))(X/X′), where
1. ψ1 := I(S(e)) ensures source location is correct and its invariant is satisfied,
2. ψ2 := I(D(e))(X′/X) ensures destination location is correct and its invariant is satisfied,

and
3. ψ3 := R(e) ensures transition relation is satisfied.
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At the end of formula, substituting every free variable x′ ∈ X′ by x ∈ X, ensures all free
variables of DPosteH(ϕ) belong to X 3. Note that DPosteH(ϕ) belongs to ΦX.

For any q ∈ Q, we define CPostqH(ϕ) to be (∃X ∈ I, t ∈ [0, T]·ϕ ∧ ψ1(X) ∧ ψ2(X′) ∧
ψ3(X ∪ X′ ∪ {t}))(X/X′), where
1. ψ1 := I(q) ensures source location is correct and its invariant is satisfied,
2. ψ2 := I(q)(X′/X) ensures location does not change and its invariant will remain satisfied,

and
3. ψ3 := F(q) ensures flow relation is satisfied.
At the end of formula, substituting every free variable x′ ∈ X′ by x ∈ X, ensures all free
variables of CPostqH(ϕ) belong to X. We also define CPostH(ϕ) to be

∨
q∈Q CPost

q
H(ϕ).

Note that CPostqH(ϕ) and CPostH(ϕ) are both members of ΦX. Finally, it is easy to see
that for any e ∈ E and ϕ ∈ ΦX we have JDPosteH(ϕ)K = DPosteH(JϕK) and JCPostH(ϕ)K =
CPostH(JϕK) [9, 12].

3 Arbitrary Over-Approximation of a Predicate

The crux of our result on the relation between syntactic and semantic perturbations of hybrid
automata relies on the observation that we can arbitrarily over-approximate any predicate,
which is formalized in Theorem 10.

I Theorem 10. For any set of variables X and predicate ϕ ∈ ΦX , ϕ can be arbitrarily
over-approximated.

The proof is by induction on the structure of ϕ, and relies on an important topological
property of the formulas ϕ ∈ ΦX , namely, that the set of satisfiable assignments represented
by the formulas is closed. The proofs have been moved to the appendix in the interest of
space.

I Theorem 11. For any finite set of variables X and predicate ϕ ∈ ΦX , the set JϕK is closed.

Note that requiring quantified variables to range over bounded intervals is necessary here.
For example, let P := (xy = 1). Clearly JP K is a closed set. However, J∃y ∈ R·P K = {x ∈
I | x 6= 0} may not be closed anymore (if 0 ∈ I). Also, even though we do not allow strict
inequalities in the syntax, there are typically ways in which a constraint like f(X) > 0 can
be encoded. However, these different ways are effectively ruled out. Here are some examples
to illustrate this point.
1. The formula ∃ε ∈ R+·f(X) − ε ≥ 0 is ruled out because we only allow quantification

over closed intervals.
2. Consider ∃y ∈ [0, 1]·0 ≤ y ≤ 1 ∧ f(X)− g(y) ≥ 0, where g(y) = 1 if y = 0, and g(y) = y

if y 6= 0. This is also not allowed because the function g is discontinuous.
3. Finally, ∃y ∈ R·y ≥ 1 ∧ f(X)− 1

y ≥ 0 is ruled out because we only allow quantification
over bounded intervals.

3 As we mentioned in Section 2.3, in order to prevent variable capture that may happen as a result of a
substitution, before every substitution, all bound variables are renamed to some fresh variable distinct
from those in X or X′.
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4 Arbitrary Over-Approximation of Hybrid Automata

In Section 2.4, we defined hybrid automata, its semantics, its perturbation, as well as bounded
step distance function. In Theorem 10, we proved that for any set of variables X, every
predicate in ΦX can be arbitrarily over-approximated. Our main result of this section is that
for any bounded number of steps, any hybrid automaton can be arbitrarily over-approximated.
In other words, it is always possible to make sure a hybrid automaton and its perturbation
behave similarly for at least k steps. Theorem 14 formally states this result. Before, we
present this theorem and its proof, we will introduce two lemmas that will help us prove our
main result.

I Lemma 12 (CPost and DPost are Continuous). For any hybrid automaton H and edge
e ∈ E, functions CPostH and DPosteH are continuous with respect to d→∞ and perturbation.
More precisely,

∀ν ∈ JInv(H)K, ε ∈ R+·∃δ ∈ R+·∀ν′ ∈ JInv(Hδ)K·d∞(ν′, ν) ≤ δ ⇒

d→∞(CPostHδ(ν′), CPostH(ν)) < ε ∧ d→∞(DPosteHδ(ν
′), DPosteH(ν)) < ε

Proof. We prove this lemma for CPost. Proof of DPoste can be obtained by replacing every
CPost with DPoste. For the purpose of contradiction suppose this result does not hold for
some ν ∈ JInv(H)K, ε ∈ R+. For any n ∈ N, define δn := 1

n+1 , and let ν′n ∈ JInv(Hδn)K be a
point for which d∞(ν′n, ν) ≤ δn and d→∞(CPostHδn (ν′n), CPostH(ν)) ≥ ε are both true.

Define ϕ :=
∧
x∈X(x = ν(x)). Since ϕ ∈ PX, we know CPostH(ϕ) ∈ ΦX. Use Theorem 10

and fix n ∈ N such that J(CPostH(ϕ))δnK ⊆ Bε/2
∞ (JCPostH(ϕ)K). Definition of CPostH(ϕ)

ensures the following is true, because the two sides of the equality are syntactically the same.
∀δ ∈ R≥0·JCPostHδ(ϕδ)K = J(CPostH(ϕ))δK

Therefore, knowing ∀n ∈ N·ν′n ∈ JϕδnK, we conclude
CPostHδn (ν′n) ⊆ CPostHδn (JϕδnK) = JCPostHδn (ϕδn)K ⊆

Bε/2
∞ (JCPostH(ϕ)K) = Bε/2

∞ (CPostH(ν))
This means d→∞(CPostHδn (ν′n), CPostH(ν)) ≤ ε

2 , which is a contradiction. J

I Lemma 13 (adist is Continuous). For any hybrid automaton H and number k ∈ N,
distance function adist→k is continuous with respect to d→∞ and perturbation. More precisely,

∀ϕ ∈ ΦX, ε ∈ R+·∃δ ∈ R+·∀ψ ∈ ΦX·
JϕK ⊆ JInv(H)K ∧ JψK ⊆ JInv(Hδ)K ∧ d→∞(JψK, JϕK) ≤ δ ⇒ adist→kHδ,H

(JψK, JϕK) < ε

Proof. Proof is by induction on k. Base of induction, where k = 0, is trivial because adist→0
and d→∞ are identical. For the purpose of contradiction, suppose the inductive step does not
hold for some ε ∈ R+ and ϕ ∈ ΦX, where JϕK ⊆ JInv(H)K. For any n ∈ N, define δn := ε

n+3 ,
and let ψn ∈ ΦX be a predicate for which JψnK ⊆ JInv(Hδn)K, d→∞(JψnK, JϕK) ≤ δn ≤ ε

3 , and
adist→k+1Hδ,H

(JψnK, JϕK) ≥ ε are all true. We immediately know JϕK 6= ∅ ∧ ∀n ∈ N· ∧ JψnK 6= ∅.
Using the properties of supremum and infimum, for any n ∈ N, let ν′n ∈ JψnK be such that
∀ν ∈ JϕK·adistk+1(ν′n, ν) ≥ ε

2
Let νn ∈ JϕK ∩ Bδn∞(ν′n) be an arbitrary point (the set JϕK ∩ Bδn∞(ν′n) is never empty). Using
definition of adistk+1, we know at least one of the following conditions is true:

adist→k (CPostHδn (ν′n), CPostH(νn)) ≥ ε

2
adist→k (DPosteHδn (ν′n), DPosteH(νn)) ≥ ε

2 , for some e ∈ E



N. Roohi, P. Prabhakar, and M. Viswanathan 26:11

We assume the first condition is true. Proof of the other case can be obtained by replacing
every CPost with DPoste in the rest of this proof. Define ϕ′n :=

∧
x∈X(x = νn(x)) and

ψ′n :=
∧
x∈X(x = ν′n(x)). We know ϕ′n, ψ

′
n ∈ PX, and hence ϕ′′n := CPostH(ϕ′n) and ψ′′n :=

CPostHδn (ψ′n) are both members of ΦX. For any n ∈ N, we know Jϕ′′nK ⊆ JInv(H)K and
Jψ′′nK ⊆ JInv(Hδn)K are both true. Use induction hypothesis and find N ∈ N such that
∀n ∈ N·d→∞(Jψ′′nK, Jϕ′′nK) ≤ δN ⇒ adist→kHδn,H

(Jψ′′nK, Jϕ′′nK) <
ε

2
We conclude the following which is in contradiction with Lemma 12.
∀n ∈ N·νn ∈ JInv(H)K ∧ ν′n ∈ JInv(Hδn)K ∧ d→∞(ν′n, νn) ≤ δn∧

d→∞(CPostHδn (ν′n), CPostH(νn)) > δN J

I Theorem 14. For any hybrid automaton H, bounded step n ∈ N, and ε ∈ R+, there is
δ ∈ R+ such that

∀k ∈ {0, . . . , n}·adist→kHδ,H

(
Sinit

JHδK, S
init
JHK

)
< ε

Proof. Since n is given in advance and adist→kHδ,H
(·, ·) is a non-decreasing function with respect

to k, it is enough to prove this result for only k := n. Let ϕ := Inv(H) ∧
∨
q∈Qinit

H
Xinit(q)

be a formula in ΦX that represents initial states of H. We know Sinit
JHK = JϕK and ∀δ ∈

R·Sinit
JHδK = JϕδK. Using Lemma 13, find η ∈ R+ such that ∀δ ∈ R·d→∞(JϕδK, JϕK) < η ⇒

adist→kHη,H
(JϕδK, JϕK) < ε. Complete the proof by using Theorem 10 and finding δk ∈ R+ such

that d→∞(JϕδkK, JϕK) < η. J

I Corollary 15 (Arbitrary Over-Approximation of Reachable Sets). For any hybrid automaton
H, reachable set of H can be arbitrarily over-approximated. More precisely,

∀ε ∈ R+, k ∈ N·∃δ ∈ R+·reachk(Hδ) ⊆ Bε∞(reachk(H))

Proof. Immediate from Theorem 14. J

I Corollary 16 (Bounded ε-Simulation). For any hybrid automaton H, k ∈ N, and ε ∈ R+,
there is δ ∈ R+ such that H and Hδ ε-simulate each other for at least k steps.

∀ε ∈ R+, k ∈ N·∃δ ∈ R+·Hδ �εk H ∧H�εk Hδ
Proof. H�εk Hδ is trivially true for any ε ∈ R≥0 and k ∈ N. ε-simulation of Hδ by H for at
least k steps is immediate from Theorem 14 and Proposition 8. J

5 Applications to Safety Model Checking

In Section 3 and Section 4 we proved some results about the ability to arbitrarily over-
approximate sets and hybrid automata. In this section, we demonstrate three applications of
those results.

5.1 Co-completeness of δ-Complete Decision Procedures
It is well-known that the first order theory of reals with addition, multiplication, and
trigonometric functions is undecidable (one can easily encode integers in this logic) [5,
Chapter 3]. Authors in [10, 11] came up with an interesting compromise in their decision
procedure for checking satisfiability of these formulas. For any formula ϕ ∈ Φ, their so called
δ-complete decision procedure returns either unsat or δ-sat. If the output is unsat, we
know JϕK = ∅. However, if the output is δ-sat, we only know JϕδK 6= ∅. Parameter δ ∈ R+
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is an input to their algorithm and can be made arbitrary small. The algorithm in [10,11],
imposes one additional constraint on formulas: Every function used in atomic propositions of
a formula must be type 2 computable [6, 16, 28]. Intuitively, a function is type 2 computable
iff an arbitrary approximation of its value can be computed from arbitrary approximations of
its inputs. This condition is stronger than continuity requirement that we have in this paper.
Nevertheless, it still includes arithmetic, trigonometric, logarithmic, exponential, absolute
value, minimum, and maximum functions as well as solutions of many ordinary differential
equations.

Observe that δ-complete decision procedures provide approximate answers to the sat-
isfiability question. So even if a formula ϕ is unsatisfiable, there is no guarantee that the
δ-decision procedure will answer unsat. The procedure is guaranteed to answer unsat only
if it is called with a δ such that both ϕ and ϕδ are unsatisfiable. Does such a δ exist for all
unsatisfiable ϕ? Can it be computed? Theorem 10 answers in the affirmative for both these
questions – the value of δ can also be computed by repeatedly calling a δ-decision procedure
for smaller and smaller δ. Theorem 17 formalizes this result.

I Theorem 17. Let ϕ ∈ Φ be an arbitrary predicate with JϕK = ∅ and every function is
type 2 computable. One can compute δ ∈ R+ for which JϕδK = ∅.

We require that the predicates only use non-strict inequalities, whereas no such restriction
is imposed on the inputs to the δ-decision procedures [10,11]. However, predicates with strict
inequalities can be easily handled using predicates with non-strict inequalities. Consider
ϕ, a formula with some strict inequalities, and let ϕ′ be the formula obtained by changing
each strict inequality in ϕ to the corresponding non-strict one. Observe that if a δ-complete
decision procedure says ϕ′ is unsat, we know unsat is a valid output for ϕ as well. More
interestingly, output δ-sat for ϕ′ means 2δ-sat is a valid output for ϕ.

5.2 Completeness of dReach
δ-complete decision procedures have been used in [12] to develop a tool called dReach for
bounded time, bounded step safety model checking of non-linear hybrid automaton H. The
tool first takes H and unsafe predicate U ∈ ΦX as input, and then encodes the safety problem
into a satisfiability problem of a formula that is supported by the algorithm in [10,11]. Finally,
it checks its satisfiability and outputs the results. Possible outputs are either unsat, which
means reachk(H) ∩ JUK = ∅, and δ-sat, which means reachk(Hδ) ∩ JUδK 6= ∅. However, in
case the input hybrid automaton is k-step safe, it is not known if a value of δ exists, such
that reachk(Hδ) ∩ JU δK remains an empty set. Theorem 18 is an immediate consequence of
Corollary 15 and Theorem 17.

I Theorem 18. Let H be a hybrid automaton and U ∈ ΦX be an unsafe predicate. If syntax
of H and U is supported by dReach then for any k ∈ N, if H is k-step safe then one can
compute δ ∈ R+ for which dReach answers unsat ( i.e. safe).

Note that the formulas considered here are more general that what is supported in dReach.
As argued in the previous section, our restriction to non-strict inequalities does not constrain
things when using δ-complete decision procedures. Flows specified using ordinary differential
equations in dReach, define continuous functions and thus are handled by our results. We
could also easily change the formula describing the continuous post predicate by requiring
∀t ∈ [0, T]·I(q)(f(t)), to ensure that the continuous state satisfies the invariant at all times
during a continuous transition.

δ-complete decision procedures can also be used for counter-example validation in a
CEGAR-based model checking framework [26]. Theorem 18 can also be used to provide
guarantees of progress for such tools – if a counter-example is spurious then such δ-decision
procedures are guaranteed to discover it.
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6 Conclusion

We investigated whether syntactic perturbations of hybrid automata whose elements are
specified in a logic, are semantically close. Such a result does not hold in general as illustrated
by the timed automata in Figures 1a and 1b. We identify a fairly general class of systems
for which, for every ε > 0 and k, there is a δ > 0 such that δ-syntactic perturbations are
ε-simulation equivalent upto k-discrete steps. These results are important in the context of
providing certain theoretical guarantees on δ-decision procedures and bounded verification
using the same procedures.

Our results about the semantic closeness of δ-syntactic perturbations only apply when
one considers a bounded number of discrete jumps. It seems unlikely that such a result
can be extended when there is no a priori bound on the number of discrete steps; this is
illustrated by the timed automaton in Figure 1a. One interesting future direction consists of
exploring the computability issues with respect to the continuity property of the semantics.
More precisely, given an ε, can we effectively compute a δ such that δ syntactic perturbation
on the hybrid automaton lead to at most ε deviations in the semantics.
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A Proofs

In this section we present all the proofs that we skipped in the main section of the paper.

I Theorem 11. For any finite set of variables X and predicate ϕ ∈ ΦX , the set JϕK is closed.

Proof. Immediate from an induction on the structure of ϕ, using Lemma 19, Lemma 20, and
Lemma 21 (closedness of finite disjunctions and closedness of finite conjunctions of closed
sets are trivial facts). J

I Theorem 10. For any set of variables X and predicate ϕ ∈ ΦX , ϕ can be arbitrarily
over-approximated.
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Proof. Immediate from an induction on the structure of ϕ using Lemma 22, Lemma 23,
Lemma 24, Lemma 25, and Lemma 26. J

I Lemma 19. For any finite set of variables X and predicate P ∈ PX , JP K is closed.

Proof. This is a trivial proof once we noticed all functions in P are continuous and all
inequalities in P are non-strict. J

I Lemma 20. For any finite sets of variables X, variable y, interval I, and predicate ϕ ∈ ΦX ,
if JϕK is closed then J∃y ∈ I·ϕK is also closed.

Proof. Let ψ be ∃y ∈ I·ϕ. If I is an empty set then JψK = ∅. Otherwise, if y 6∈ X then
JψK = JφK. Otherwise, let ν0, ν1, ν2, . . . be a sequence of points in J∃y ∈ I·ϕK that converges
to ν∗. For every n ∈ N, there is ν′n ∈ JϕK such that ν′n(y) ∈ I and ∀x ∈ X\{y}·ν′n(x) = νn(x).
We know JϕK is bounded. Therefore, from Theorem 2 and closeness of I, there is a sub-
sequence with indices m0 < m1 < m2 < · · · such that ν′m0

, ν′m1
, ν′m2

, . . . converges to ν′∗
with ν′∗(y) ∈ I. We know ν′∗ ∈ JϕK, since it is closed, and ν′∗ agrees with ν∗ on every
variable x ∈ X \ {y}. Therefore, ν∗ ∈ J∃y ∈ I·ϕK. J

I Lemma 21. For any finite sets of variables X, variable y, interval I, and predicate ϕ ∈ ΦX ,
if JϕK is closed then J∀y ∈ I·ϕK is also closed.

Proof. Let ψ be ∀y ∈ I·ϕ. If I is an empty set then JψK = BX\{y}. Otherwise, if y 6∈ X then
JψK = JφK. Otherwise, let ν′ ∈ I{y} be an arbitrary point, and let ν0, ν1, ν2, . . . be a sequence
of points in J∀y ∈ I·ϕK that converges to ν∗. For any n ∈ N, we know νn _ ν′ ∈ JϕK. We
also know ν0 _ ν′, ν1 _ ν′, ν2 _ ν′, . . . converges to ν∗ _ ν′ which, by closedness of JϕK, is a
point in JϕK. Therefore, ν∗ ∈ J∀y ∈ I·ϕK, since we put no restriction on ν′. J

I Lemma 22. For any finite set of variables X, any predicate in PX can be arbitrarily
over-approximated.

Proof. For the purpose of contradiction, let P ∈ PX be a predicate with the following
condition: ∃ε ∈ R+·∀δ ∈ R+·∃ν ∈ JP δK·ν /∈ Bε∞(JP K). Fix ε, and for any n ∈ N, let
δn := 1

n+1 . Let νn ∈ JP δnK \ Bε∞(JP K) be an arbitrary element. Using Theorem 2, there is a
sequence m0 < m1 < · · · such that νm0 , νm1 , . . . converges to ν∗.

It is enough to show ν∗ ∈ JP K, because there are infinitely many indices n such that
d∞(νmn , ν∗) ≤ ε and any one of them contradicts the fact νmn /∈ Bε∞(JP K). Suppose ν∗ 6∈ JP K.
Let the atomic constraint corresponding to P be f ≥ 0. Since, ν∗ 6∈ JP K we have f(ν∗) < 0,
and since, νn ∈ JP δnK, we have ∀n ∈ N·f(νmn) + δmn ≥ 0. Since f is a continuous function,
∃N1 ∈ N·∀n > N1·|f(νmn)− f(ν∗)| < − 1

2f(ν∗). Let N2 ∈ N be such that δN2 < − 1
2f(ν∗)

and let N := max{N1, N2}. We know ∀n > N ·f(νmn) + δmn <
1
2f(ν∗)− 1

2f(ν∗) = 0 which
is a contradiction. J

I Lemma 23. For any finite sets of variables Y, Z and predicates ϕ ∈ ΦY and ψ ∈ ΦZ , if ϕ
and ψ can be arbitrarily over-approximated then ϕ ∨ ψ can be arbitrarily approximated as
well.

Proof. For any ε ∈ R+, let δ ∈ R+ be such that both JϕδK ⊆ Bε∞(JϕK) and JψδK ⊆ Bε∞(JψK)
hold. If Jϕδ ∨ ψδK = ∅ then the proof is complete. Otherwise, let ν ∈ Jϕδ ∨ ψδK be an
arbitrary value. At least one of ν�Y ∈ JϕδK and ν�Z∈ JψδK are true. Wlog. assume that the
first holds. Let ν′ ∈ Bε∞(JϕK) be any point for which d∞(ν′, ν�Y ) ≤ ε, and let ν′′ ∈ RY ∪Z
be the point that maps y ∈ Y to ν′(y) and z ∈ Z \ Y to ν(z). We know d∞(ν, ν′′) :=
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max
x∈Y ∪Z

|ν(x) − ν′′(x)|. The right hand side is equal to the maximum of max
y∈Y
|ν(y) − ν′′(y)|

and max
z∈Z\Y

|ν(z)− ν′′(z)| = 0, and hence equal to max
y∈Y
|ν(y)− ν′(y)| = d∞(ν�Y , ν′) ≤ ε. What

remains is to show ν′′ ∈ Bε∞(Jϕ ∨ ψK). Let u′ ∈ JϕK be any point with d∞(ν′, u′) ≤ ε, and
let u′′ ∈ RY ∪Z be the point that maps y ∈ Y to u′(x) and z ∈ Z \ Y to ν′′(z). Clearly,
d∞(u′′, ν′′) = d∞(u′, ν′) ≤ ε. Therefore, it is enough to show u′′ ∈ Jϕ ∨ ψK, which can be
concluded from the facts u′′�Y = u′ and u′ ∈ JϕK. J

I Lemma 24. For any finite sets of variables Y, Z and predicates ϕ ∈ ΦY and ψ ∈ ΦZ , if ϕ
and ψ can be arbitrarily over-approximated then ϕ ∧ ψ can be arbitrarily approximated as
well.

Proof. For the purpose of contradiction, suppose ∃ε ∈ R+·∀δ ∈ R+·Jϕδ∧ψδK 6⊆ Bε∞(Jϕ ∧ ψK).
Fix such an ε and for any n ∈ N, let εn := ε

n+1 , and let δn ∈ R+ be a value for which
JϕδnK ⊆ Bεn∞(JϕK) and JψδnK ⊆ Bεn∞(JψK) hold. Also, make sure for any n ∈ N, δn+1 ≤ δn
and hence Jϕδn+1 ∧ ψδn+1K ⊆ Jϕδn ∧ ψδnK. Finally, let νn be an arbitrary element of the
non-empty set Jϕδn ∧ ψδnK \ Bε∞(Jϕ ∧ ψK). We know νn�Y ∈ JϕδnK and νn�Z∈ JψδnK.

Using Theorem 2, there is a sequence m0 < m1 < m2 < · · · such that νm0 , νm1 , νm2 , . . .

converges to ν∗. It is enough to show ν∗ ∈ Jϕ∧ψK, because, there are infinitely many indices
n such that d∞(νmn , ν∗) ≤ ε and any one of them contradicts the fact νmn 6∈ Bε∞(Jϕ ∧ ψK).
Note that νm0�Y , νm1�Y , νm2�Y , . . . converges to ν∗�Y and νm0�Z , νm1�Z , νm2�Z , . . . converges
to ν∗�Z .

By Theorem 11, we know JϕK is closed and hence ν∗�Y ∈ JϕK (otherwise, ν∗�Y will have
a positive distance with JϕK, which is a contradiction). Similarly, we know ν∗ �Z∈ JψK.
Therefore, ν∗ ∈ Jϕ ∧ ψK. J

I Lemma 25. For any finite set of variables X, variable y, interval I, and a predicate
ϕ ∈ ΦX , if ϕ can be arbitrarily over-approximated then ψ := ∃y ∈ I·ϕ can be arbitrarily
over-approximated as well.

Proof. The proof is trivial once we noticed for any two points ν1, ν2 ∈ RX we have
d∞(ν1�X\{y}, ν2�X\{y}) ≤ d∞(ν1, ν2). J

I Lemma 26. For any finite set of variables X, variable y, interval I, and a predicate
ϕ ∈ ΦX , if ϕ can be arbitrarily over-approximated then ψ := ∀y ∈ I·ϕ can be arbitrarily
over-approximated as well.

Proof. If I is an empty set then ∀δ ∈ R·JψδK = JψK. Otherwise, if y 6∈ X then ∀δ ∈
R·JψδK = JϕδK. Otherwise, For the purpose of contradiction, suppose ∃ε ∈ R+·∀δ ∈
R+·∃ν ∈ J∀y ∈ I·ϕδK·ν 6∈ Bε∞(J∀y ∈ I·ϕK). Fix such ε and let ν′ ∈ R{y} be an arbitrary
point. Also, for every n ∈ N, let νn ∈ J∀y ∈ I·ϕδnK \ Bε∞(J∀y ∈ I·ϕK) be an arbitrary point,
where δn := 1

n+1 .
Using Theorem 2, we know there is a sequence m0 < m1 < m2 < . . . such that

νm0 , νm1 , νm2 , . . . converges to ν∗. It is enough to show ν∗ ∈ J∀y ∈ I·ϕK, because, there
are infinitely many indices n such that d∞(νmn , ν∗) ≤ ε and any one of them contradicts
the fact νmn 6∈ Bε∞(J∀y ∈ I·ϕK). For any n ∈ N, we know νmn _ ν′ ∈ Jϕδmn K. We also
know, νm0 _ ν′, νm1 _ ν′, νm2 _ ν′, . . . converges to ν∗ _ ν′ which, by Theorem 11 and hence
closedness of JϕK, is a point in JϕK. Therefore, ν∗ ∈ J∀y ∈ I·ϕK, since there is no constraint
on ν′. J
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