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—— Abstract

In recent years, two-player zero-sum games with multiple objectives have received a lot of interest
as a model for the synthesis of complex reactive systems. In this framework, Player 1 wins if he can
ensure that all objectives are satisfied against any behavior of Player 2. When this is not possible
to satisfy all the objectives at once, an alternative is to use some preorder on the objectives
according to which subset of objectives Player 1 wants to satisfy. For example, it is often natural
to provide more significance to one objective over another, a situation that can be modelled with

lexicographically ordered objectives for instance. Inspired by recent work on concurrent games
with multiple w-regular objectives by Bouyer et al., we investigate in detail turned-based games
with monotonically ordered and w-regular objectives. We study the threshold problem which
asks whether player 1 can ensure a payoff greater than or equal to a given threshold w.r.t. a
given monotonic preorder. As the number of objectives is usually much smaller than the size of
the game graph, we provide a parametric complexity analysis and we show that our threshold
problem is in FPT for all monotonic preorders and all classical types of w-regular objectives. We
also provide polynomial time algorithms for Biichi, coBiichi and explicit Muller objectives for
a large subclass of monotonic preorders that includes among others the lexicographic preorder.
In the particular case of lexicographic preorder, we also study the complexity of computing the
values and the memory requirements of optimal strategies.
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1 Introduction

Two-player zero-sum games played on directed graphs form an adequate framework for the
synthesis of reactive systems facing an uncontrollable environment [21]. To model properties
to be enforced by the reactive system within its environment, games with Boolean objectives
and games with quantitative objectives have been studied, for example games with w-regular
objectives [15] and mean-payoff games [23].

Recently, games with multiple objectives have received a lot of attention since in practice,
a system must usually satisfy several properties. In this framework, the system wins if it
can ensure that all objectives are satisfied no matter how the environment behaves. For
instance, generalized parity games are studied in [11], multi-mean-payoff games in [22], and
multidimensional games with heterogeneous w-regular objectives in [7].

When multiple objectives are conflicting or if there does not exist a strategy that can
enforce all of them at the same time, it is natural to consider trade-offs. A general framework
for defining trade-offs between n (Boolean) objectives €1, ..., ), consists in assigning to
each infinite path 7 of the game a payoff v € {0,1}"™ such that v(i) = 1 iff 7 satisfies £,
and then to equip {0,1}"™ with a preorder 3 to define a preference between pairs of payoffs:
v 3 v' whenever payoff v' is preferred to payoff v. Because the ideal situation would be
to satisfy all the objectives together, it is natural to assume that the preorder =< has the
following monotonicity property: if v" is such that whenever v(i) = 1 then v'(7) = 1, then it
should be the case that v’ is preferred to v.

As an illustration, let us consider a game in which Player 1 strives to enforce three
objectives: €21, 0, and Q3. Assume also that Player 1 has no strategy ensuring all three
objectives at the same time, that is, Player 1 cannot ensure the objective 1 N Qs N Q3. Then
several options can be considered, see e.g. [6]. First, we could be interested in a strategy of
Player 1 ensuring a maximal subset of the three objectives. Indeed, a strategy that enforces
both €4 and 23 should be preferred to a strategy that enforces {23 only. This preference is
usually called the subset preorder. Now, if ) is considered more important than 5 itself
considered more important than {23, then a strategy that ensures the most important possible
objective should be considered as the most desirable. This preference is called the mazimize
preorder. Finally, we could also translate the relative importance of the different objectives
into a lexicographic preorder on the payoffs: satisfying 2; and 25 would be considered as
more desirable than satisfying 21 and 23 but not Q5. Those three examples are all monotonic

preorders.
In this paper, we consider the following threshold problem: given a game graph G, a set
of w-regular objectives® Qy,...,Q,, a monotonic preorder = on the set {0,1}" of payoffs,

and a threshold u, decide whether Player 1 has a strategy such that for all strategies of
Player 2, the outcome of the game has payoff v greater than or equal to u (for the specified
preorder), i.e. p 3 v. As the number n of objectives is typically much smaller than the size
of the game graph G, it is natural to consider a parametric analysis of the complexity of
the threshold problem in which the number of objectives and their size are considered to be
fixed parameters of the problem. Our main results are as follows.

3 We cover all classical w-regular objectives: reachability, safety, Biichi, co-Biichi, parity, Rabin, Streett,
explicit Muller, or Muller.
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Contributions

First, we provide fized parameter tractable solutions to the threshold problem for all monotonic
preorders and for all classical types of w-regular objectives. Our solutions rely on the following
ingredients:

1. We show that solving the threshold problem is equivalent to solve a game with a sin-
gle objective € that is a union of intersections of objectives taken among Q1,...,€,
(Theorem 3). This is possible by embedding the monotonic preorder 3 in the subset
preorder and by translating the threshold p in preorder X into an antichain of thresholds
in the subset preorder. A threshold in the subset preorder is naturally associated with
a conjunction of objectives, and an antichain of thresholds leads to a union of such
conjunctions.

2. We provide a fixed parameter tractable algorithm to solve games with a single objective
) as described previously for all types of w-regular objectives Q1,...,€,, leading to a
fized parameter algorithm for the threshold problem (Theorem 4). Those results build
on the recent breakthrough of Calude et al. that provides a quasipolynomial time
algorithm for parity games as well as their fixed parameter tractability [9], and on the
fixed parameter tractability of games with an objective defined by a Boolean combination
of Biichi objectives (Proposition 5).

Second, we consider games with a preorder =< having a compact embedding, with the main

condition that the antichain of thresholds resulting from the embedding in the subset preorder

is of polynomial size. The maximize preorder, the subset preorder, and the lexicographic
preorder, given as examples above, all possess this property. For games with a compact
embedding, we go beyond fixed parameter tractability as we are able to provide deterministic

polynomial time solutions for Biichi, coBiichi, and explicit Muller objectives (Theorem 6).

Polynomial time solutions are not possible for the other types of w-regular objectives as

we show that the threshold problem for the lexicographic preorder with reachability, safety,

parity, Rabin, Streett, and Muller objectives cannot be solved in polynomial time unless

P = PSPACE (Theorem 7). Finally, we present a full picture of the study of the lexicographic

preorder for each studied objective. We give the exact complexity class of the threshold

problem, show that we can obtain the values from the threshold problem (which thus yields

a polynomial algorithm for Biichi, co-Biichi and Explicit Muller objectives, and an FPT

algorithm for the other objectives) and provide tight memory requirements for the optimal

and winning strategies (Table 2).

Related Work

In [6], Bouyer et al. investigate concurrent games with multiple objectives leading to payoffs
in {0,1}™ which are ordered using Boolean circuits. While their threshold problem is slightly
more general than ours, their games being concurrent and their preorders being not necessarily
monotonic, the algorithms that they provide are nondeterministic and guess witnesses whose
size depends polynomially not only in the number of objectives but also in the size of the
game graph. Their algorithms are sufficient to establish membership to PSPACE for all
classical types of w-regular objectives but they do not provide a basis for the parametric
complexity analysis of the threshold problem. In stark contrast, we provide deterministic
algorithms whose complexity only depends polynomially in the size of the game graph. Our
new deterministic algorithms are thus instrumental to a finer complexity analysis that leads
to fixed parameter tractability for all monotonic preorders and all w-regular objectives. We
also provide tighter lower-bounds for the important special case of lexicographic preorder, in
particular for parity objectives.
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The particular class of games with multiple Biichi objectives ordered with the maximize
preorder has been considered in [2]. The interested reader will find in that paper clear practical
motivations for considering multiple objectives and ordering them. The lexicographic ordering
of objectives has also been considered in the context of quantitative games: lexicographic
mean-payoff games in [5], some special cases of lexicographic quantitative games in [8, 16],
and lexicographically ordered energy objectives in [12].

In [1] and [19], the authors investigate partially (or totally) ordered specifications expressed
in LTL. None of their complexity results leads to the results of this paper since the complexity
is de facto much higher with objectives expressed in LTL. Moreover no FPT result is provided
in those references.

Structure of the paper

In Section 2, we present all the useful notions about games with monotonically ordered
w-regular objectives. In Section 3, we show that solving the threshold problem is equivalent to
solve a game with a single objective that is a union of intersections of objectives (Theorem 3),
and we establish the main result of this paper: the fixed parameter complexity of the threshold
problem (Theorem 4). Section 4 is devoted to games with a compact embedding and in
particular to the threshold problem for lexicographic games. The last section is dedicated to
the study of computing the values and memory requirements of optimal strategies in the
case of lexicographic games (Table 2). Full paper is available on arXiv.*

2 Monotonically ordered w-regular games

We consider zero-sum turn-based games played by two players, P; and Ps, on a finite directed
graph. Given several objectives, we associate with each play of this game a vector of bits
called payoff, the components of which indicate the objectives that are satisfied. The set of
all payoffs being equipped with a preorder, P; wants to ensure a payoff greater than or equal
to a given threshold against any behavior of P5. In this section we give all the useful notions
and the studied problem.

Preorders

Given some non-empty set P, a preorder over P is a binary relation X C P x P that is
reflexive and transitive. The equivalence relation ~ associated with = is defined such that
x ~ vy if and only if x 2 y and y 3 x. The strict partial order < associated with = is then
defined such that x < y if and only if x X y and x # y. A preorder =3 is total if x S y
ory 3 x forall x,y € P. A set S C P is upper-closed if for all x € S, y € P, if z 3y,
then y € S. An antichain is a set S C P of pairwise incomparable elements, that is, for all
z,y €S, if x #y, then x Zy and y £ x.

Game structures and strategies

A game structure is a tuple G = (V1, Vo, E) where (V, E) is a finite directed graph, with
V =V UV, the set of vertices and E C V x V the set of edges such that for each v € V,
there exists (v,v") € E for some v’ € V (no deadlock), and (V7, V3) forms a partition of V/
such that V; is the set of vertices controlled by player P; with ¢ € {1,2}.

4 See https://arxiv.org/abs/1707.05968.
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A play of G is an infinite sequence of vertices m = vgvy ... € V¥ such that (vg,vp41) € E
for all k € N. We denote by Plays(G) the set of plays in G. Histories of G are finite
sequences p = vg...v; € VT defined in the same way. Given a play m = vov1 ..., the
set Occ(m) denotes the set of vertices that occur in 7, and the set Inf(7) denotes the set
of vertices visited infinitely often along 7, i.e., Occ(n) = {v € V | 3k > 0,v;, = v} and
Inf(r) = {v €V |Vk >0,31 >k, vy = v}. Given a set Q C V¥, we denote by Q the set
Ve Q.

A strategy o; for P; is a function o;: V*V; — V assigning to each history pv € V*V;
a vertex v' = o;(pv) such that (v,v’") € E. It is memoryless if o;(pv) = o;(p'v) for all
histories pv, p’v ending with the same vertex v, that is, if o; is a function ¢;: V; — V. Tt is
finite-memory if o;(pv) only needs finite memory of the history pv (recorded by a Moore
machine). The size of o; is the size of its Moore machine.

The set of all strategies of P; is denoted by ;. Given a strategy o; of P;, a play

T =1vgv1 ... of G is consistent with o; if vgy1 = 0y(vg ... vx) for all k € N such that vy, € V;.

Given an initial vertex vy, and a strategy o; of each player P;, we have a unique play
consistent with both strategies o1, 09, called outcome and denoted by Out(vg, o1, 02).

Single objectives and ordered objectives

An objective for P; is a set of plays Q C Plays(G). A game (G,2) is composed of a game

structure G and an objective Q. A play « is winning for Py if w € , and losing otherwise.

As the studied games are zero-sum, P, has the opposite objective 2, meaning that a play 7
is winning for P; if and only if it is losing for Ps. Given a game (G,€2) and an initial vertex

Vg, a strategy oy for Py is winning from vy if Out(vg, 01, 02) € 2 for all strategies oo of Pa.

Vertex v is thus called winning for P;. We also say that P, is winning from vy or that he
can ensure €0 from vg. Similarly the winning vertices of Ps are those from which P, can
ensure his objective .

A game (G, Q) is determined if each of its vertices is either winning for P; or winning for
P2. Martin’s theorem [20] states that all games with Borel objectives are determined. The
problem of solving a game (G, ) means to decide, given an initial vertex vy, whether P is
winning from vy (or dually whether Py is winning from vy when the game is determined).

Instead of a single objective €2, one can consider several objectives 21,..., 8, that are
ordered with respect to a preorder 3 over {0,1}" in the following way. We first define
the payoff of a play as a vector® of bits the components of which indicate the objectives
that are satisfied. Formally, given n objectives 1, ...,€, C Plays(G), the payoff function
Payoff: Plays(G) — {0,1}™ assigns a vector of bits to each play = € Plays(G), where for all
ke{l,...,n}, Payoff,(m) =1 if 7 € Q and 0 otherwise.

Given the preorder 3 over {0,1}", P; prefers a play 7 to a play ©’ whenever Payoff(r’) =
Payoff (). We call ordered game the tuple (G, Qy,...,Q,,3), the payoff function of which is
defined w.r.t. the objectives 1, ...,€, and its values are ordered with <. In this context,
we are interested in the following problem.

» Problem 1. The threshold problem for ordered games (G,q,...,Q,, 3) asks, given a

ny ~v

threshold 1 € {0,1}" and an initial vertex vg € V, to decide whether P; (resp. P2) has

a strategy to ensure the objective Q = {7 € Plays(G) | Payoff(w) = u} from vy (resp.

Q = {r € Plays(G) | Payoff(r) Z u}).°

5 Note that in the sequel, we often manipulate equivalently vectors in {0,1}" and sequences of n bits.
5 Note that when n = 1 and =< is the usual order < over {0,1}, we recover the notion of single objective
with the threshold p = 1.
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Figure 1 A simple lexicographic game.

In case Py (resp. P2) has such a winning strategy, we also say that he can ensure (resp.
avoid) a payoff 7 .
Classical examples of preorders are the following ones [6]. Let z,y € {0,1}™.
Counting: © 3y if and only if [{j | z; = 1}| < |{j | y; = 1}|. The aim of P; is to
maximize the number of satisfied objectives.
Subset: « 3y if and only if {j | z; =1} C {j | y; = 1}. The aim of P; is to maximize
the subset of satisfied objectives with respect to the inclusion.
Mazimise: x 3y if and only if max{j | z; = 1} <max{j | y; = 1}. The aim of P; is to
maximize the higher index of the satisfied objectives.
Lezicographic: x Xy if and only if either = y or 35 € {1,...,n} such that z; < y; and
Vk e {1,...,7 — 1}, x = yx. The objectives are ranked according to their importance.
The aim of P; is to maximise the payoff with respect to the induced lexicographic order.

In this article, we focus on monotonic preorders. A preorder 3 is monotonic if it is
compatible with the subset preorder, i.e. if {i | z; =1} C {i | y; = 1} implies = 3 y. Hence
a preorder is monotonic if satisfying more objectives never results in a lower payoff value.
This is a natural property shared by all the examples of preorders given previously.

» Example 2. Consider the game structure G depicted on Figure 1, where circle vertices
belong to P; and square vertices belong to Py. We consider the ordered game (G, 21, Qs, 3)
with Q; = {7 € Plays(G) | v; € Inf(7)} for ¢ = 1,2 and the lexicographic preorder 3.
Therefore the function Payoff assigns value 1 to each play 7 on the first (resp. second) bit
if and only if 7 visits infinitely often vertex vy (resp. v2). In this ordered game, P; has a
strategy to ensure a payoff 2~ 01 from vg. Indeed, consider the memoryless strategy oy that
loops in vy and in ve. Then, from vy, P2 decides to go either to v; leading to the payoff 10,
or to vy leading to the payoff 01. As 10 - 01, this shows that any play 7 consistent with oy
satisfies Payoff(7) 7~ 01. Notice that while P; can ensure a payoff - 01 from vg, he has no
strategy to enforce the single objective {21 and similarly no strategy to enforce (5.

Homogeneous w-regular objectives

In this article, given a monotonically ordered game (G, 1,...,Q,,3), we want to study the
threshold problem described in Problem 1 for homogeneous w-reqular objectives, in the sense
that all the objectives €21,...,€), are of the same type, and taken in the following list of
well-known w-regular objectives.
Given a game structure G = (V1, Vs, E) and a subset U of V called target set:
The reachability objective asks to visit a vertex of U at least once, i.e. Reach(U) = {7 €
Plays(G) | Occ(m) NU # 0}.
The safety objective asks to always stay in the set U, i.e. Safe(U) = {7 € Plays(G) |
Occ(m) CU}.
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The Biichi objective asks to visit infinitely often a vertex of U, i.e. Buchi(U) = {w €
Plays(G) | Inf(m) NU # 0}.
The co-Biichi objective asks to eventually always stay in the set U, i.e. CoBuchi(U) =
{7 € Plays(G) | Inf(x) C U}.
Given a family F = (F;)k_, of sets F; C V, and a family of pairs ((E;, F;)¥_,), with
Ei7 Fl g V.
The explicit Muller objective asks that the set of vertices seen infinitely often is one
among the sets of F, i.e. ExplMuller(F) = {m € Plays(G) | Ji € {1,...,k}, Inf(7) = F;}.
The Rabin objective asks that there exists a pair (E;, F;) such that a vertex of F; is visited
infinitely often while no vertex of E; is visited infinitely often, i.e. Rabin((E;, F;)¥_|) =
{m € Plays(G) | Ji € {1,...,k},Inf(m) N E; = 0 and Inf(7) N F; # 0}.
The Streett objective asks that for each pair (E;, F}), a vertex of F; is visited infinitely often
or no vertex of F is visited infinitely often, i.e. Streett((E;, F;)*_,) = {7 € Plays(G) |
Vie{l,....k},Inf(r) N E; #0 or Inf(x)NF;, = 0}.
Given a coloring function p: V' — {0,...,d} that associates with each vertex a color, and
F = (F;)k_, a family of subsets F; of p(V):

The parity objective asks that the minimum color seen infinitely often is even, i.e.

Parity(p) = {7 € Plays(G) | min,gjnf(r) p(v) is even}.
The Muller objective asks that the set of colors seen infinitely often is one among the sets
of F, i.e. Muller(p, F) = {m € Plays(G) | Ji € {1,...,k},p(Inf(7)) = F;}.

In the sequel, we make the assumption that the considered preorders are monotonic, and
by ordered game, we always mean monotonically ordered games. When the objectives of an
ordered game are of kind X, we speak of an ordered X game, or of a 3 X game if we want
to specify the used preorder <. As already mentioned, when n = 1, an ordered game (with 3
equal to <) resumes to a game (G, ) with a single objective 2, that is traditionally called an
) game. For instance, an ordered game (G, 4, ...,Q,, 3) where Q1,...,Q, are reachability
objectives and = is the lexicographic preorder is called a lexicographic reachability game,
and when n =1 (G, Q) is called a reachability game.

Note that given an ordered game with n non-homogeneous w-regular objectives 2;, we
can always construct a new equivalent ordered parity game, since each objective 2; can be
translated into a parity objective [15].

Monotonic preorders embedded in the subset preorder

We here show that solving the threshold problem for an ordered game (G,Q1,...,Q,,3)
is equivalent to solving a game (G,{2) with a single objective Q equal to the union of
intersections of objectives taken in {4,...,Q,}. The arguments are the following ones. (1)
We consider the set {0,1}" of payoffs ordered with =< as well as ordered with the subset
preorder C (see the example of Figure 2 where 3 is the lexicographic preorder). To any
payoff v € {0,1}", we associate the set §, = {i € {1,...,n} | v; = 1} containing all indices %
such that objective ; is satisfied. (2) Consider the set of payoffs v = 1 embedded in the
set {0,1}" ordered with C. By monotonicity of 3, we obtain an upper-closed set S that
can be represented by the antichain of its minimal elements (with respect to C), that we
denote by M(p). (3) Py can ensure a payoff 7~ p if and only if he has a strategy such that
any consistent outcome 7 has a payoff v* D v for some v € M(p), equivalently such that =
satisfies (at least) the conjunction of the objectives €2; such that v; = 1. (4) The objective

of Py is thus a disjunction (over v € M(u)) of conjunctions (over i € §,) of objectives ;.

This statement is formulated in the next theorem (see again Figure 2).
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Figure 2 Gray nodes represent the set of payoffs v - = 010 for the lexicographic preorder and
its embedding for the subset preorder. The elements of M(u) = {010,100} are doubly circled.

» Theorem 3. Let (G,Qy,...,Q,,3) be an ordered game, p € {0,1}™ be some threshold,
and vy be an initial vertex. Then, Py can ensure a payoff 7= p from vy in (G,Q1,...,Qn, 3)
if and only if Py has a winning strategy from vg in the game (G,Q) with the objective
Q = Upem(u) Nies, .

We end this section by giving some additional notations and terminology. Thanks to
Theorem 3, we will prove in Section 3 that the threshold problem is fixed parameter tractable.
The proof of this result uses two sizes depending on the number n of objectives:

the size s(n) of M(u). It is upper bounded by 2" (an antichain of maximum size in the

subset preorder over {0,1}" is of exponential size (Lg J))

the size s'(n) defined as follows. In case of Biichi objectives €2;, we need to rewrite the

objective U, em(y) Nies, §4 in conjunctive normal form Ny, U Qﬁg,l with Q;CJ €{,...,0%}

We denote by s'(n) the size of this conjunction. It is bounded by 22",

In Section 4 we will show that, for several objectives, we can go beyond fixed parameter
tractability by providing polynomial time algorithms when the sizes s(n) and s'(n) are
polynomial in n. An ordered game (G, Qq,...,Q,, ) is said to have a compact embedding
(in the subset preorder) if both sizes s(n) and s'(n) are polynomial in n. We will also show
that lexicographic games have a compact embedding.

3 Fixed parameter complexity of ordered w-regular games

Parameterized complexity

A parameterized language L is a subset of ¥* x N, where ¥ is a finite alphabet, the second
component being the parameter of the language. It is called fized parameter tractable (FPT)
if there is an algorithm that determines whether (z,¢) € L in f(¢) - |z|° time, where ¢ is a
constant independent of the parameter ¢t and f is a computable function depending on t only.
We also say that L belongs to (the class) FPT. Intuitively, a language is FPT if there is an
algorithm running in polynomial time w.r.t the input size times some computable function
on the parameter. In this framework, we do not rely on classical polynomial reductions but
rather use so called FPT-reductions. An FPT-reduction between two parameterized languages
LCY¥*xNand L' C¥X* x Nis a function R : L — L’ such that

(x,t) € L if and only if (¢/,t') = R(z,t) € L,

R is computable by an algorithm that takes f(¢) - |#|® time where ¢ is a constant, and

t' < g(t) for some computable function g.
Moreover, if L’ is in FPT, then L is also in FPT. We refer the interested reader to [13] for
more details on parameterized complexity.

Our main result states that the threshold problem is in FPT for all the ordered games of
this article. Parameterized complexities are given in Table 1.
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Table 1 Fixed parameter tractability of ordered games (G,Q1,...,Q,,3): fori € {1,...,n},
ki/d; denotes the number of pairs/colors of each Rabin/Streett/Muller objective §2;. Sizes s(n) and
s'(n) are resp. upper bounded by 2" and 22" For j€{1,2,3}, M; =2™i where m; = Z?:l 2k,

2
ma = ms = 27:1 d;, and N1 = s(n) - Z?:1 2 ki, Na = s(n) - Z?:l d—;, N3 = s(n) - Z?:l 2di . d,.

Objectives Parameters Threshold problem

Reachability, Safety n O(s(n)-n+2" - (|V]|+|E]|))

Biichi n O(s(n) -n+s'(n) - |V|?)

co-Biichi n O(s(n) -n 4+ s(n) - |V|*)

Explicit Muller n O(s(n) - n 4+ (s(n) - max; | Fi|)® - |[V|* - |E)

Rabin, Streett n, k1, ... kn o((2M - Ny + MMy V)
Parity n, di,...,dy O((2M2 - Ny + M=) |V )
Muller n, di, ... dy O((2M3 - N3 + M2M3) . |V]°)

» Theorem 4. The threshold problem is in FPT for ordered reachability, safety, Biichi,
co-Biichi, explicit Muller, Rabin, Streett, parity, and Muller games.

The proof of this theorem needs to introduce additional kinds of games (G, ) with a
single w-regular objective €, like the Boolean Biichi games. It also needs to show that solving
the latter games is in FPT.

Parameterized complexity of Boolean Biichi games

Let G be a game structure and Uy, ..., U,, be m target sets. Let ¢ be a Boolean formula over
variables 1, ..., z,,. We say that a play 7 satisfies (¢, Ux,...,U,,) if the truth assignment
{z; =1 if and only if Inf(m) NU; # 0, and x; = 0 otherwise} satisfies ¢. An objective Q is a
Boolean combination of Biichi objectives, or shortly a Boolean Biichi objective, if Q = {7 €
Plays(GQ) | m satisfies (¢,Us,...,Uy)}. It is denoted by BooleanBuchi(¢, Uy, ..., Up,).

All operators V, A, — are allowed in Boolean Biichi objectives. However we denote by |¢|
the size of ¢ equal to the number of disjunctions and conjunctions inside ¢, and we say that

the Boolean Biichi objective BooleanBuchi(¢, Uy, ..., Uy) is of size |¢| and with m variables.

The definition of |¢| is not the classical one that usually counts the number of operators
V, A, and variables. This is not a restriction since one can transform any Boolean formula
¢ into one such that negations only apply on variables.
We need to introduce some other kinds of w-regular objectives with Boolean combinations
of objectives that are limited to
intersections of objectives: like a generalized reachability objective or a generalized Biichi
objective denoted respectively by GenReach(Uy,...,U,,) and GenBuchi(Uy,...,U),
unions of intersections (UI) of objectives: like a UI reachability objective, a UI safety
objective, or a UI Biichi objective.

» Proposition 5. Solving Boolean Bichi games (G,QY) is in FPT, with an algorithm in
O@2M - |¢| + (MM -|V)®) time with M = 2™ such that m is the number of variables of ¢ in
the Boolean Biichi objective €.

Proof. Let us show the existence of an FPT-reduction from Boolean Biichi games to Muller
games. For this purpose, consider a Boolean Biichi game (G, 2) with the objective @ =
BooleanBuchi(¢, Uy, ..., U, ), where ¢ is a Boolean formula over variables 1, ..., z,,, and
m is seen as a parameter. We build an adequate Muller game (G, Muller(p, F)) on the same
game structure and parameterized by the number of colors. The coloring function p and the
family F are constructed as follows.
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To any vertex v € V, we associate a color p(v) = u which is a subset of {1,...,m} in the
following way: i € u if and only if v € U;.” Intuitively, we keep track for all 4, whether a
vertex belongs to U; or not. The total number M of colors is thus equal to 2. One can
notice that (%) a play m visits a vertex v € U; if and only if 7 visits a color u that contains 4.

To any subset F' of p(V'), we associate the truth assignment x(F) € {0,1}™ of variables
Z1,...,Tm such that for all 4, x(F); = 1 if there exists yu € F such that ¢ € u, and 0
otherwise. The idea (by (x)) is that the set F' of colors visited infinitely often by a play =
corresponds to the set Inf(m) of vertices visited infinitely often such that x(F); = 1 if and
only if Inf(7) N U; # . We then define F = {F C p(V) | x(F) = ¢}, that is, F corresponds
to the set of all truth assignments satisfying ¢.

In this way we have the desired FPT-reduction: first, parameter M = 2™ only depends on
parameter m. Second, we have that P; is winning in (G, BooleanBuchi(¢, Uy, ..., U,,)) from
an initial vertex vg if and only if he is winning in (G, Muller(p, F)) from vg. Indeed, a play «
satisfies (¢, Uy, . .., U,,) if and only if the truth assignment ( z; = 1 if and only Inf(7)NU; # 0,
and z; = 0 otherwise ) satisfies ¢. This is equivalent to have that F' = p(Inf(7)) belongs to
F (by definition of x(F")), that is, 7 belongs to Muller(p, F). Third, the construction of the
Muller game is in O(22" - |¢|) time since it requires O(|V| 4 |E|) time for the game structure,
O(m - |V]) time for the coloring function p, and O(2%" - |¢|) time for the family F.

From this FPT-reduction and as solving Muller games is in O((d? - |V])®)) time where
d is the number of colors [9], we have an algorithm solving the Boolean Biichi game in
O@2M - |p| + (MM - |V|)) time, where M = 2™. <

Proof of FPT membership for ordered games

Thanks to Theorem 3, we provide a proof of Theorem 4 with the parameterized complexities
given in Table 1.

Proof of Theorem 4. By Theorem 3, solving the threshold problem for an ordered game
(G,Qq,...,9Q,,3) is equivalent to solving a classical game (G, ) with Q = U, cm(p) Nies, -
We have [M(u)| = s(n) and |6,| < n Vv € M(p). Recall that s(n) < 2" and s'(n) < 22".

We first show that the threshold problem for ordered reachability, safety, Biichi, co-Biichi,
and explicit Muller games is in FPT with parameter n. The reduction provided in Theorem 3
is an FPT-reduction as the number of disjunctions/conjunctions in € only depends on n.
Moreover the construction of the game (G, Q) is in O(|V| + |E| 4+ s(n) - n) time. In the
following items we describe a second FPT-reduction to add to the first one. The sum of the

complexities of both FPT-reductions leads to the complexities given in Table 1, rows 2-5.

If each 2; is a reachability (resp. safety) objective, then (G, ) is a UI reachability (resp.
safety) game that can be reduced to a reachability (resp. safety) game over a game
structure of size 2" - |[V| [14].8 The latter is solved in O(2" - (|V| + |E|)) time.

If © is a union of intersections of Biichi objectives, then it can be rewritten as the
intersection of unions of Biichi objectives which is a generalized Biichi objective with at
most s'(n) target sets. The latter game is solved in O(s'(n) - [V|?) time by [10]. The

" Our definition of color requires x to be an integer. It suffices to associate with v a vector ¥ € {0,1}™
such that pf =1 if v € U; and 0 otherwise, and to define the coloring function p: V' — {0,...,2™ — 1}
that associates with each vertex v the color p(v) such that its binary encoding is equal to u”.

8 This result does not appear explicitly in [14] but can be easily adapted to the case of UI reachability
(resp. safety) objectives.
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union of intersections of co-Biichi objectives is the complementary of a generalized Biichi
objective with at most s(n) target sets, leading to an algorithm in O(s(n) - |V|?) time.

If each Q; is an explicit Muller objective ExplMuller(F;) then 2 is also an explicit Muller
objective. Indeed the intersection (resp. union) of explicit Muller objectives is an
explicit Muller objective such that N;ExplMuller(F;) = ExplMuller(F) with F = n;F;
(resp. U;ExpIMuller(F;) = ExplMuller(F) with F = U;F;). Thus Q can be here rewritten
as ExplMuller(F) for some set F such that |F| < }°, ey, minjes, [F;|. The latter game
is solved in O(|F| - (|V| - |E| + |F])?) = O((s(n) - max; | F;|)* - |V|? - |E|?) time by [17].

We now show that the threshold problem for ordered parity, Rabin, Streett, and Muller
games is in FPT thanks to Proposition 5.

Let us show that the threshold problem for ordered parity games is in FPT with parameters
n,dy,...,d,. If each ); is a parity objective with d; colors, then each €2; is a Boolean
Biichi objective of size at most § and using d; variables. Indeed, as a play is winning
for ; if and only there exists an even priority seen infinitely often along the play and
no lower priority seen infinitely often. Therefore, 2 is a Boolean Biichi objective £’ of
size || < s(n) - Y0, d—;, and with m = Y7 | d; variables as Uyem(){% | i € 0,} C
{Q1,...,Q,}. We thus have an FPT-reduction to the game (G, ') depending on the
parameters n, dy, . .., d,, and with an algorithm in O(|V|+|E|+|¢|) time. By Proposition 5,
solving the game (G, Q') is in FPT with an algorithm in O(2™ - |¢| + (M - |V])?) time
with M = 2™. Thus the threshold problem is in FPT with parameters n,dy,...,d,, with
an overall algorithm in O((2™ - N + M) - |V |°) time where N =27 -Y"" | dzi

The arguments are similar for ordered Rabin, Streett, and Muller games. The only
differences are the upper bound on size |¢| and the number m of variables of the related

formula ¢. <

4 Ordered games with a compact embedding

In the previous section, we have shown that solving the threshold problem for ordered
w-regular games is in FPT. This result depends on sizes s(n) and s'(n) which vary with the
number n of objectives. In this section, we study ordered games with a compact embedding,
that is, such that these sizes are polynomial in n.

Beyond fixed parameter tractability

While the threshold problem is in FPT for ordered Biichi, co-Biichi, and explicit Muller
games, it becomes polynomial as soon as their preorder has a compact embedding. This is a
direct consequence of Table 1, rows 2-4.

» Theorem 6. The threshold problem is solved in polynomial time for ordered Biichi, co-Biichi,
and explicit Muller games with a compact embedding.

One can easily prove that ordered games using the subset or the maximize preorder have

a compact embedding. We will later prove that this also holds for the lexicographic preorder.

Nevertheless it is not the case for the counting preorder. Indeed solving the threshold problem
for counting Biichi games is co-NP-complete [6].

Recall that solving the threshold problem for ordered Biichi games reduces to solving
some UT Biichi game (by Theorem 3). Whereas solving the latter games is coNP-complete [4],
solving the threshold problem for ordered Biichi games is only polynomial when they have a
compact embedding (see Theorem 6).
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There is no hope to extend Theorem 6 to the other w-regular objectives studied in this
article, unless P = PSPACE. Indeed, we have PSPACE-hardness of the threshold problem for
the following lexicographic games.

» Theorem 7. (1) Lexicographic games have a compact embedding and (2) the threshold
problem is PSPACE-hard for lexicographic reachability, safety, Rabin, Streett, parity, and
Muller games.

The rest of this section is devoted to the proof of Theorem 7.

Lexicographic games

We now focus on the lexicographic preorder <. Let us first provide several useful terminology
and comments on this preorder. Recall that the lexicographic preorder is monotonic. It is
also total, hence = ~ y if and only if x = y, and = < y if and only if =(y = z). Given a vector
x € {0,1}", we denote by T the complement of x, i.e. T =1 — a;, for all s € {1,...,n}.
We denote by x — 1 the predecessor of x # 0", that is, the greatest vector which is strictly
smaller than z. We define the successor x + 1 of x similarly. In the sequel, as the threshold
problem is trivial for x = 0™, we do not consider this threshold. By abuse of notation, we
keep writing « € {0,1}" without mentioning that x # 0™. We denote by Last; (z) the last
index i of x such that z; = 1, i.e. Last;(z) = max{i € {1,...,n} | z; = 1}. Note that P; can
ensure a payoff =~ x # 0™ if and only if he can ensure a payoff = x — 1, and when P, can
avoid a payoff 7~ x, we rather say that P, can ensure a payoff < x.

We now prove that the lexicographic games have a compact embedding (Part (1) of
Theorem 7): we first show that s(n) is polynomial in Proposition 8, and we then show that
s'(n) is also polynomial in Proposition 10.

» Proposition 8. Let x € {0,1}". Then the set M(z) is equal to {z} U{y’ € {0,1}" | z; =
0 A j < Lasty(x)}, where for all j € {1,...,Lasty(x) — 1}, we define the vector y/ € {0,1}"
as equal to Ty ...x;_110" 7 (x and y’ share the same (possibly empty) prefiz x1...xj_1).
Moreover, s(n) = |M(z)| < n.

» Example 9. Consider the vector = 0010100 such that Last(z) = 5. Then, the set M(x)
is equal to {z} U {1000000,0100000,0011000}.

Proof of Proposition 8. We recall that M(z) is the set of minimal elements (with respect to
the subset preorder C) of the set of payoffs y >~ z embedded in the set {0,1}" ordered with
C. Let us show both inclusions between M(z) and M = {z} U {y? € {0,1}" |z; =0 A j <
Lasty(x)}.

Let y € M(x). If y = x, then trivially y € M. Otherwise, assume y > x and let j be the
first index such that y; = 1 and z; = 0. Note that x;...2;_1 = y1...yj—1 since y > . We
associate with y the vector ¥/ =y ...y;-110" 7. Note that y/ > z. By minimality of y and
by construction of 47, we obtain y = ¥/ showing that y € M.

For the second inclusion, as the lexicographic preorder is monotonic, we have x € M(z).
Now, consider some y/ € M such that z; = 0 and j < Last;(z). Let us show that y7
belongs to M(z), that is, 4/ = x and there is no y =5 x, y # v, such that y C y’ (i.e.
{i|yi =1} c {i | y/ = 1}). First, we clearly have y/ = x since y/ = x;...x;_ 110"/ and
z; = 0. Towards a contradiction, assume now that there exists some y - z, y # 3/, such
that ¥y C 3/. Let ¢ be the first index such that y; = 0 and yf =1. Asy C 3/, we have i < j.
If ¢ < j, then y has x1 ... x;_10 as prefix, yf = z; = 1, showing that y < z in contradiction
with y 25 z. If i = j, then y = @1...2;_1,0"7" and again y < z since j < Last;(z) by
construction of y7. <
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» Proposition 10. Let (G,Qq,...,Q,,3) be a lexicographic Biichi game and p € {0,1}™.
Then, Q = Uyem(pu) Nies, i can be rewritten in conjunctive normal form with a conjunction
of size s'(n) < n.

Proof. The proof uses the property that given a lexicographic game (G,€q,...,Q,,3) and
a threshold p € {0,1}™, P; can ensure a payoff =~ p in (G,Q4,...,Q,, ) if and only if P;
can ensure a payoff X 7 in the lexicographic game (G, €y, ...,,, X). By Theorem 3 and
Martin’s theorem [20], equivalently, P, cannot satisfy the objective U,em@t1) Nics, ;. This
is equivalent to say that P; can satisfy the complement of the latter objective, that is, the
objective Nyem+1) Uies, 2. We have [M(zz + 1)| < n by Proposition 8. <

We finally prove Part (2) of Theorem 7.

Proof of Theorem 7, Part (2). Let us study the complexity lower bounds.

The PSPACE-hardness of the threshold problem for lexicographic reachability (resp. safety)

games is obtained thanks to a polynomial reduction from solving generalized reachability

games which is PSPACE-complete [14]. Let (G, ) be a generalized reachability game

with Q = GenReach(Uy,...,U,). Let (G,Q4,...,Qn, 2) be the lexicographic reachability

(resp. safety) game with Q; = Reach(U;) (resp. §; = Safe(V \ U;)) Vi.
Reachability: We have that P; is winning in (G, Q) from vy if and only if P; can ensure
a payoff 7~ p = 1™ from vy in the lexicographic reachability game (G,Qy,...,Qy, 3).
Safety: We claim that P; is winning in (G, Q) from v if and only if P; can ensure a
payoff = = 0""11 from vy in the lexicographic safety game. This follows from the
determinacy of generalized reachability games, and from the fact that 7; can ensure a
payoff 7= u from vy in the lexicographic safety game if and only if P is losing in the
generalized reachability game (G, Q) from wvp.

The hardness of the threshold problem for lexicographic parity games is obtained thanks

to a polynomial reduction from solving games (G, 2) the objective Q of which is a union

of a Rabin objective and a Streett objective, which is known to be PSPACE-complete [3].

Let Q = Rabin((E;, F;)i,) U Streett((E;, F;)j—,,, 1) As any Rabin (resp. Streett)
objective is the union (resp. intersection) of parity objectives [11], we can rewrite {2
as 0 = U2, (Parity(p;)) U (Nj=,,, 11 Parity(p;)), where all p; are coloring functions. Let
(G,Q1,...,0,,3) be the lexicographic parity game where 2; = Parity(p;) for all i. We

claim that P; is winning in the game (G, Q) from vy if and only if P; can ensure a payoff

7~ u from vy in the lexicographic parity game (G,Qq,...,Q,, ) where p = 0"t 177",

Indeed, if a play = satisfies Payoff(w) = p then either Payoff(r) = p in which case
7 € Nj_, +1Parity(p;), i.e. 7 satisfies the Streett objective, or Payoff(7) > p in which case

there exists 1 € {1,...,n1} such that © € Parity(p;), i.e. 7 satisfies the Rabin objective.

Conversely, if a play 7 satisfies the Streett or the Rabin objective then Payoff(r) 7= u

since Payoff(m) - p (resp. > ) as soon as 7 satisfies the Streett (resp. Rabin) objective.

~

As parity objectives are a special case of Rabin (Streett) objectives, the lower bound
follows (from the previous item) for both lexicographic Rabin and Streett games.
Lexicographic Muller games with n = 1 and u = 1 are a special case of Muller games and
solving the latter games is PSPACE-complete [18].

This completes the proof. |

5 Values and optimal strategies for lexicographic games

In this section, we first recall the notion of values and optimal strategies. We then show how
to compute the values in lexicographic games, and what are the memory requirements for the
related optimal strategies. This yields a full picture of the study of lexicographic games, see
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Table 2 Overview of the results for lexicographic games with w-regular objectives.

Threshold problem Value P1 memory P2 memory
Biichi linear memoryless
Co-Biichi P-complete polynomial memoryless linear
Explicit Muller exponential
Reachability, safety

Parity PSPACE-complete exponential exponential
Streett, Rabin and FPT and FPT

Muller

Table 2. In this table, the second column indicates the complexity of the threshold problem
(Theorems 4, 7 and PSPACE upper bounds follow from results of [6]), the third one indicates
the complexity of computing the values and the remaining columns summarize the memory
requirements of winning and optimal strategies (Theorem 12 hereafter).

Values and optimal strategies

In a lexicographic game, one can define the best reward that P; can ensure from a given
vertex, that is, the highest threshold p for which P; can ensure a payoff - p. Dually, we can
also define the worst reward that Py can ensure.

In the following definition, the infimum and supremum functions are applied with =.

» Definition 11. Given a lexicographic game (G, ,...,Q,, 3), for every vertex v € V, the
upper value Val(v) and the lower value Val(v) are defined as:

Val(v) = inf sup Payoff(Out(v,01,02)) and Val(v) = sup inf Payoff(Out(v,0oq,02)).
02€¥2 5y €3, 01E%, 02€%2

The lexicographic game (G, Q1, ..., Q,, 3) is value-determined if Val(v) = Val(v) Yv € V.
In this case, we write Val(v) = Val(v) = Val(v) and we call Val(v) the value of v. Note that
the inequality Val(v) =< Val(v) always holds. If P; (resp. P») can ensure a payoff =~ Val(v)
(resp. = Val(v)) from v, his related winning strategy of (resp. o3) is called optimal from v.

Notice that for all lexicographic games such that the objectives €)1, ..., £, are Borel sets,
we have that these games are value-determined and have optimal strategies by Theorem 3 and
Martin’s theorem [20]. In the following theorem, we go further by giving time complexities
and memory sizes of the optimal strategies.

» Theorem 12. (1) The value of each vertex in lexicographic Biichi, co-Bichi, and explicit
Muller games can be computed with a polynomial time algorithm, and with an exponential
time and an FPT algorithm for lexicographic reachability, safety, parity, Rabin, Streett, and
Muller games.

(2) The following assertions hold for both winning strategies of the threshold problem
and optimal strategies. Linear memory stralegies are necessary and sufficient for Py (resp.
P2 ) while memoryless strategies are sufficient for Po (resp. P1) in lexicographic Biichi (resp.
co-Biichi) games. Ezxponential memory strategies are both necessary and sufficient for both
players in lexicographic reachability, safety, explicit Muller, parity, Rabin, Streett, and Muller
games.

We only give a sketch of the proof.

First, for the considered lexicographic games, the values can be obtained by solving n
times well-chosen threshold problems. Therefore, results of Part (1) of Theorem 12 follows
from the second column of Table 2. In addition to give the exact value of a vertex, this
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procedure also shows that optimal strategies correspond to winning strategies for specific

threshold problems. Therefore, we just have to analyze memory requirements of winning

strategies for the threshold problem in lexicographic games to obtain those of optimal

strategies. Upper bounds on memory sizes of winning strategies are obtained by analyzing

the several reductions done in the proof of Theorem 4 in the case of a preorder with a

compact embedding. Lower bounds for lexicographic Biichi and co-Biichi games are obtained

thanks to a reduction from generalized Biichi games, and for the other lexicographic games
thanks to the reductions proposed in the proof of Theorem 7, Part (2). This yields results of
Part (2) of Theorem 12.
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