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Abstract
Generalized Probabilistic Logic (GPL) is a temporal logic, based on the modal mu-calculus,
for specifying properties of branching probabilistic systems. We consider GPL over branching
systems that also exhibit internal non-determinism under linear-time semantics (which is resolved
by schedulers), and focus on the problem of finding the capacity (supremum probability over
all schedulers) of a fuzzy formula. Model checking GPL is undecidable, in general, over such
systems, and existing GPL model checking algorithms are limited to systems without internal
non-determinism, or to checking non-recursive formulae. We define a subclass, called separable
GPL, which includes recursive formulae and for which model checking is decidable. A large class of
interesting and decidable problems, such as termination of 1-exit Recursive MDPs, reachability
of Branching MDPs, and LTL model checking of MDPs, whose decidability has been studied
independently, can be reduced to model checking separable GPL. Thus, GPL is widely applicable
and, with a suitable extension of its semantics, yields a uniform framework for studying problems
involving systems with non-deterministic and probabilistic behaviors.
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1 Introduction

For finite-state systems, model checking a temporal property can be cast in terms of model
checking in the modal µ-calculus, the so-called “assembly language” of temporal logics. A
number of temporal logics have been proposed and used for specifying properties of finite-state
probabilistic systems.

GPL [5] is defined over branching probabilistic systems. In these systems, each state
has a set of labeled outgoing transitions; each transition, in turn, specifies a (probabilistic)
distribution of target states. Semantically, GPL treats probabilistic choices in the system as
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linear-time. GPL is expressive enough to serve as an “assembly language” of a large number
of probabilistic temporal logics.

In this paper, we consider GPL over branching systems that can also exhibit internal non-
determinism under linear-time semantics. In these systems, the internal non-determinism is
resolved by schedulers. We limit our attention to finding the capacity (supremum probability
over all schedulers) of fuzzy formulae, as this problem is already sufficiently interesting and
challenging; indeed, it is undecidable, in general. Existing GPL model checking algorithms,
therefore, were limited either to systems without internal non-determinism [5], or to checking
only non-recursive formulae [26].

Contributions and Significance. GPL is expressive enough that a variety of independently-
studied verification problems can be cast as model checking branching systems with GPL.
In fact, undecidable problems such as termination of multi-exit Recursive Markov Decision
Processes (Recursive MDPs or RMDPs) can be reduced in linear time to model checking
with GPL. We introduce a syntactically-defined subclass, called separable GPL, for which
model checking is decidable.

We illustrate the expressiveness of separable GPL by considering independently-studied
decidable verification problems involving systems that have probabilistic and non-deterministic
choice. Examples of such problems include LTL model checking of MDPs [2], reachability in
branching MDPs [10], and termination of 1-exit RMDPs [12]. These problems can all be
reduced, in linear time, to model checking separable GPL formulae (see Sect. 3).

We describe a procedure for model checking GPL, which either successfully returns the
model checking result, or terminates with failure. We also show that the procedure always
terminates successfully for separable GPL (see Sect. 4).

Termination of multi-exit RMDPs, when cast as a model checking problem over GPL
along the same lines as our treatment of 1-exit RMDPs, yields an entangled GPL formula,
which is outside of separable GPL. Thus, separability can be seen as a characteristic of the
verification problems that are known to be decidable, when cast in terms of model checking
in GPL. Consequently, GPL and its sublogic are useful formalisms to study the relationships
between verification problems over branching systems with both probabilistic and internal
non-deterministic choice. We discuss these issues in greater detail in Sect. 5.

2 GPL and Branching Systems

In this section, we formally define probabilistic branching systems and give the syntax and
semantics of GPL fuzzy formulae.

2.1 Probabilistic Branching Systems
We define a probabilistic branching system (PBS).

I Definition 1 (PBS). With respect to fixed sets Act and Prop of actions and propositions,
respectively, a PBS L is a quadruple (S, δ, P, I), where

S is a countable set of states;
δ ⊆ S ×Act × S is the transition relation;
P : δ × N→ [0, 1] is the transition probability distribution satisfying:
∀s ∈ S.∀a ∈ Act.∀c ∈ N.

∑
s′:(s,a,s′)∈δ

P (s, a, s′, c) ∈ {0, 1}, and

∀s ∈ S.∀a ∈ Act.∀s′ ∈ S.(s, a, s′) ∈ δ =⇒ (∃c ∈ N.P (s, a, s′, c) > 0);
I : S → 2Prop is the interpretation, recording the set of propositions true at a state.
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Figure 1 An example PBS.

This definition is in line with that of probabilistic automata [21, 24], in which, given an
action, a probabilistic distribution is chosen non-deterministically (we assume there are
finitely many distributions for any state-action pair). Other equally expressive models
include alternating automata, in which labeled non-deterministic choices are followed by
silent probabilistic choices. The difference between such models has been analyzed with
respect to bisimulation [25]. However, a PBS is explicitly a branching system, as we show
next.

Given L = (S, δ, P, I), a partial computation is a sequence σ = s0
a1→ s1

a2→ · · · an→ sn,
where for all 0 ≤ i < n, (si, ai+1, si+1) ∈ δ. Also, fst(σ) = s0 and last(σ) = sn denote,
respectively, the first and last states in σ. Each transition of a partial computation is
labeled with an action ai ∈ Act. The set of all partial computations of L is denoted by CL,
and CL(s) = {σ ∈ CL | fst(σ) = s}. Composition of partial computations, σ a→ σ′, where
σ′ = s′0

b1→ · · · bm→ s′m, represents s0
a1→ · · · an→ sn

a→ s′0
b1→ · · · bm→ s′m if (sn, a, s′0) ∈ δ. A partial

computation σ′ is a prefix of σ if σ′ = s0
a1→ · · · ai→ si for some i ≤ n.

From a set of partial computations, we can build deterministic trees. T ⊆ CL is prefix-
closed if, for every σ ∈ T and σ′ a prefix of σ, σ′ ∈ T . T is deterministic if for every σ, σ′ ∈ T
with σ = s0

a1→ · · · an→ sn
a→ s · · · and σ′ = s0

a1→ · · · an→ sn
a′

→ s′ · · · , either a 6= a′ or s = s′, i.e.,
if a pair of computations share a prefix, the first difference cannot involve transitions labeled
by the same action. If a tree T has a single starting state, it is denoted root(T ); if s = root(T )
then T ⊆ CL(s). We also let edges(T ) = {(σ, a, σ′) | σ, σ′ ∈ T ∧ ∃s ∈ S.σ′ = σ

a→ s}.

I Definition 2 (D-trees and outcomes). A d-tree is a set of partial computations with a
single starting state that is prefix-closed and deterministic. A d-tree T is maximal if there
exists no d-tree T ′ with T ⊂ T ′. An outcome is a maximal d-tree.

TL refers to all the d-trees of L, and TL(s) = {T ∈ TL | root(T ) = s}. T ′ is a prefix of
T if T ′ ⊆ T . T a→ T ′ means T ′ = {σ | root(T ) a→ σ ∈ T}. T is finite if |T | < ∞. ML and
ML(s) are analogous to TL and TL(s), but for maximal d-trees.

An example PBS and two of its outcomes are shown in Figs. 1 and 2. In the PBS,
transitions are usually annotated with their action label and probability (we may omit the
probability when it is 1). Note that there are two transitions labeled b (and c) from state s2,
reflecting internal non-determinism, and we use superscripts to distinguish them.

D-trees are constructed from S and δ, without regard for P . A fully probabilistic branching
system (fPBS) has no internal non-determinism, i.e., its transition probability distribution
P is a function of δ. An fPBS was called an RPLTS in [5], which may have obscured its
branching nature.

A property of a PBS will hold for some subset of its outcomes, and we need to measure
this set. To resolve the internal non-deterministic choices, we require a scheduler.

CONCUR 2018
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Figure 2 Selected outcomes for the PBS in Fig. 1.

I Definition 3 (Scheduler). A scheduler for a PBS L is a function γ : CL×Act → N, such that
if an action a is present at s = last(σ), then γ(σ, a) = c implies that

∑
s′ P (s, a, s′, c) = 1.

Note that we have defined deterministic schedulers, which are also aware of their relevant
histories. Given a scheduler γ for a PBS L, we have an fBPS Lγ = (Sγ , δγ , Pγ , Iγ), where
Sγ ⊆ CL and so δγ ⊆ CL ×Act × CL.

Thus, given a scheduler γ for a PBS L, we can follow the definitions for the measure of
d-trees from [5]. A basic cylindrical subset ofML(s) contains all trees sharing a particular
prefix. Letting s ∈ S and T ∈ TL(s) such that T is finite, BT = {T ′ ∈ML | T ⊆ T ′}. Now,
we define the measure:

I Definition 4. For a PBS L with scheduler γ, the probability measure of a basic cylindrical
subset BT is defined by a partial function mγ : 2ML → [0, 1], where:

mγ(BT ) =
∏

(σ,a,σ′)∈edges(T )

P (last(σ), a, last(σ′), γ(σ, a)) (1)

From here, a probability measure mγ
s : Bs → [0, 1] on the smallest σ-field of sets Bs is

generated from basic cylindrical subsets BT with mγ
s (BT ) = mγ(BT ) (cf. [5, Definition 8]).

I Example 5. Letting σ = s1
a→ s2, the measure of the left outcome in Figure 2 is 1

9 for any
scheduler γ where γ(σ, b) = γ(σ, c) = 1, and 0 for all other schedulers.

2.2 GPL Syntax
GPL fuzzy formulae depend on outcomes. We give the syntax of GPL fuzzy formulae ψ, with
A ∈ Prop,1 X ∈ Var , a ∈ Act, as:

ψ ::= A | ¬A | X | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ . (2)

Operators µX.ψ and νX.ψ are least and greatest fixed point operators for the “equation”
X = ψ. As in [5], fuzzy formulae are alternation-free, which allows a simpler semantics for
fixed points while retaining the expressiveness required for our applications. Additionally,
diamond implies box : 〈a〉ψ means that there is an a-transition and it satisfies ψ; [a]ψ means
that if there is an a-transition, it satisfies ψ. We may also use a set α ⊆ Act for the modalities,
reading 〈α〉ψ as

∨
a∈α
〈a〉ψ and [α]ψ as

∧
a∈α

[a]ψ. When we write “−” for α, then α = Act.

1 The full syntax allows any state formula [5, 15] as a fuzzy formula.
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Table 1 GPL semantics: fuzzy formulae.

ΘL(A)e =
⋃

A∈I(s)
ML(s),

ΘL(X)e = e(X),

ΘL(〈a〉ψ)e = {T ∈ ML | ∃T ′ : T a→ T ′ ∧ T ′ ∈ ΘL(ψ)e},

ΘL([a]ψ)e = {T ∈ ML | (T a→ T ′) ⇒ T ′ ∈ ΘL(ψ)e},

ΘL(ψ1 ∧ ψ2)e = ΘL(ψ1)e ∩ ΘL(ψ2)e,

ΘL(ψ1 ∨ ψ2)e = ΘL(ψ1)e ∪ ΘL(ψ2)e,

ΘL(µX.ψ)e =
∞⋃

i=0
Mi, where M0 = ∅ and Mi+1 = ΘL(ψ)e[X 7→ Mi],

ΘL(νX.ψ)e =
∞⋂

i=0
Ni, where N0 = ML and Ni+1 = ΘL(ψ)e[X 7→ Ni].

2.3 GPL Semantics
We define the semantics of fuzzy formulae with respect to a fixed PBS L = (S, δ, P, I), where
Ψ is the set of all fuzzy formulae. A function ΘL : Ψ → 2ML , augmented with an extra
environment parameter e : Var → 2ML , returns the set of outcomes satisfying a given fuzzy
formula. For a given s ∈ S, ΘL,s(ψ) = ΘL(ψ)∩ML(s). For the fuzzy formulae, the semantics
is as in Table 1.

We refer to the value supγ mγ
s (ΘL,s(ψ)) as a capacity (following [6]), and write it as

PrL,s(ψ). In particular, [a]ψ and 〈a〉ψ are equivalent when action a is present at a state.
As d-trees do not depend on P , several important properties for GPL over PBSs carry

over naturally from [5]. First, we have distributivity on box and diamond [5, Lemma 1]:

I Lemma 6 (Distributivity on modal operators). Letting ⊕ ∈ {∧,∨}:

ΘL([a]ψ1 ⊕ [a]ψ2) = ΘL

(
[a](ψ1 ⊕ ψ2)

)
ΘL(〈a〉ψ1 ⊕ 〈a〉ψ2) = ΘL

(
〈a〉(ψ1 ⊕ ψ2)

)
ΘL([a]ψ1 ∧ 〈a〉ψ2) = ΘL

(
〈a〉(ψ1 ∧ ψ2)

) (3)

Similarly, because a PBS L with a scheduler γ yields an fPBS Lγ , we can relate the
probability of a conjunction with that of a disjunction and compute the effect of taking a
step (where γs′

a (σ, a′) = γ(s a→ σ, a′) and fst(σ) = s′) [5, Lemma 2]:

mγ
s (ΘL,s(ψ1 ∨ ψ2)) = mγ

s (ΘL,s(ψ1)) + mγ
s (ΘL,s(ψ2))−mγ

s (ΘL,s(ψ1 ∧ ψ2)) (4)

mγ
s (ΘL,s(〈a〉ψ)) =

∑
s′:(s,a,s′)∈δ

P (s, a, s′, γ(s, a)) ·mγs′
a

s′ (ΘL,s′(ψ)) (5)

Additionally, we can express the negation of a fuzzy formula ψ, neg(ψ), such that, for any
PBS L and state s ([5, Lemma 3]):

ΘL,s(neg(ψ)) =ML(s)−ΘL,s(ψ) (6)

The proof involves switching all the operators to their duals.

I Example 7 (Distributivity and negation). The formula ψ = µX.[a][b]X ∧ [a][c]X is satisfied
by all finite outcomes of the PBS in Fig. 1. By Lemma 6, it is equivalent to µX.[a]([b]X∧[c]X).
Also, neg(ψ) = νX.〈a〉〈b〉X ∨ 〈a〉〈c〉X. Note that a scheduler that maximizes the measure of
ψ will minimize the measure of neg(ψ).

CONCUR 2018
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Table 2 Encoding of CTL over PLTSs.

ECTL(ψ) =



ψ, ψ ∈ Prop,
neg(ECTL(ψ′)), ψ = ¬ψ′,
ECTL(ψ1) ∧ ECTL(ψ2), ψ = ψ1 ∧ ψ2,

〈−〉ECTL(ψ), γ = EXψ,
µX.ECTL(ψ2) ∨ (ECTL(ψ1) ∧ [−]X), ψ = A[ψ1Uψ2],
µX.ECTL(ψ2) ∨ (ECTL(ψ1) ∧ 〈−〉X), ψ = E[ψ1Uψ2].

3 Encoding Other Model Checking Problems

When GPL was originally introduced, its most interesting known application was to PCTL*
model checking [2], as it is straightforward to encode any LTL formula as a fuzzy formula in
GPL [5]. In this section, we relate GPL to two applications involving branching systems.

3.1 PTTL and Branching Processes
As GPL fuzzy formulae are interpreted over outcomes of a system, they can encode LTL [5,
Sect. 3.2], in the fragment of GPL for systems with Act = {a} and no terminal states; then
the outcomes are paths, rather than trees. When Act is not limited to one action, so the
outcomes are trees, it is correspondingly straightforward to encode CTL (Table 2). This may
seem either obvious or strange, as GPL and CTL are both interpreted over trees, but CTL
is typically understood as a logic over systems and not their outcomes; this encoding also
reduces to the referenced LTL encoding when all the outcomes are paths.

Along similar lines, Probabilistic Tree Temporal Logic (PTTL), has been independently
introduced [4]. Branching Processes (BPs) are a branching extension of Markov chains, and
PTTL is a logic over BPs. PTTL’s fuzzy formulae are limited to the A and E versions of the
X, U, and R operators being applied to state formulae, a subset of our CTL encoding.

Additionally, BPs have been extended with non-determinism, yielding Branching MDPs
(BMDPs), for which the extinction and reachability problems have been analyzed [10, 12].
When we use only the modal operators [−] and 〈−〉, as with CTL and PTTL, PBSs are
equivalent to BMDPs (and fPBSs to BPs).

3.2 Encoding of RMDP Termination
A Recursive MDP (RMDP) [12] is specified as a set of components. A component has an
entry node and one or more exit nodes. Components may contain boxes, each box having
a call port that represents a procedure call and return ports to represent a possible return
from the called procedure. We provide the formal definition of the (more general) Recursive
Simple Stochastic Games (RSSGs) [12].

I Definition 8. An RSSG A is a tuple (A1, . . . , Ak), where each component graph Ai is a
septuple (Ni, Bi, Yi,Eni,Exi, pli, δi):

Ni is a set of nodes, containing subsets Eni and Exi of entry and exit nodes, respectively.
Bi is a set of boxes, with a mapping Yi : Bi → {1, . . . , k} assigning each box to a
component. Each box has a set of call and return ports, associated with the entry and
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Figure 3 Example RMDP with Call, Return, and Exit edges added to Component “A”.

exit nodes, respectively, in the corresponding components: Callb = {(b, en) | en ∈ EnYi(b)},
Returnb = {(b, ex) | ex ∈ ExYi(b)}. Additionally, we have:

Calli =
⋃
b∈Bi

Callb, Returni =
⋃
b∈Bi

Returnb, Qi = Ni ∪ Calli ∪ Returni.

pli : Qi → {0, 1, 2} is a mapping that specifies whether, at each state, the choice
is probabilistic (i.e., player 0), or non-deterministic (player 1: maximizing, player 2:
minimizing). As any u ∈ Calli ∪ Exi has no outgoing transitions, let pli(u) = 0 for these
states.
δi is the transition relation, with transitions of the form (u, puv, v), when pli(u) = 0
and u is not an exit node or a call port, and v may not be an entry node or a return
port. Additionally, puv ∈ (0, 1] and, for each u,

∑
v′:(u,·,v′)∈δi

puv′ = 1. Meanwhile, when

pli(u) > 0, transitions are of the form (u,⊥, v).

RMDPs only have a player 1 or player 2, depending on whether they are maximizing or
minimizing, respectively. Figure 3 shows an RMDP with two components, A and B. Any
call to A non-deterministically results in either a call to B (via box b1) or a transition to u.

3.2.1 Translating RMDPs to PBSs
We can translate an RMDP into a PBS L with Act = {p, n, c, rj , ej}, with states of the PBS
corresponding to nodes of the RMDP. We retain the RMDP’s transitions, labeling them as
“n” for actions from a non-deterministic choice and “p” for probabilistic choice. To this basic
structure we add three new kinds of edges:

“ej” for the jth exit node of a component,
“c” edges from a call port to the called component’s entry node, and
“rj” edges from a call port to each return port in the box.

Figure 3 shows the new edges added to component A (r1 and r2 are distinct actions here).
Formally, we define the translation as follows:

I Definition 9 (Translated RMDP). The translated RMDP A is a PBS L = (S, δ, P, I):
The set of states S is the set of all the nodes, as well as the call and return ports of
the boxes, i.e., S =

⋃
iQi. Additionally, we associate a consistent index with each state

corresponding to an exit node or a return port.
The transition relation δ has all the transitions of the components, labeled by action
p for the probabilistic transitions and n for the non-deterministic ones. Thus, when
(u, puv, v) ∈ δi for any i, then (u, p, v) ∈ δ, and when (u,⊥, v) ∈ δi, (u, n, v) ∈ δ.
Additionally, we have ((b, en), c, en) ∈ δ and ((b, en), rj , (b, exj)) ∈ δ for every box b, and
(exj , ej , exj) ∈ δ for every exit node. Note the indices used, matching rj with ej .

CONCUR 2018
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The transition probability distribution P is defined as follows:
P (u, p, v, 0) = puv.
Assuming a one-to-one function num : S → N, P (u, n, v,num(v)) = 1.
When a ∈ {c, rj , ej} and (u, a, v) ∈ δ, P (u, a, v, 0) = 1.

I(s) = ∅ for all states s ∈ S.

While c edges denote control transfer due to a call, r edges summarize returns from
the called procedure (they are similar to the jump edges in nested state machines [1]).
Additionally, if an RMDP has no non-deterministic choices, it is called a Recursive Markov
Chain (RMC), and it can be translated to an fBPS.

3.2.2 GPL Formula for RMDP Termination
We define a formula for an m-exit RMDP, which we will show models termination. In this
section, we also write a mu-calculus formula via equations, where, e.g., if ψ1 =µ f1(ψ1, ψ2)
and ψ2 =µ f2(ψ1, ψ2), then ψ1 is µX1.f1(X1, µX2.f2(X1, X2)).

I Definition 10 (RMDP termination formula). For an m-exit RMDP, the termination formula
may be given as m equations, for 1 ≤ i ≤ m:

ψi =µ 〈ei〉tt ∨ 〈p〉ψi ∨ 〈n〉ψi ∨

 m∨
j=1
〈c〉ψj ∧ 〈rj〉ψi

 (7)

We show what the formula looks like for 1 and 2 exits ((8) and (9), respectively):

ψ1 = µX.〈e1〉tt ∨ 〈p〉X ∨ 〈n〉X ∨ (〈c〉X ∧ 〈r1〉X) (8)

ψ1 =µ 〈e1〉tt ∨ 〈p〉ψ1 ∨ 〈n〉ψ1 ∨ (〈c〉ψ1 ∧ 〈r1〉ψ1) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ1)
ψ2 =µ 〈e2〉tt ∨ 〈p〉ψ2 ∨ 〈n〉ψ2 ∨ (〈c〉ψ1 ∧ 〈r1〉ψ2) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ2) (9)

The termination problem for 1-exit RMDPs is equivalent to that of BMDP extinction. We
can see in (8) that the branching occurs at the call port, with the c and r actions.

Termination of multi-exit RMDPs is undecidable, in general [12].

I Theorem 11 (RMDP translation). Given an m-exit RMDP A, its translated BPS L, and
ψi as in (7), there is a one-to-one correspondence between the set of paths {Pi} through A
terminating at exit i and the set of minimal prefixes {Ti} of outcomes of L satisfying ψi.

Proof sketch. First, there is indeed a minimal prefix Ti for any outcome satisfying ψi, and
we can create it by truncating the tree after any e action and pruning the “incorrect” rj
branches (as ψ1, ψ2, . . . , ψm are all mutually exclusive, 〈c〉ψj is satisfied for exactly one j at
each branching node of the outcome). Also, probabilistic and (internal) non-deterministic
choices are made identically. We induct on the recursion depth of Pi.

If the depth of Pi is 0, then it never reaches a call port, and Ti is a path taking p and n
transitions until exit i, with a concluding ei transition.

Now, suppose that, for 1 ≤ i ≤ m, for all paths Pi with depth k < d, we have a matching
Ti. We show that for any path Pi with depth d, we also have a matching Ti.

In Ti, a node of the form (b, en) has a c transition to en and an rj transition to (b, exj).
The segment of Pi from en to exj is a path P ′j . P ′j must have depth k < d; so, by the induction
assumption, Ti has the matching T ′j as the subtree rooted at en (after the c transition).
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Then, Pi continues from (b, exj), which Ti matches by taking the rj transition. Thus, Ti
matches recursive calls with c transitions and, for the top level, has a partial computation
taking p, n, and rj transitions until exit i, with a concluding ei transition. J

I Corollary 12 (Undecidability). GPL model checking over PBSs is undecidable.

Proof. We can encode an undecidable problem, termination of multi-exit RMDPs, in GPL.
It remains to show that the BPS scheduler has sufficient information. This follows because
each partial computation in the minimal prefix includes the entire path through the RMDP
to reach a particular state, except for the calls that already returned, which are represented
by rj transitions instead. So, the scheduler knows the current state and all of the open
calls. J

4 Decidable Model Checking

The modchk-fuzzy procedure from [5, Sect. 4.1] finds the probability of a GPL fuzzy formula
over a fixed fPBS. In that case, we can eliminate top-level disjunctions, via (4). In general,
though, we would want the relation in (10).

PrL,s(ψ1 ∨ ψ2) ?= PrL,s(ψ1) + PrL,s(ψ2)− PrL,s(ψ1 ∧ ψ2) (10)

This requires that the same scheduler maximize ψ1, ψ2, ψ1 ∧ ψ2, and ψ1 ∨ ψ2; these may all
be distinct. Later, modchk-fuzzy was also adapted for systems with internal non-determinism,
but limited to non-recursive fuzzy formulae [26]. This is inadequate if we want to model
check LTL over MDPs or find the maximum probability of termination in a 1-exit RMDP.

4.1 Graph Construction
Disjunctions in themselves are not the problem, of course. We can still attempt a standard
graph construction and see whether we can evaluate the parts of the formula dependent on
the current state and cleanly separate the parts dependent on the (branching) future. In this
section, we describe this construction.

First, we define a few things needed for the construction. Let ψ[ψ′/X] represent the
formula ψ with all free instances of X replaced with ψ′.

I Definition 13 (Fischer-Ladner closure). Given a (closed) formula ψ, its Fischer-Ladner
closure, Cl(ψ), is the smallest set such that the following hold:

ψ ∈ Cl(ψ).
If ψ′ ∈ Cl(ψ), then:

if ψ′ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2, then ψ1, ψ2 ∈ Cl(ψ);
if ψ′ = 〈a〉ψ′′ or [a]ψ′′ for some a ∈ Act, then ψ′′ ∈ Cl(ψ);
if ψ′ = σX.ψ′′, then ψ′′[σX.ψ′′/X] ∈ Cl(ψ), with σ either µ or ν.

It will be useful to view a fuzzy formula as an and-or tree.

I Definition 14 (And-or tree). The and-or tree of a fuzzy formula ψ, AO(ψ) is a node labeled
by ⊕, where ⊕ ∈ {∧,∨}, with children AO(ψ1) and AO(ψ2) when ψ = ψ1 ⊕ψ2, and a leaf ψ
otherwise.

A formula of the form 〈a〉ψ or [a]ψ is called modal. We say that ψ′ is an unguarded
subformula of ψ if it is a leaf in AO(ψ). Also, AO(S) represents the set of and-or trees with
elements of a set S as leaves. We want to separate a formula by actions, which we attempt
by finding its factored form.
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I Definition 15 (Formula Transformations).
The fixed-point expansion of ψ, denoted by FPE(ψ), is a formula ψ′ obtained by expanding
any unguarded subformula of the form σX.ψX to ψX [σX.ψX/X] where σ ∈ {µ, ν}.
We say that a formula is non-probabilistic if it depends only on the current state, i.e.,
A ∈ Prop or of the form 〈a〉φ and [a]φ for a ∈ Act and φ ∈ {tt,ff}. The partial evaluation
of a fuzzy formula ψ at state s, denoted by PE(s, ψ), is a formula obtained by evaluating
unguarded non-probabilistic subformulae and simplifying the result (i.e., ψ′ ∧ φ, where φ
is non-probabilistic, becomes ψ′ if φ is true and ff otherwise).
A grouping of a formula ψ, denoted by GRP(ψ), groups modalities in a formula using
distributivity. Formally, GRP maps ψ to a ψ′ that is equivalent to ψ based on the
equivalences in Lemma 6, applied left-to-right as much as possible on the top level (i.e.,
〈a〉ψ1 ∧ 〈a〉ψ2 becomes 〈a〉(ψ1 ∧ ψ2); we may also rearrange the tree via commutativity
and associativity, e.g., from 〈a〉ψ1 ∧ (〈a〉ψ2 ∧ 〈b〉ψ3) to (〈a〉ψ1 ∧ 〈a〉ψ2) ∧ 〈b〉ψ3).

I Definition 16 (Factored form and entanglement). A formula ψ is in factored form if
ψ ∈ {tt,ff}, or if ψ satisfies ψ = GRP(ψ) and all leaves of AO(ψ) are modal.
Also, ψ is entangled if it is in factored form and any action guards multiple leaves of AO(ψ).

Given a state s, a formula ψ′ can be transformed into a semantically equivalent one ψ′′
that is in factored form, ψ′′ = FAC (s, ψ′) = GRP

(
PE
(
s,FPE(ψ′)

))
.2

I Example 17. For ψ1 in (9) and s with outgoing c and ri actions,
FAC (s, ψ1) = (〈c〉ψ1 ∧ 〈r1〉ψ1) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ1), which is entangled on c, with leaves
{〈c〉ψ1, 〈c〉ψ2, 〈r1〉ψ1, 〈r2〉ψ1}.

I Definition 18 (Dependency graph). The dependency graph for model checking a formula
ψ with respect to a state s in PBS L, denoted by Dg(s, ψ), is a directed graph (N,E), where
node set N ⊆ S ×AO(Cl(ψ)), and edge set E ⊆ N × (Act ∪ {ε, ε∧, ε∨})×N ; i.e., the edges
are labeled from Act ∪ {ε, ε∧, ε∨}. If graph construction succeeds, the sets N and E are the
smallest such that:

(s, ψ) ∈ N .
If (s′, ψ′) ∈ N and ψ′ = FAC (s′, ψ′), then ψ′ is not entangled (if ψ′ is entangled, graph
construction terminates with failure).
If (s′, ψ′) ∈ N , ψ′′ = FAC (s′, ψ′), and ψ′ 6= ψ′′: (s′, ψ′′) ∈ N and ((s′, ψ′), ε, (s′, ψ′′)) ∈ E.
If (s′, ψ′1⊕ψ′2) ∈ N (an and-node or an or-node), then (s′, ψ′i) ∈ N for i = 1, 2. Moreover,
((s′, ψ′1 ⊕ ψ′2), ε⊕, (s′, ψ′i)) ∈ E for i = 1, 2, and ⊕ ∈ {∧,∨}.
If (s′, 〈a〉ψ′) ∈ N (action node), then (s′′, ψ′) ∈ N for each s′′ such that (s′, a, s′′) ∈ δ.
Moreover, ((s′, 〈a〉ψ′), a, (s′′, ψ′)) ∈ E.

When we transform ψ′ to the factored form ψ′′, the semantics does not change, i.e.,
ΘL,s′(ψ′) = ΘL,s′(ψ′′). For the formulae in factored form, standard GPL semantics applies
(Table 1). Recall that when a is present at state s′, then 〈a〉ψ′ and [a]ψ′ are equivalent; thus,
we can assume all action nodes to be of the form (s′, 〈a〉ψ′). From these semantics, we also
get the relationships for the capacities. Here,

∏
is the standard product operator, while∐

i∈I xi = 1−
∏
i∈I(1− xi).

2 After applying GRP, we may have a modal leaf 〈a〉ψ′
a /∈ AO(Cl(ψ)). Then, we may view a as a prefix

label on the subtree AO(ψ′
a) ∈ AO(Cl(ψ)).
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I Lemma 19 (Capacities). Fix Dg(s0, ψ) = (N,E). The capacity PrL,s(ψ′) for a node (s, ψ′)
is as follows:

PrL,s(ff) = 0 and PrL,s(tt) = 1.
If (s, ψ′) is an and-node, then: PrL,s(ψ′) =

∏
((s,ψ′),ε∧,(s,ψ′

i
))∈E PrL,s(ψ′i).

If (s, ψ′) is an or-node, then: PrL,s(ψ′) =
∐

((s,ψ′),ε∨,(s,ψ′
i
))∈E PrL,s(ψ′i).

If (s, ψ′) is an action node, i.e., ψ′ = 〈a〉ψ′a, then:

PrL,s(ψ′) = max
c∈N

∑
((s,ψ′),a,(s′,ψ′

a))∈E

P (s, a, s′, c) · PrL,s′(ψ′a) (11)

The remaining nodes (s, ψ′) have a unique successor (s, ψ′′) with PrL,s(ψ′) = PrL,s(ψ′′).

Proof. Most of the cases are straightforward and similar to the GPL model checking al-
gorithm [5, Lemma 8] and a result for two-player stochastic parity games [21, Theorem 4.22].
The and-node and or-node cases have the product and coproduct, respectively, due to
independence. We explain the action node case in more detail.

The sum over the probabilistic distribution follows from (5); we explain the internal
non-deterministic choice. A PBS scheduler makes a choice for an action given the partial
computation σ. Here, this choice is made based on a formula, ψ′a, to be satisfied. When the
graph construction succeeds, this is well defined: given L, s, and ψ, the scheduler can deduce
ψ′a from σ, a la traversal of the dependency graph. J

We note that, although a particular choice may maximize PrL,s(ψ′), this does not mean
that the corresponding capacity can be reached by a memoryless3 scheduler, as a scheduler
that makes this choice every time is not necessarily optimal. Indeed, no optimal scheduler
may exist, in which case we would only have ε-optimal schedulers for any ε > 0 [10, 21].
The capacity may be predicated on eventually making a different choice. The formulation
in Lemma 19 is consistent with this possibility, and the existence of (ε-)optimal schedulers
may be justified through a method called strategy improvement or strategy stealing [12, 21].
The intuition is that, in case of a loop, we can add a choice to succeed or fail immediately,
succeeding with probability equal to the corresponding capacity. This does not increase the
capacity, and the maximizing scheduler can otherwise be the same, if this choice does not
arise.

I Theorem 20 (Model checking termination). The graph construction of Dg(s, ψ) terminates
for any fuzzy formula ψ and (finite) PBS L.

Proof. Letting c = |Cl(ψ)|, the number of distinct formulae not in factored form is bounded
by 22c (since we may check DNF versions for equivalence). The number of actions in L and
ψ is finite, which bounds the number of action nodes. Thus, construction cannot continue
indefinitely. J

4.2 Separability of Fuzzy Formulae
Now, we describe a class of fuzzy formulae that cannot get entangled, regardless of the PBS,
which we denote as separability.

3 We consider a scheduler memoryless if it makes a choice based on a formula to be satisfied, but does
not know the history.
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Recall that we used fixed-point expansion, partial evaluation, and grouping to get a
factored form. As partial evaluation replaced non-probabilistic formulae with either tt or ff,
we define a “worst-case” scenario.

I Definition 21 (Purely probabilistic abstraction). The purely probabilistic abstraction of
a fuzzy formula ψ, denoted by PPA(ψ), is a formula obtained by removing unguarded
non-probabilistic subformulae (i.e., ψ′ ∧ φ, where φ is non-probabilistic, becomes ψ′).

I Definition 22 (Separability). The set of all separable formulae is the largest set S such
that ∀ψ ∈ S, if ψ′ = GRP(PPA(FPE(ψ))), then
1. ψ′ is not entangled, and
2. for each leaf 〈a〉ψa of AO(ψ′), ψa ∈ S.
A formula ψ is separable if ψ ∈ S.

As separable formulae preclude entanglement, graph construction is guaranteed to succeed,
and we have the following result.

I Corollary 23 (Model checking separable formulae). The graph construction of Dg(s, ψ)
terminates without failure for any separable fuzzy formula ψ and (finite) PBS L.

The decidable problems in Sect. 3 involve separable fuzzy formulae. In the case of LTL,
there is only one action, in which case any formula in factored form is a single leaf. Though
a CTL formula may be entangled, all PTTL fuzzy formulae are separable, as there is no
explicit conjunction or disjunction; thus, we can model check PTTL over BMDPs. Finally,
for 1-exit RMDP termination, the same separable formula, (8), is used for any 1-exit RMDP.

4.3 Solving the Polynomial System
For model checking separable formulae, we show how, given the graph, to compare the
probabilistic value of ψ at a state s against a threshold p. We do this by first constructing a
system of polynomial max fixed point equations from the graph. Each node i in the dependency
graph is associated with a real-valued variable xi. Given a set of variables V , each equation
in the system is of the form xi = e where e is

a polynomial over V such that the sum of coefficients is ≤ 1; or
of the form max(V ′) where V ′ ⊆ V .

Furthermore, the equations form a stratified system, where each variable xi can be assigned
a stratum j = stratum(xi) such that xi is defined in terms of only variables of the form xk
such that stratum(xk) ≤ stratum(xi) (cf. [19, Def. 9]); and variables in the same stratum j

fall under the same fixed point. Let ./ ∈ {>,≥, <,≤}.

I Theorem 24. Given a real value p, a system of polynomial max fixed point equations and
a distinguished variable x defined in the system, whether or not x ./ p in its solution is
decidable.

Proof. We write the polynomial system, x = P (x), as a sentence in the first-order theory of
real closed fields, similar to [19]. The additional comparison will be x0 ./ p. Along with the
equation system, we need to encode fixed points and max.

We can encode xi = max(xj , xk) as (12) (cf. [12, Section 5]):

xi ≥ xj ∧ xi ≥ xk ∧ (xi ≤ xj ∨ xi ≤ xk) . (12)
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Meanwhile, letting V be the set of all variables and I a subset belonging to some stratum
with least fixed point, we can encode the fixed point itself as (13):

∀x′I .
(∧
i∈I

x′i = Pi(x′I ,xV \I) =⇒
∧
i∈I

xi ≤ x′i

)
. (13)

The stratification of fixed points in the equation system precludes a cyclical dependency
between a least and a greatest fixed point; a greatest fixed point can be encoded similarly.

The original fixed point equation system, along with the query x ./ p, (12)-(13), and the
counterpart encoding the greatest fixed point, are sentences in a first order theory of real
closed fields, which is decidable [27]. Hence the decidability of x ./ p in the solution to the
fixed point equations follows. J

We use the above result to determine whether or not PrL,s(ψ) ./ p for a separable formula
ψ. The polynomial fixed point system is derived similarly to [5, Section 4.1.2], with a
variable x(s,ψ) for each node (s, ψ) in the dependency graph Dg(s, ψ), and equations based
on Lemma 19.

If ψ is not in factored form, then (s, ψ) has a unique edge labeled by ε to a node (s, ψ′),
and x(s,ψ) = x(s,ψ′).
x(s,ff) = 0 and x(s,tt) = 1.
If (s, ψ) is an and-node, then x(s,ψ) =

∏
((s,ψ),ε∧,(s,ψi))∈E x(s,ψi).

If (s, ψ) is an or-node, then x(s,ψ) =
∐

((s,ψ),ε∨,(s,ψi))∈E x(s,ψi).
If (s, ψ) is an action node and ψ = 〈a〉ψa, then

x(s,ψ) = max
c∈N

∑
((s,ψ),a,(s′,ψa))∈E

P (s, a, s′, c) · x(s′,ψa). (14)

I Theorem 25 (Correctness). The construction of the dependency graph Dg(s, ψ), when ψ is
separable, yields a polynomial max fixed point equation system, such that the value of x(s,ψ)
in its solution is PrL,s(ψ).

Proof. The correctness result follows from Lemma 19 and the semantics of fixed points given
by (13) (and its counterpart). J

4.4 Model Checking Example
I Example 26 (Model Checking). For the PBS L in Fig. 1 and fuzzy formula ψ = µX.[a][b]X∧
[a][c]X, we have symmetric non-deterministic choices on b and c from state s2, and the
formula is satisfied by all finite d-trees (since both s3 and s4 have a probability greater than
1
2 of returning to s2, the infinite d-trees have positive measure on any scheduler). Letting
ψbc = [b]ψ ∧ [c]ψ, we get the dependency graph shown in Fig. 4.

We find PrL,s1(ψ) as the value of xa1 in the least fixed point from the following equations:

xa1 = xbc2 xb2 = max(xa3 , xa4) xa3 = 1
3x

bc
5 + 2

3x
bc
2 xbc5 = 1

xbc2 = xb2 · xc2 xc2 = max(xa3 , xa4) xa4 = 1
4x

bc
6 + 3

4x
bc
2 xbc6 = 1 (15)

Solving the equations, we get PrL,s1(ψ) = xa1 = 1
4 . (Also, PrL,s1(neg(ψ)) = 8

9 .)
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(s1, ψ)

(s1, [a]ψbc)

(s2, [b]ψ ∧ [c]ψ)(s2, [b]ψ) (s2, [c]ψ)

(s3, ψ) (s4, ψ)

(s3, [a]ψbc) (s4, [a]ψbc)

(s5, [b]ψ ∧ [c]ψ) (s6, [b]ψ ∧ [c]ψ)

(s5, tt) (s6, tt)

ε

a

ε∧ ε∧

b b

εa

a

ε

cc

ε a

a

ε

Figure 4 GPL Model Checking Example: Dependency Graph.

5 Discussion and Future Work

Many interesting questions relevant to GPL have been raised in other contexts. Also, while
the syntax and semantics of GPL fuzzy formulae remains identical to [5] when over BPSs,
the state formulae require a change in syntax; with the resulting logic called XPL in our
related extended version [15] ([26] called its extension EGPL).

A probabilistic extension of µ-calculus closely related to separable GPL is Mio’s pLµ [20,
21]. In contrast to GPL, the most expressive version of pLµ, denoted pLµ�⊕ [20, 21], defines
three conjunction operators and their duals such that their probability values can be computed
from the probabilities of the conjuncts. The logic pLµ� is able to produce branching systems
and supports an intuitive game semantics [21]. Along the same lines as our GPL encoding, we
can encode termination of 1-exit RMDPs as model checking in pLµ�, and RMC termination in
pLµ�⊕. However, pLµ cannot easily encode LTL and has no entanglement, so that attempting
to encode multi-exit RMDP termination in pLµ�⊕ similarly to multi-exit RMC termination
would lead to an incorrect, rather than undecidable, encoding. Other recent extensions
of µ-calculus include the Lukasiewicz µ-calculus [22], µp-calculus [3], PµTL [17], and the
quantitative µ-calculi, such as qMµ [18] and Qµ [13]. PµTL’s expressiveness is orthogonal
even with PCTL; the others are more similar to pLµ than GPL.

Although closely related, algorithms to check properties of RMCs (and pPDSs [7]) were
developed independently [11]. These were related to algorithms for computing properties of
systems such as branching process (BP) extinction and the language probability of Stochastic
Context Free Grammars. The relationship between GPL and these systems was mentioned
briefly in [16], but has remained largely unexplored. The results of this paper together
with [16] also suggest that a separable GPL model checker can be encoded as a probabilistic
logic program, even over systems with internal non-determinism.

There has been significant interest in the study of branching systems that also have
non-deterministic choices, such as RMDPs and Branching MDPs (BMDPs) [12]. At the
same time, the understanding of the polynomial systems has expanded. In [8], the class of
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Probabilistic Polynomial Systems (PPS) is introduced, which characterizes when efficient
solutions to polynomial equation systems are possible even in the worst case [9]. While [11] did
not distinguish the systems arising from 1-exit RMCs from those from multi-exit RMCs, the
PPS class is limited to 1-exit RMCs. It was also extended for 1-exit RMDP termination and,
later, BMDP reachability, both having polynomial-time complexity for min/maxPPSs [8, 10].

We note that 1-exit RMDP termination, which always has optimal memoryless schedulers,
can be matched with the class of least fixed point GPL formulae without disjunctions;
meanwhile, BMDP reachability, for which only ε-optimal maximizing schedulers may exist,
corresponds to least fixed point formulae without conjunctions. Additionally, these systems
have been further extended into stochastic games, such as Recursive and Branching Simple
Stochastic Games (RSSGs and BSSGs, respectively) [12], and we should be able to model
these via separable GPL, as well, with a suitably extended BPS. Then, graph construction
should be the same, but both min and max operators could appear in the equation system.

Polynomial systems equivalent to those arising from separable GPL over fPBSs have
recently been considered in a more general setting in the context of game automata [19],
followed by an undecidability result for more general properties on the automata [23].
Characterizing equation systems that arise from separable formulae and investigating their
efficient solution is an interesting open problem. Another recent result suggests that the
alternation-free restriction may be lifted [14]. Finally, this paper addressed the decidability of
model checking; determining the complexity of model checking is a topic of future research.
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