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Abstract
This paper investigates a decidable and highly expressive real time logic QkMSO which is obtained
by extending MSO[<] with guarded quantification using block of less than k metric quantifiers.
The resulting logic is shown to be expressively equivalent to 1-clock ATA where loops are without
clock resets, as well as, RatMTL, a powerful extension of MTL[ UI ] with regular expressions. We
also establish 4-variable property for QkMSO and characterize the expressive power of its 2-
variable fragment. Thus, the paper presents progress towards expressively complete logics for
1-clock ATA.
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1 Introduction

Since the inception of real-time logics and timed automata, the question of finding expressive
timed logics which are also decidable has been a prominent concern. Both classical first-
order/monadic second-order logics as well as temporal logics were extended with metric
constraints. Expressive power of a logic is typically measured by comparing it with respect to
other well established logics and automata as exemplified by the celebrated Büchi and Kamp
theorems [11, 13]. In real-time scenario, Alur and Henzinger in 1990 asked whether First
order logic of Distance FO[<,+], a hybrid logic TPTL[U,S], and the metric temporal logic
MTL[UI, SI] all have the same expressive power [2]. It took 15 years to show that MTL[UI, SI]
is less expressive than TPTL over timed words [18] [3]. It is only in the last few years, that
extensions of MTL[UI, SI] which are expressively complete for FO[<,+] have been found [9, 8].
Unfortunately all these logics have undecidable satisfiability.

For establishing the decidability of satisfiability of a logic, often an effective reduction
to some form of automata with decidable non-emptiness is used. Alur and Henzinger in
1991 came up with the sub-logic MITL which is MTL[UI, SI] where time interval constraints
I are non-singular intervals [1]. They showed the decidability of this logic by reducing its
formulae essentially to language equivalent non-deterministic timed automata. However,
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the logic was expressively weak as compared to timed automata . Looking for a more
expressive but decidable logic, Wilke in a seminal paper introduced the Monadic Second
Order logic of relative distance, L

←→
d , and showed that this had exactly the expressive power

of non-deterministic timed automata [22]. Moreover, the logic had decidable satisfiability.
Wilke also showed that L

←→
d subsumed the expressive power of temporal logic EMITL, which

was MITL extended with a finite automaton modality. Unfortunately, for any such logic,
the validity and model checking (against timed automata) are necessarily undecidable as
non-deterministic timed automata have undecidable universality/language inclusion. In
another important paper, Henzinger, Raskin and Schobbens related Event Clock Logic ECL
extended with automata modality to recursive event clock automata [6]. Attempts in these
works have been to match the expressive power of timed automata and to have decidable
satisfiability. The alternative is to try to match expressive power of some decidable and
boolean closed class of timed automata. 1-clock Alternating Timed Automata (1-ATA)
over finite words are perhaps the largest boolean closed class of timed languages for which
emptiness is known to be decidable [17], [16]. Utilizing this fact, Ouaknine and Worrell
showed in their seminal work that satisfiability as well as model checking of MTL[UI] (with
pointwise interpretation) over finite words is decidable. The result was proved by constructing
a language equivalent 1-ATA for a formula of MTL[UI] [17]. Unfortunately, the logic turns
out to have much less expressive power than 1-ATA. In a series of papers [20], [12] we have
investigated decidable extensions of MTL[UI] with increasing expressive power culminating
in RatMTL [21]. Logic RatMTL is a powerful extension of MTL[UI] allowing counting and
regularity constraints. But in retrospect it also turns out to be less expressive than 1-ATA.

The quest for expressively complete real-time logics matching the power of 1-ATA has
remained open for over 13 years. In this paper, we give a partial solution to this problem.
We show expressive completeness of some classical and metric temporal logics for natural
subclasses of 1-ATA. We define an extension of Monadic Second Order Logic MSO[<] over
words by adding guarded quantification with blocks of at most k−1 metric quantifiers to
give a real time logic QkMSO. An essential syntactic restriction is that no free second order
variable occurs in the scope of a metric quantifier, and a metric quantifier block results into a
formula with only one free variable. In this, we have been inspired by the logic Q2MLO (over
continuous time) defined by Hirshfeld and Rabinovich [7] as well as Hunter [8]. A carefully
defined syntax gives us a logic which allows only future time properties to be stated. Note
that punctual constraints are permitted in QkMSO unlike Q2MLO.

We investigate the decidability and expressive power of QkMSO. Firstly, we define a
subclass of 1-ATA called 1-ATA with reset-free loops (1-ATA-rfl). In these automata, there
is no cycle involving clock reset. Thus, on any run each transition with reset occurs at
most once. As our first main result, we show that a) QkMSO, b) the 1-ATA-rfl, and, c) the
metric temporal logic RatMTL, introduced earlier in [21], are all expressively equivalent (with
effective reductions). In the process, we also prove that QkMSO has four variable property
over timed words. This can be seen akin to the famous 3-variable property of FO[<] over
words [10].

For our second main result, we turn to the two variable fragment Q2MSO of QkMSO.
For its automaton characterization, we introduce a syntactic restriction of conjunctive-
disjunctiveness (C⊕D) in 1-ATA. Here, each ATA thread is either in conjunctive mode or in
disjunctive mode at a time, and it can switch modes only on a reset transition. We show that
a) Q2MSO, b) the C⊕D-1-ATA-rfl, and c) the sublogic FRatMTL of RatMTL have exactly
the same expressive power. Here logic FRatMTL uses only restricted version FRat of the
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modality Rat of RatMTL. A similar modality was also defined earlier by Wilke [22] in logic
EMITL. In summary, we show that

QkMSO ≡ 1−ATA−rfl ≡ RatMTL
Q2MSO ≡ C⊕D−1−ATA−rfl ≡ FRatMTL

These results make QkMSO to be amongst the highly expressive logics with decidable
satisfiability and model checking problems.

2 Preliminaries

Let Σ be a finite set of propositions. A finite timed word over Σ is a tuple ρ = (σ, τ),
where σ and τ are sequences σ1σ2 . . . σn and τ1τ2 . . . τn respectively, with σi ∈ Γ = 2Σ\∅,
and τi ∈ R≥0 for 1 ≤ i ≤ n. For all i ∈ dom(ρ), we have τi ≤ τi+1, where dom(ρ) is the
set of positions {1, 2, . . . , n} in the timed word. For convenience, we assume τ1 = 0. The
σi’s can be thought of as labeling positions i in dom(ρ). For example, given Σ = {a, b, c},
ρ = ({a, c}, 0)({a}, 0.7)({b}, 1.1) is a timed word. ρ is strictly monotonic iff τi < τi+1 for all
i, i+ 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed words over Σ is
denoted TΣ∗. Given ρ = (σ, τ) with σ = σ1 . . . σn ∈ Γ+, σsingle denotes the set of all words
w1w2 . . . wn where each wi ∈ σi. ρsingle consists of all timed words (σsingle, τ). For the ρ as
above, ρsingle consists of timed words ({a}, 0)({a}, 0.7)({b}, 1.1) and ({c}, 0)({a}, 0.7)({b}, 1.1).

2.1 Temporal Logics
In this section, we define preliminaries pertaining to the temporal logics studied in the paper.
Let Iν be a set of open, half-open or closed time intervals. The end points of these intervals
are in N∪{0,∞}. Examples of such intervals are [1, 3), [2, 2], [2,∞). For a time stamp τ∈R≥0
and an interval 〈a, b〉, where 〈 is left-open or left-closed and 〉 is right-open or right-closed,
τ + 〈a, b〉 represents the interval 〈τ + a, τ + b〉.

Metric Temporal Logic (MTL [14]). Given a finite alphabet Σ, the formulae of logic MTL
are built from Σ using boolean connectives and time constrained version of the until modality
U as follows: ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ, where I ∈ Iν. For a timed word
ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction of ϕ at
a position i of ρ is denoted ρ, i |= ϕ, and is defined as follows: (i) ρ, i |= a ↔ a ∈ σi, (ii)
ρ, i |= ¬ϕ ↔ ρ, i 2 ϕ, (iii) ρ, i |= ϕ1 ∧ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2, (iv) ρ, i |= ϕ1 UIϕ2 ↔
∃j > i, ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1 ∀ i < k < j. The language of a MTL formula
ϕ is L(ϕ) = {ρ | ρ, 1 |= ϕ}. Two formulae ϕ and φ are said to be equivalent denoted as
ϕ ≡ φ iff L(ϕ) = L(φ). The subclass of MTL restricting the intervals I in the until modality
to non-punctual intervals is denoted MITL. Punctual intervals like [2,2] are disallowed. Note
that we restrict to until-only fragment of MTL for the sake of decidability.

I Theorem 1 ([17]). MTL satisfiability is decidable over finite timed words with non-primitive
recursive complexity.

MTL with Rational Expressions (RatMTL)

We first recall an extension of MTL with rational expressions (RatMTL), introduced in [21].
The modalities in RatMTL assert the truth of a rational expression (over subformulae) within
a particular time interval with respect to the present point. For example, the formula
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RatI(ϕ1.ϕ2)+ when evaluated at a point i, asserts the existence of 2k points with time
stamps τj+1 < τj+2 < · · · < τj+2k, k > 0, such that τj+1 and τj+2k are the first and last
time stamps in τi + I, respectively. ϕ1 evaluates to true at τj+2l+1, and ϕ2 evaluates to true
at τj+2l+2, for all 0 ≤ l < k.

RatMTL Syntax. Formulae of RatMTL are built from a finite alphabet Σ as:
ϕ ::= a(∈ Σ) |true |ϕ∧ϕ | ¬ϕ | RatI re(S) | FRatI,re(S)ϕ, where I ∈ Iν and S is a finite set of
RatMTL subformulae, and re(S) is defined as a rational expression over S. re(S) ::= ε | ϕ(∈
S) | re(S).re(S) | re(S)+ re(S) | [re(S)]∗. Thus, RatMTL is MTL extended with modalities URat
and Rat (RatMTL=MTL+Rat+FRat). An atomic rational expression re is any well-formed
formula ϕ ∈ RatMTL.

RatMTL Semantics. For a timed word ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), a RatMTL
formula ϕ, and a finite set S of subformulae of ϕ, we define the satisfaction of ϕ at a position
i as follows. For positions i < j ∈ dom(ρ), let Seg(ρ, S, i, j) denote the untimed word over 2S

obtained by marking the positions k ∈ {i+ 1, . . . , j − 1} of ρ with ψ ∈ S iff ρ, k |= ψ. For
a position i∈dom(ρ) and an interval I, let TSeg(ρ,S, I, i) denote the untimed word over 2S

obtained from ρ by marking all the positions k, where τk − τi ∈ I, with ψ ∈ S iff ρ, k |= ψ.
ρ, i |= FRatI,re(S)ϕ ↔ ∃j>i, ρ, j|= ϕ, τj − τi∈I and, [Seg(ρ,S, i, j)]single ∩ L(re(S)) 6= ∅,
where L(re(S)) is the language of the rational expression re formed over the set S.
ρ, i |= RatI re ↔ [TSeg(ρ, S, I, i)]single ∩ L(re(S)) 6= ∅.

The language accepted by a RatMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 1 |= ϕ}. The sub-
class of RatMTL using only the FRat modality is denoted FRatMTL (FRatMTL=MTL+FRat).
If we stick to non-punctual intervals, the subclass obtained is FRatMITL (FRatMITL=MITL +
FRat). Some remarks are in order.
1. In [21], the URat modality was used instead of FRat; however, both have the same

expressiveness. Note that ϕ1URatI,re(S)ϕ2 is equivalent to FRatI,re′(S∪{ϕ1})ϕ2 where
re′(S ∪ {ϕ1}) = re(S) ∩ ϕ∗1.

2. The classical ϕ1 UIϕ2 modality can be written in FRatMTL as FRatI,ϕ∗1ϕ2. Also, it can
be shown (see [21]) that the URat( and thus FRat) modality can be expressed using the
Rat modality.

Modal depth. The modal depth (md) of a RatMTL formula is defined as follows. Let PLΣ be
the set of propositional logic formulae over Σ (up to equivalence). An atomic RatMTL formula
over Σ is an element of PLΣ and has modal depth 0. A RatMTL formula ϕ over Σ having
a single modality (Rat or FRat) has modal depth one and has the form RatI re or FRatI,reψ
where re is a regular expression over PLΣ and ψ ∈ PLΣ. Inductively, we define modal depth
as follows: (i) md(ϕ ∧ ψ) = md(ϕ ∨ ψ) = max[md(ϕ),md(ψ)]. Similarly, md(¬ϕ) = md(ϕ).
(ii) Let re be a regular expression over the set of subformulae S = {ψ1, . . . , ψk}.
md(FRatI,re(ϕ))=1+ max(ψ1, . . . , ψk, ϕ). Similarly md(RatI(re))=1+ max(ψ1, . . . , ψk).

I Example 2. Consider the formula ϕ = Rat[1,1](Rat(0,1)(aa)∗). Then ϕ = Rat[1,1]re1
where re1 = Rat(0,1)(aa)∗. The subformulae of interest are S = {Rat(0,1)(aa)∗, a}. For
ρ=({a}, 0) ({a, b}, 0.9) ({a}, 1)({a}, 1.2), ρ, 3 2 re1, since [TSeg(ρ,S, (0, 1), 3)]single has only
the word a and hence [TSeg(ρ, S, (0, 1), 3)]single ∩ L((aa)∗) = ∅. Hence, ρ, 1 2 ϕ. On the
other hand, for ρ = ({a}, 0)({a}, 0.3) ({a}, 1)({a}, 1.1) ({a}, 1.8), ρ, 1 |= ϕ, since aa ∈
[TSeg(ρ, S, (0, 1), 3)]single ∩ L((aa)∗).
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2.2 MSO with guarded metric quantifiers QkMSO
Let ρ = (σ, τ) be a timed word over a finite alphabet Σ, as before. We define a real-time logic
QkMSO (with parameter k ∈ N) which is interpreted over such words. It includes MSO[<]
over words σ relativized to specify only future properties. This is extended with a notion of
time constraint formula ψ(ti). All variables in our logic range over positions in the timed word
and not over time stamps. There are two sorts of formulae in QkMSO which are mutually
recursively defined : these are MSOt0 formulae φ which have no real-time constraints except
time constraint subformulae ψ(tp). These subformulae (ψ(tp)) have only one free variable tp,
which is a first order variable. Such a time constraint formula ψ(tp) consists of a block of
real-time constrained quantification applied to a QkMSO formula with no free second order
variables. This form of real time constraints in first order logic was pioneered by Hirshfeld and
Rabinovich [7] in their logic Q2MLO, which we refer in this paper as Q2FO, and later used
by Hunter [8]. Let t0, t1, . . . be first order variables and T0, T1, . . . the monadic second-order
variables. We have a two sorted logic consisting of MSO formulae φ and time constrained
formulae ψ. Let a ∈ Σ, and let ti range over first order variables, while Ti range over second
order variables. Each quantified first order variable in φ is relativized to the future of some
variable, say t0, called anchor variable, giving formulae of MSOt0 . The syntax of φ ∈ MSOt0

is given by: tp=tq | tp<tq | Qa(tp) | Tj(ti) | φ∧φ | ¬φ | ∃t′.t′>t0 ∧ φ | ∃Tiφ | ψ(tp).
Here, ψ(tp) ∈ MSOtp is a time constraint formula whose syntax and semantics are given
little later. A formula in MSOt0 with first order free variables t0, t1, . . . tk and second-
order free variables T1, . . . , Tm and which is relativized to the future of t0 is denoted φ(↓
t0, . . . tk, T1, . . . , Tm). (The ↓ is only to indicate the anchor variable. It has no other function.)
The semantics of such formulae is as usual. Given ρ, positions a0, . . . ak in dom(ρ), and sets
of positions A1, . . . , Am with Ai ⊆ dom(ρ),we define

ρ, (a0, a1, . . . , ak, A1, . . . , Am)|=φ(↓t0, t1, . . . tk, T1, . . . , Tm)

inductively, as usual.
1. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= ti<tj iff ai<aj ,
2. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= Qa(ti) iff a∈σ(ai),
3. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= Tj(ti) iff ai∈Aj ,
4. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= ∃tk t0<tk∧φ(↓t0, . . . tk, T1, . . . , Tm) iff

(ρ, a0, . . . , a
′
k, A1, . . . , Am) |= φ(↓t0, . . . tk, , T1, . . . , Tm) for some a′k ≥ a0.

The time constraint ψ(t0) has the form Q1t1Q2t2 . . .Qjtj φ(↓ t0, t1, . . . tj) where φ ∈
MSOt0 and j < k, the parameter of logic QkMSO. Each quantifier Qiti has the form ∃ti ∈
t0+Ii or ∀ti ∈ t0+Ii for a time interval Ii as in MTL formulae. Qi is called a metric quantifier.
The semantics of such a formula is as follows. (ρ, a0) |= Q1t1Q2t2 . . .Qjtj φ(↓ t0, t1, . . . tj)
iff for 1 ≤ i ≤ j, there exist/for all ai such that a0 ≤ ai and τai ∈ τa0 + Ii, we have
(ρ, a0, a1 . . . aj) |= φ(↓t0, t1, . . . tj). Note that each time constraint formula has exactly one
free variable. Variables t0, t1, . . . , tj are called time constrained in ψ(t0).

I Example 3. Let ρ=({a}, 0) ({b}, 2.1) ({a, b}, 2.75) ({b}, 3.1) be a timed word. Consider
the time constraint ψ(x) = ∃y ∈ x+ (2,∞)∃z ∈ x+ (3,∞)(Qb(y) ∧Qb(z)). It can be seen
that ρ, 1|=Qa(x) ∧ ψ(x).

Metric Depth. The metric depth of a formula ϕ denoted (md(ϕ)) gives the nesting depth
of time constraint constructs. It is defined inductively as follows: For atomic formulae ϕ,
md(ϕ) = 0. All the constructs of MSOti do not increase md. For example, md[ϕ1 ∧ ϕ2] =
max(md[ϕ],md[ϕ2]) and md[∃t.ϕ(t)]. However, md is incremented for each application of
metric quantifier block. md[Q1t1Q2t2 . . .Qjtjφ] = md[φ] + 1.
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I Example 4. The sentence ∀t0 ∀t1 ∈ t0 + (1, 2) {Qa(t1)→(∃t0 ∈ t1 + [1, 1] Qb(t0))} accepts
all timed words such that for each a which is at distance (1,2) from some time stamp t,
there is a b at distance 1 from it. This sentence has metric depth two with time constrained
variables t0, t1.

Note that QkMSO is not closed under second order quantification: arbitrary use of second
order quantification is not allowed, and its syntactic usage as explained above is restricted to
prevent a second order free variable from occurring in the scope of the real-time constraint
(similar to [19], [6] and [22]). For example, ∃X.∃t.[X(t)∧∃t′∈t+(1, 2)Qa(t′)] is a well-formed
QkMSO formula while, ∃X.∃t.∃t′∈t+(1, 2)[Qa(t′)∧X(t)] is not, since X is freely used within
the scope of the metric quantifier.

Special Cases of QkMSO. The case when k = 2 gives logic Q2MSO. The absence of second
order variables and second order quantifiers gives logics QkFO and Q2FO. The formulae in
example 4 is a Q2FO formulae. Note that our Q2FO is the pointwise counterpart of logic
Q2MLO studied in [7] in the continuous semantics.

2.3 1-clock Alternating Timed Automata (1-ATA)
Let Σ be a finite alphabet and let Γ = 2Σ\∅. A 1-ATA [17] [16] is a 5 tuple A = (Γ, S, s0, F, δ),
where S is a finite set of locations, s0 ∈ S is the initial location and F ⊆ S is the set of final
locations. Let x denote the clock variable in the 1-ATA, and x ∈ I denotes a clock constraint
where I is an interval. Let X denote a finite set of clock constraints of the form x ∈ I. The
transition function is defined as δ : S × Γ→ Φ(S ∪X) where Φ(S ∪X) is a set of formulae
over S ∪X defined by the grammar ϕ ::= >|⊥|ϕ1 ∧ϕ2|ϕ1 ∨ϕ2|s|x ∈ I|x.ϕ where s ∈ S, and
x.ϕ is a binding construct resetting clock x to 0. A state of 1-ATA is defined as a pair of a
location and a clock valuation. In other words, a state of a 1-ATA is an element of S × R≥0,
where S is a set of locations. A set of states M ⊆ S × R≥0 and a clock valuation ν ∈ R≥0
defines a boolean valuation for Φ(S ∪X) as follows:

M |=ν s iff (s, ν) ∈M ; M |=ν x ∈ I iff ν ∈ I ; M |=ν x.s iff (s, 0) ∈M
The conjunctions, disjunctions, > and ⊥ are are handled in the usual way. We say that M is
a minimal model of ϕ ∈ Φ(S ∪X) with respect to ν iff M |=ν ϕ and no proper subset M ′ of
M is such that M ′ |=ν ϕ.

A configuration of a 1-ATA is a set of states. Given a configuration C = {(s, ν) | s ∈ S, ν ∈
R≥0}, we denote by C+t the configuration {(s, ν+t) | (s, ν) ∈ C}, obtained after a time elapse
t, i.e., when t is added to all the valuations in C. Let α ∈ Γ. Given any configuration Cx =
{(sj , νj)|j ∈ J}, we say that any configuration Cy is a ’α-discrete successor’ of Cx if and only if
Cy can be constructed using Cx by choosing a minimal model Mj of δ(sj , g) with respect to νj
for every j ∈ J followed by taking their union. That is, Cy =

⋃
j∈JMj , whereMj is a minimal

model of δ(sj , g) with respect to νj . Given a timed word ρ = (α0, 0)(α1, t1) . . . (αm, tm), a
run associated with ρ over a given 1-ATA starts from the initial configuration C0 = {(s0, 0)}
and has the form C0

g0→ C1
t1−0→ C1 + t1 . . . Cm−1 + (tm − tm−1) gm→ Cm and proceeds with

alternating time elapse transitions and discrete transitions reading a symbol from Σ. A
discrete transition Ci + (ti − ti−1) αi→ Ci+1 is included if and only if Ci+1 is a αi-discrete
successor of Ci + (ti − ti−1). Note that there could be more than one αi-discrete successors
and hence more than one run could be associated with a timed word. Note that if at any
point in the run there is no discrete successor for a discrete transition, the automaton gets
stuck and that run will not be associated with the word. A configuration C is accepting iff for
all (s, ν) ∈ C, s ∈ F . Note that the empty configuration is also an accepting configuration.
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The language accepted by a 1-ATA A, denoted L(A) is the set of all timed words ρ such
that, there exists a run associated with ρ which ends at an accepting configuration.

I Example 5. Let Γ=2{a,b} \ ∅. Consider the 1-ATA A=(Γ, {t0, t1, t2}, t0, {t0, t2}, δA) with
transitions δA(t0, {b})=t0, δA(t0, {a})=(t0 ∧ x.t1) ∨ t2, δA(t1, {a})=(t1 ∧ x<1) ∨ (x>1)=
δA(t1, {b}), and δA(t2, {b})=t2, δA(t2, {a})=⊥, δA(t, {a, b})=⊥ for t ∈ {t0, t1, t2}. The au-
tomaton accepts all strings where {a, b} does not occur, and every non-last {a} has no
symbols at distance 1 from it, and has some symbol at distance > 1 from it.

1-ATA are closed under boolean operations using well-known constructions. One additional
operation which is repeatedly used in this paper can be designated as A1[tr ∧ A2]. Here
A1, A2 are 1-ATA over the same alphabet and tr = δ1(s, a) = φ is a transition of A1. The
aim is to conjunctively start the automaton A2 on taking transition tr. Formally, transition
tr is replaced by tr′ = φ ∧ δ2(s2

init, a) where s2
init is the start state of A2. Semantically, runs

of A2 must now commence with a time delay after tr. The delayed run defined below defines
such an execution of A2.

Time-Delayed Runs & Acceptance. Given a timed word ρ = (α0, 0)(α1, t1) . . . (αm, tm), a
time delayed run associated with ρ over a given 1-ATA starts from the initial configuration
C′0 = {(s0, 0)} and has the form C′0

t1→ C′0 + t1 − 0 α1→ C′1
t2−t1→ C′1 + (t2 − t1) · · · αm→ C′m, where

C′i−1 + (ti − ti−1) αi→ C′i is included if and only if C′i is one of the αi-discrete successors
of C′i−1 + (ti − ti−1). Note that the only difference between a run and a time-delayed run
is that the time delayed run starts with the time elapse between the first and the second
symbol of the timed word and ignores the first symbol.

We say that any timed word ρ is accepted in time-delayed semantics by an ATA A =
(Γ, S, s0, F, δ), if and only if, there exists a time-delayed run associated with ρ which ends
with an accepting configuration. The set of all timed words accepted by time -delayed
semantics of A is Lst(A).

I Example 6. Let Γ = 2{a,b}\∅. Let α and αb be any symbol in Γ and Γ\{{a, }},respectively.
Consider the 1-ATA A=(Γ, {s0, s1, s2, s3}, s0, {s2}, δA) with transitions
δA(s0, α)=s1; δA(s1, αb)=[s2 ∧ x ∈ (1, 2)] ∨ [s3 ∧ x ∈ (0, 1)]; δA(s1, {a})=s3; δA(s2, α)=s2;
δA(s3, α)=s3. Consider a timed word ρ = ({a}, 0)({b}, 0.5)({b}, 1.2). The run associated
with ρ is : {(s0, 0)} {a}→ {(s1, 0)} 0.5→ {(s1, 0.5)} {b}→ {(s3, 0.5)} 0.7→ {(s3, 1.2)} b→ {(s3, 1.2)}
Time delayed run associated with the same word is: {(s0, 0)} 0.5→ {(s0, 0.5)} {b}→ {(s1, 0.5)} 0.7→
{(s2, 1.2)} b→ {(s2, 1.2)}. Thus ρ is not accepted by the automaton in usual semantics, but
accepted in time-delayed semantics.

We will define some terms which will be used in sections 4, 5. Consider a transition
δ(s, a) = C1 ∨ · · · ∨ Cn in the 1-ATA. Each Ci is a conjunction of x ∈ I, locations p and x.p.
We say that p is free in Ci if there is an occurrence of p in Ci and no occurrences of x.p in
Ci; if Ci has an x.p, then we say that p is bound in Ci. We say that p is bound in δ(s, a) if it
is bound in some Ci.

Expressive Completeness and Equivalence. Let Fi be a logic or automaton class i.e. a
collection of formulae or automata describing/accepting finite timed words. For each φ ∈ Fi
let L(Fi) denote the language of Fi. We define F1 ⊆e F2 if for each φ ∈ F1 there exists
ψ ∈ F2 such that L(φ) = L(ψ). Then, we say that F2 is expressively complete for F1. We
also say that F1 and F2 are expressively equivalent, denoted F1 ≡e F2, iff F1 ⊆e F2 and
F2 ⊆e F1.
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3 A Normal Form for 1-ATA

In this section, we establish a normal form for 1-ATA, which plays a crucial role in the rest of
the paper. Let A = (Γ, S, s0, F, δ) be a 1-ATA. A is said to be in normal form if and only if

The set of locations S is partitioned into two sets Sr and Snr. The initial state s0 ∈ Sr.
The locations of S are partitioned into P1, . . . , Pk satisfying the following: Each Pi has a
unique header location sri ∈ Sr. Also, Pi −{sri } ⊆ Snr. Moreover, for any transition of A
of the form δ(s, a) = C1 ∨ C2 . . . ∨ Ck with Ci = x ∈ I ∧ p1 ∧ . . . ∧ pm ∧ x.qi ∧ . . . ∧ x.qr
we have (a) each qi ∈ Sr, and (b) If s ∈ Pi then each pj ∈ Pi − {sri }. 1

We refer to each partition Pj as an island of locations. Each island has a unique header
(obtained on reset) location sri . All transitions into Pj occur only to this unique header
location, and only with reset of clock x. Moreover, all non-reset transitions stay in the same
island until a clock is reset, at which point, the control extends to the header location of
same or another island (this behaviour can be seen on each path of the run tree).

Establishing the Normal Form. The main result of this section is that every 1-ATA A
can be normalized, obtaining a language equivalent 1-ATA, Norm(A). The key idea behind
this is to duplicate locations of A such that the conditions of normalization are satisfied.
Let the set of locations of A be S = {s1, . . . , sn}. For each location si, 1 ≤ i ≤ n, create
a reset copy denoted sri as well as n non-reset copies snr,ji , 1 ≤ j ≤ n. The superscript
r on a location represents that all incoming transitions to it are on a clock reset, while
superscripts nr, j represent that all incoming transitions to that location are on non-reset and
it belongs to island Pj . If s0 is the initial location of A, then the initial location of Norm(A)
is sr0. The island Pi in Norm(A) consists of locations sri , s

nr,i
h for 1 ≤ h ≤ n; entry into Pi

happens through the header sri . A transition δ(si, a) = ϕ of A is rewritten in Norm(A) by
replacing all occurrences of locations x.sj with x.srj (leading into Pj), while occurrences of
free locations sh are replaced with snr,ih . The final locations of Norm(A) are sri , s

nr,j
i for

1 ≤ j ≤ n whenever si is a final location in A. The full version gives a formal proof for the
following straightforward lemma. Thanks to lemma 7, we assume without loss of generality,
in the rest of the paper, that 1-ATA are in normal form.

I Lemma 7. Given a 1-ATA A, one can construct a 1-ATA Norm(A) in normal form such
that L(A) = L(Norm(A)).

I Example 8. The 1-ATA B = ({a, b}, {s0, s1, s2}, s0, {s1}, δ) with transitions δ(s0, b) =
x.s2, δ(s0, a) = (s0 ∧ x.s1), δ(s1, a) = (s1 ∧ s0) = δ(s1, b) and δ(s2, b) = x.s0, δ(s2, a) =
(s2 ∧ x.s1) is not in normal form. Following the normalization technique, we obtain Norm(B)
with locations S = {sri , s

nr,i
j | 0 ≤ i, j ≤ 2} and final locations {sr1, s

nr,0
1 , snr,11 , snr,21 }. Figure

1(right) describes Norm(B) consisting of islands P0, P1 and P2.

4 1-ATA-rfl and Logics

In this section, we show the first of our expressive equivalence results connecting logics
RatMTL, QkMSO and a subclass of 1-ATA called 1-ATA with reset-free loops (1-ATA-rfl).We
first introduce 1-ATA-rfl. A 1-ATA A (in normal form) is said to be a 1-ATA-rfl if it satisfies

1 If the transitions of the 1-ATA are presented in CNF, the equivalent restriction is that each free location
in the transition should be in Pi − {sr

i } while each bound location should be in Sr.
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Figure 1 left: strict island hopping. right: Norm(B) corresponding to B in Example 8.

the following: There is a partial order (Sr,�) on the header locations (equivalently, islands
Pi). Moreover, for any location p ∈ Pi and a location q, if x.q occurs in δ(p, a) for any a
(hence q = srj) then srj ≺ sri . Thus, islands (which are only connected by reset transitions)
form a DAG, and every reset transition goes to a lower level island. See Figure 1 (left),
where we call this strict island hopping. The colored islands are all disjoint. On non-reset
transitions, control stays in the same island; on resets, it may expand to another island. From
this finite control, you cannot go back to the island where you started from. This provides a
partial order between islands due to resets (the name rfl comes from here). Semantically,
this means that on any branch of a run tree, a reset transition occurs at most once.

I Example 9. The 1-ATA with locations s, p, q and transitions δ(s, α)=(x.p ∧ x ≤ 1) ∨ (q ∧
x=2), δ(p, α)=x.q ∧ p and δ(q, a)=s ∧ (0<x<1) is not 1-ATA-rfl, since q is bound in δ(p, α)
and starting from q, we can reach x.p via s.

4.1 Useful Lemmas
In this section, we introduce some notations and prove lemmas (Lemma 10, Lemma 11)
which will be used several times in the paper. Let ρ = (a0, 0)(a1, τ1)(a2, τ2) . . . (am, τm) be
a timed word and let i ∈ dom(ρ). Let rel(ρ, i) denote the timed word obtained from ρ by
relativizing at position i; rel(ρ, i) = (ai, 0)(ai+1, τi+1 − τi)(ai+2, τi+2 − τi) . . . (am, τm − τi).

Region Words. Let cmax be any non-negative integer. Let regcmax
= {0, (0, 1), . . . , cmax,

(cmax,∞)} be the set of regions. Given a finite alphabet Σ, with Γ = 2Σ\∅, a region
word is a word over the alphabet Γ × regcmax called the interval alphabet. A region
word w = (a1, I1) (a2, I2) . . . (am, Im) is good iff Ij ≤ Ik ⇔ j < k. Here, Ij ≤ Ik
represents that either Ij = Ik or the upper bound of Ij is at most the lower bound of
Ik. The timed word ρ = (a0, 0)(a1, τ1)(a2, τ2) . . . (am, τm) is consistent with a region word
(a1, I1)(a2, I2) . . . (am, Im) iff τj ∈ Ij for all 0 < j ≤ m. Note that for technical reasons,
which will be clearer later, the region abstraction of the word defined here is by ignoring the
first point. The set of timed words ρ consistent with a good region word w is denoted Tw.
Likewise, given a timed word ρ, reg(ρ) represents the good region word w such that ρ ∈ Tw.

I Lemma 10 (Untiming P to A(P )). Let P be a 1-ATA over Γ having no resets. We can
construct an alternating finite automaton A(P ) over the interval alphabet Γ× regcmax

such
that for any good region word w=(a1, I1) . . . , (an, In), w ∈ L(A(P ))⇒ ∀ρ ∈ Tw, ρ ∈ Lst(P ).
Conversely, ρ ∈ Lst(P )⇒ reg(ρ) ∈ L(A(P )). Hence, Lst(P )={ρ | w ∈ L(A(P ) ∧ ρ ∈ Tw}.

Proof. Given a reset-free 1-ATA P = (Γ, S, s0, F, δ) we construct an alternating finite
automaton (AFA) A(P ) = (Γ× regcmax , S, s0, F, δ

′) where cmax is the maximum constant
used in the clock constraints of P and δ′ is defined using δ as follows. A clock constraint
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x ∈ I is called a region constraint if I ∈ regcmax . Without loss of generality, we assume that
all the transitions of P have the form C1 ∨ · · · ∨ Cm, where each clause Ci has exactly one
region constraint.

Construction of δ′. Given a transition δ(s, a) = C1 ∨ · · · ∨ Cn of P , let CI1 , . . . , CIk
∈

{C1, . . . , Cn} be clauses containing the region constraint x ∈ I, I ∈ regcmax
. We construct

δ′(s, (a, I)) as C ′I1 ∨ · · · ∨ C
′
Ik

where C ′Ij
is obtained by removing the conjunct x ∈ I from

CIj
. If there is no clause containing x ∈ I in δ(s, a), then δ′(s, (a, I)) = ⊥.

1. For any timed word ρ, ρ ∈ Lst(P )⇒ reg(ρ) ∈ L(A(P )): Let ρ = (a1, 0) . . . (am, τm). The
time-delayed accepting run from the initial configuration C0 = {(s0, 0)} to an accepting
configuration Cm in P is as follows: C0

τ1→ C0 + τ1
a1→ C1

τ2−τ1→ · · · τm−τm−1→ Cm−1 + (τm −
τm−1) am→ Cm. As P is a reset-free 1-ATA, the valuation ν(x) at any point is equal to the
total time elapse till that point. Hence for all positions j ∈ dom(ρ), I ∈ regcmax , τj ∈ I iff
ν(x) ∈ I. By construction of A(P ), for each transition δ(s, aj) = (x ∈ Ij ∧ψ)∨C of P we
have a transition δ′(s, (aj , Ij)) = ψ (wlg we assume that C has no occurrence of x ∈ Ij).
The accepting run of P translates into the run D0

(a1,I1)→ D1
(a2,I2)→ D2 · · ·

(am,Im)→ Dm
in A(P ), where D0 = {s | (s, 0) ∈ C0}, and Dj = {s | (s, t) ∈ Cj , t ∈ Ij}, j ≥ 1. Since
all locations in Cm are accepting, Dm is an accepting configuration in A(P ) accepting
(a1, I1) . . . (am, Im).

2. For any good word w, w ∈ L(A(P ))⇒ ρ ∈ Lst(P ) for all ρ ∈ Tw. The argument is similar
to the previous bullet. Full proof can be found in the full version. J

I Lemma 11 (A(P ) to RatMTL). Let A(P ) be an AFA over the interval alphabet Γ×regcmax

constructed from a reset-free 1-ATA P as in lemma 10. We can construct a RatMTL formula
ϕst such that for any good word w, w ∈ L(A(P ))⇒ ρ ∈ L(ϕst) for all ρ ∈ Tw, and, for any
timed word ρ, ρ ∈ L(ϕst) ⇒ reg(ρ) ∈ L(A(P )). L(ϕst) = {Tw | w ∈ L(A(P ))}. Hence, by
lemma 10, L(ϕst) = Lst(P ).

Proof. Let Det[A(P )] be the deterministic automaton which is language equivalent to A(P ).
Let δD be the transition function of Det[A(P )] obtained from δ′ (see lemma 10) and let δ̂D
be its extension to words. Let s0 be the initial location of Det[A(P )] and let F be the set of
its final locations. For any pair of locations p, q of Det[A(P )] and Ii ∈ regcmax , we construct
a regular expression re(p, q, Ii) equivalent to the language {w ∈ (Γ×{Ii})+ | δ̂D(p, w) = q}.
Construction of re(p, q, Ii). Let Det[A(P )[p, q]] be the DFA obtained from Det[A(P )] by

setting the initial location to p and set of final locations to {q}. Let A(I∗i ) denote the
DFA accepting all words (Γ × {Ii})∗. Let Det[Ai] = Det[A(P )[p, q]] ∩ A(I∗i ). Then
L(re(p, q, Ii)) = L(Det[Ai]).

Obtaining RatMTL formula. Consider a sequence of locations sseq=q0, q1, q2 . . . qk with
k=2 ∗ cmax + 2, q0=s0 and qk∈F . Let
re=re(q0, q1, [0, 0]).re(q1, q2, (0, 1)). · · · .re(qk−1, qk, (cmax,∞)) where re(q2i−1, q2i, (i −
1, i)) ⊆ (Γ × (i − 1, i))∗ and re(q2i, q2i+1, [i, i]) ⊆ (Γ × [i, i])∗, and L(re) ⊆ L(DetA(P )).
Define the RatMTL formula φ(sseq) = Rat[0,0]re(q0, q1, [0, 0]) ∧ Rat(0,1)re(q1, q2, (0, 1)) ∧
· · · ∧Rat(cmax,∞)[re(qk−1, qk, (cmax,∞))]. Then
L(φ(sseq))={Tw | w ∈ L(re(q0, q1, [0, 0]).re(q1, q2, (0, 1)) · · · re(qk−1, qk, (cmax,∞))}. Let
ϕst = ∨sseq φ(sseq)2. Then clearly, L(ϕst) = {Tw | w ∈ L(A(P ))}. By lemma 10, we
obtain L(ϕst) = Lst(P ). J

2 The superscript st in ϕst represents that it is a strict future formulae. The truth of the formula at any
point i is only dependent on points j > i
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Remark. ρ, i |= ϕst iff rel(ρ, i) ∈ Lst(P ). ρ, i |= ϕst iff rel(ρ, i) ∈ L(ϕst) since the truth of ϕst

only depends on the truth value of the propositions at the points strictly greater than i and
the relative time difference with respect to i. The proof of Lemma 12 is in the full version.

I Lemma 12. Let P = (Γ, S, s0, F, δ) be any reset free 1-ATA and A(P ) be an AFA as
constructed in lemma 10.Let ϕst be the formula constructed from A(P ) as in lemma 11.We
can construct a formula ϕ ∈ RatMTL such that L(ϕ) = L(P ).

4.2 1-ATA-rfl meets RatMTL
I Theorem 13. 1-ATA-rfl are expressively equivalent to RatMTL.

Proof.
1. 1-ATA-rfl ⊆e RatMTL: Let A be a 1-ATA-rfl in normal form. For each location sri ∈ Sr

(which is the header of partition Pi) let A[sri ] denote the same automaton as A except
that the initial location is changed to sri , the header location of Pi. We can also delete
all islands higher than Pi as their locations are not reachable. For each such automaton
A[sri ], we construct a pair of RatMTL formulae mtl(A[sri ]) and mtlst(A[sri ]) such that
L(mtl(A[sri ])) = L(A[sri ]) and L(mtlst(A[sri ])) = Lst(A[sri ]). Note that (Sr,�) is a partial
order. The construction and proof of equivalence are by complete induction on the level
of the header location sri of island Pi in the partial order. All x.srj occurring in any
transition of A[sri ] are of lower level in the partial order (Sr,�). Hence, by induction
hypothesis, there is a RatMTL formula ψst

j = mtlst(A[srj ]) such that Lst(A[srj ]) = L(ψst
j ).

The behaviour of all the lower level srj is independent of the label of the transition that
calls them. In other words, the automata Ai[srj ] which is called at position i does not
read the symbol at point i. Thus any lower level automaton starting from some srj called
at a point i restricts the behaviour of the points strictly in the future of i, fixing the
anchor (the point with respect to which the time differences are checked) at i. Let wj be
a fresh witness variable for each x.srj above, which also corresponds to RatMTL formula
ψstj . Let the set of such witness variables be {w1, . . . ,wk}. We construct a modified
automaton Aw[sri ] with transition function δ′ and set of locations Pi as follows. Its
alphabet is Γ × {0, 1}k with the jth component giving the truth value of witness wj .
Let δ′(s, a,w1, . . . ,wk) = δ(s, a)[wj/x.srj ], i.e., each occurrence of x.srj is replaced by the
truth value of wj for 1 ≤ j ≤ k.Note that Aw[sri ] is a reset-free 1-ATA. By lemmas 10,
11, we get a RatMTL formula φst,w such that Lst(Aw[sri ]) = L(φst,w) and using lemma 12
we get a language equivalent formula φw over the variables Σ ∪ {w1, . . . ,wk}. Now we
substitute each wj by ψst

j (and hence ¬wj by ¬ψst
j ) in φw and φst,w to obtain the required

formulae mtl(A[sri ]) and mtlst(A[sri ]), respectively. It is clear from the substitution that
Lst(A[sri ]) = L(mtlst(A[sri ])) and L(A[sri ]) = L(mtl(A[sri ])). An example illustrating this
construction is in the full version

2. RatMTL ⊆e 1-ATA-rfl: Consider a formula ψ1 = RatI(re0) with I = [l, u). The case of
other intervals are handled similarly. For the base case, ψ1 has modal depth 1 and has a
single modality. As the formula is of modal depth 1, re0 is an atomic regular expression
over alphabet 2Σ. Let D = (Γ, Q, q0, Qf , δ

′) be a DFA such that L(D) = L(re0), with
Γ = 2Σ\∅. From D, we construct the 1-ATA A=(Γ, Q∪ {qinit, qtimecheck, qf}, qinit, {qf}, δ)
where qinit, qtimecheck, qf are disjoint from Q. The transitions δ are as follows. Assume
l > 0.
δ(qinit, a) = x.qtimecheck, a ∈ Γ,
δ(qtimecheck, a) = [(x ≥ l ∧ δ′(q0, a)∨ (qtimecheck)]∨ [x > u∧ qf ] where the latter disjunct
is added only when q0 ∈ Qf ,
δ(q, a) = (x ∈ [l, u)) ∧ δ′(q, a)), for all q ∈ Q \Qf ,
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δ(q, a) = (x ∈ [l, u) ∧ δ′(q, a)) ∨ (x > u ∧ qf ), for all q ∈ Qf , δ(qf , a) = qf .
It is easy to see that A has the reset-free loop condition since qf is the only location
entered on resets, and control stays in qf once it enters qf . The correctness of A is easy
to establish, the location qtimecheck is entered on the first symbol, resetting the clock;
control stays in qtimecheck as long as x < l, and when x ≥ l, the DFA is started. As long as
x ∈ [l, u), we simulate the DFA. If x > u and we are in a final location of the DFA, the
control switches to the final location qf of A. If q0 is itself a final location of the DFA,
then from qtimecheck, we enter qf when x > u. It is clear that A indeed checks that re0 is
true in the interval [l, u). If l = 0, then the interval on which re0 should hold good is [0, u).
In this case, if q0 is non-final, we have the transition δ(qinit, a) = x.δ′(q0, a), a ∈ Γ (since
our timed words start at time stamp 0, the first symbol is read at time 0, so x.δ′(q0, a)
preserves the value of x after the transition δ′(q0, a)). The location qtimecheck is not used
then. The case when ψ1 has modal depth 1 but has more than one Rat modality is
dealt as follows. Firstly, if ψ1 = ¬RatI(re0), then the result follows since 1-ATA-rfl are
closed under complementation (the fact that the resets are loop-free on a run does not
change when one complements). For the case when we have a conjunction ψ1 ∧ ψ2 of
formulae, having 1-ATA-rfl A1 = (Γ, Q1, q1, F1, δ1) and A2 = (Γ, Q2, q2, F2, δ2) such that
L(A1) = L(ψ1) and L(A2) = L(ψ2), we construct A = (Γ, Q1 ∪Q2 ∪ {qinit}, qinit, F, δ)
such that δ(qinit, a) = x.δ1(q1, a) ∧ x.δ2(q2, a). Clearly, A is a 1-ATA-rfl since A1,A2 are.
It is easy to see that L(A) = L(A1)∩L(A2). The case when ψ = ψ1∨ψ2 follows from the
fact that we handle negation and conjunction. The case of formulae of higher modal depth
ψk+1 = RatI(rek) is handled by substituting all lower depth formulae in rek with witness
variables, and using the inductive hypothesis that there exist 1-ATA-rfl equivalent to these.
The main argument is then to show that on plugging-in these automata corresponding to
the witnesses, we obtain a 1-ATA-rfl equivalent to ψk+1. Details in the full version. J

4.3 RatMTL meets QkMSO
I Theorem 14. QkMSO is expressively equivalent to RatMTL.

Proof.
1. QkMSO ⊆e RatMTL: Proof is by Induction on the metric depth of the formula. For

the base case,consider a formula ψ(t0) = Q1t1 . . .Qk−1tk−1ϕ(↓ t0, t1, . . . , tk−1) of met-
ric depth one.Let cmax be the maximal constant used in the metric quantifiers Qi.
Let Rj(t) for j in reg={0, (0, 1),1, . . . , cmax, (cmax,∞)} be fresh monadic predicates.
We modify ψ(t0) to obtain an untimed MSO formula ψrg(t0) over the alphabet 2Σ ×
{0, 1}|reg| × {0, 1} as follows. Define CON(Ii, ti) = ∨{Rj(ti) | j⊆Ii}. We replace every
quantifier ∃ti∈t0 + Ii φ by ∃ti(t0≤ti)∧CON(Ii, ti)∧φ. Every quantifier ∀ti∈t0 + Ii φ is
replaced by ∀ti.(t0≤ti∧CON(Ii, ti)→φ). To the resulting MSO formula we add a conjunct
WELLREGION that states that (a) exactly one Rj(t) holds at any t, and (b) ∀t, t′. [t<t′
∧Rj(t)∧Rj′(t′)] → j ≤ j′ (asserting region order). Note that these are natural properties
of region abstraction of time. This gives us the formula ψrg(t0). It has predicates Rj(t) for
j ∈ reg and free variable t0. Being an MSO formula, we can construct a DFA A(ψrg(0))
for it over the alphabet 2Σ × {0, 1}|reg|. Note that we have substituted 0 for t0. This is
isomorphic to automaton over the alphabet 2Σ × reg. From the construction, it is clear
that ρ |= ψ(0) iff reg(ρ) ∈ L(A(ψrg(0))). By Lemma 12, we then obtain an equivalent
RatMTL formula ζ. It is easy to see that L(ψ(0)) = L(ζ). Because ψ(0) and ζ are purely
future time formulae, this gives ρ, i |= ψ(t0) iff ρ, i |= ζ. For the induction step, consider
a metric depth n+ 1 formula ψ(t0). We can replace every time constraint sub-formula
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ψi(tk) occurring in it by a witness monadic predicate wi(tk). This gives a metric depth 1
formula and we can obtain a RatMTL formula, say ζ, over variables Σ ∪ {wi} exactly as
in the base step. Notice that each ψi(tk) was a formula of modal depth n or less. Hence
by induction hypothesis we have an equivalent RatMTL formula ζi. Substituting ζi for
wi in ζ gives us a formula language equivalent to ψ(t0).

2. RatMTL ⊆e QkMSO : Let ϕ ∈ RatMTL. The proof is by induction on the modal depth of
ϕ. For the base case, let ϕ = RatI(re) where re is a regular expression over propositions.
Let ζ(x, y) be an MSO formula with the property that σ, i, j |= ζ(x, y) iff σ[x : y] ∈ L(re),
where σ[x : y] denotes the sub-string σ(x+ 1) . . . σ(y). Since MSO has exactly the expres-
sive power of regular languages, such a formula can always be constructed. Consider ψ(t0):
∃tfirst∈t0+I. ∃tlast∈t0+I.∀t′∈t0+I.[(t′=tfirst∨t′=tlast∨tfirst<t′<tlast)∧ ζ(tfirst, tlast)]
Then, it is clear that ρ, i |= ϕ iff ρ, i |= ψ(t0). Note that the time constraint formula
ψ(t0) is actually a formula of QkMSO with k = 4 using time constrained variables
t0, tfirst, tlast, t

′ only. Atomic and boolean constructs can be straightforwardly translated.
Now let ϕ = RatI(re) where re is over a set of subformulae S. For each ζi ∈ S, substitute it
by a witness proposition wi to get a formula ϕflat. This is a modal depth 1 formula and we
can construct a language equivalent formula of QkMSO, say Ξ(t0) over alphabet Σ∪{wi}.
By induction hypothesis, for each ζi there exists a language equivalent time constrained
QkMSO formula κi(t0). Now substitute κi(tj) for each occurrence of wi(tj) in Ξ(t0) to
get a formula ψ(t0). Then ψ(t0) is language equivalent to ϕ. Note that ψ(t0)∈Q4MSO as
it only uses time constrained variables t0, tfirst, tlast, t′ which are inductively reused. J

5 C⊕D-1-ATA-rfl and Logics

In this section, we show our second main result connecting logics FRatMTL, Q2MSO and a
subclass of 1-ATA called conjunctive-disjunctive (abbreviated C⊕D) 1-ATA with reset-free
loops. Let A = (Γ, Q, q0, F, δ) be a 1-ATA. Let Qx = {x.q | q ∈ Q} and let B(Qx) ::=
true|false|α|α ∧ α|α ∨ α, where α ∈ Qx. A is said to be a C⊕D 1-ATA if
1. Q is partitioned into Q∧ and Q∨,
2. Let q ∈ Q∧. Transitions δ(q, a) can be written as D1∧D2∧ . . .∧Dm, where any Di has

one the following forms. (i) Di = q′ ∨ B(Qx) where q′ ∈ Q∧, (ii) Di = x /∈ I ∨ B(Qx).3
Each Di has at most one free location from Q∧, or at most one clock constraint x /∈ I.

3. Let q ∈ Q∨. Transitions δ(q, a) can be written as C1∨C2∨ . . .∨Cm where any Ci has one
of the following forms. (i) Ci = q′∧B(Qx), where q′ ∈ Q∨, (ii) Ci = x ∈ I ∧B(Qx). Thus,
each Ci has at most one free location from Q∨, or at most one clock constraint x ∈ I.

In other words, all the non-reset transitions coming out of q ∈ Q∧ will go to all the locations in
Q′ ⊆ Q∧ conjunctively asserting some time constraint. Similarly, all the non-reset transitions
coming out of q ∈ Q∨ will non-deterministically go to one of the locations in Q∨, without
checking any time constraint.

Remark. If any C⊕D-1-ATA A is normalized to Norm(A), then any island of Norm(A) is
exclusively made of locations from Q∧ or Q∨ (not both). Note that if we delete all the reset
transitions from any island of Norm(A), all the transitions within the island will be either
conjunctive or disjunctive. Thus, the name C⊕D is based on the fact that each island of
Norm(A) is either conjunctive or disjunctive. A 1-ATA which has both reset-free loops and

3 Note that x /∈ I can be re-written as x ∈ [0, l〉 ∨ x ∈ 〈u,∞), where [0, l〉 ∪ 〈u,∞) is the complement
of the interval I with lower and upper bounds l, u respectively. We restrict the specification of time
intervals in this form to make sure that, using conjunctions and non-punctual intervals, one cannot
express punctual intervals. This is used to define non-punctual C⊕D-1-ATA.
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conjunctive-disjunctiveness is denoted C⊕D-1-ATA-rfl. If all the intervals in a C⊕D-1-ATA
are non-punctual, then it is referred to as a np-C⊕D-1-ATA.

I Example 15. We illustrate examples of 1-ATA violating the C⊕D condition.
(a) For a ∈ Σ, let Sa and S¬a denote any set containing a and not containing a, respectively.

Consider the automaton B with transitions δ(s0, Sa)=s0 ∨ x > 1, δ(s0, S¬a)=s0 ∧ x /∈
(1,∞), where s0 is the only location, which is non-final. The only way to accept a
word is by reaching an empty configuration. The C⊕D condition is violated due to the
combination of having a free location and a clock constraint simultaneously in a clause
irrespective of s0 ∈ Q∨ or s0 ∈ Q∧. This accepts the set of all words where the first
symbol in (1,∞) has an a.

(b) Let Sa, S¬a be as above. The automaton B with δ(s0, Sa)=s0 ∨ s1, δ(s2,Γ) = x ≤ 1,
δ(s0, S¬a)=s0 ∧ s2, δ(s1,Γ)=x > 1 with s0 being initial and none of the locations being
final satisfies rfl but violates C⊕D. The C⊕D condition is violated since a clause contains
more than one free location irrespective of s0, s1, s2 ∈ Q∨ or s0, s1, s2 ∈ Q∧. This accepts
the language of all words where the last symbol in (0, 1) has an a.

(c) The automaton B with δ(s0,Γ)=s0∨s1, δ(s1, Sa) = s2∧s3, δ(s1, S¬a) = ⊥, δ(s2,Γ)=(x ≤
1), δ(s3,Γ)=s4, δ(s4,Γ)=x > 1 with s0 being initial and s1 being final satisfies rfl but
violates C⊕D. The C⊕D condition is violated since the automata switches between
conjunctive and disjunctive locations without any reset. Note that s0∈Q∨ while s1∈Q∧.
The language accepted is all words where the second last symbol in (0, 1) has an a.

5.1 C⊕D-1-ATA-rfl meets FRatMTL
I Theorem 16. C⊕D-1-ATA-rfl are expressively equivalent to FRatMTL.

Proof. We only detail the containment C⊕D-1-ATA-rfl ⊆e FRatMTL; the converse direction
is almost identical to the proof of RatMTL ⊆e1-ATA−rfl and is provided in the full version.
1. C⊕D-1-ATA-rfl ⊆e FRatMTL : The first thing is to convert C⊕D 1-ATA with no resets

to FRat formula of modal depth 1 as in Lemma 17.
I Lemma 17. Given a C⊕D 1-ATA A over Σ with no resets, we can construct a FRat
formula ϕ such that for any timed word ρ = (a1, τ1) . . . (am, τm), ρ, i |= ϕst iff A accepts
rel(ρ, i) in time-delayed semantics. L(ϕst) = Lst(A).
Assuming q0 ∈ Q∨, the key idea is to check how an accepting configuration is reached.
The reset-freeness ensures that any transition δ(q, a) = C1 ∨ · · · ∨ Cm is such that Ci is
either a location or a clock constraint x ∈ I. Assume time-delayed acceptance happens
through an empty configuration via a clock constraint x ∈ Ia, from some location q on
an a, and q is reachable from q0. Let reIa

be the regular expression whose language is
the set of all such words reaching some q, from where acceptance happens via interval Ia
on an a. The formula FRatIa,reIa

a sums up all such words. Disjuncting over all possible
intervals and symbols, we have the result. The second case is when a final state qf is
reached from some q′ reachable from q0. If reqf ,a is the regular expression whose language
is all words reaching such a q′, the formula FRat[0,∞), reqf ,a(a ∧�⊥) sums up all words
accepted via q′, a, qf .The �⊥ ensures that no further symbols are read, and can be
written as ¬FRat[0,∞),Σ∗>. Disjuncting over all possible final states qf and a ∈ Σ gives
us the formula. The case when q0 ∈ Q∧ is handled by negating the automaton, obtaining
q0 ∈ Q∨ and negating the resulting formula. Details in the full version Like lemma 12,
given any C⊕D-1-ATA-rfl A, we can construct ϕ ∈ FRatMTL such that L(ϕ) = L(A).
The rest of the proof is very similar to Theorem 13(1) and omitted.
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2. FRatMTL ⊆e C⊕D-1-ATA-rfl: This is almost identical to the proof of Theorem 13(2), and
is provided in the full version for completeness. J

5.2 FRatMTL meets Q2MSO

I Theorem 18. FRatMTL is expressively equivalent to Q2MSO.

Proof.
1. Q2MSO ⊆e FRatMTL : We first consider formulae of metric depth one. These have the

form ψ(t0) = Q1t1ϕ(↓t0, t1) and ϕ(↓t0, t1) is an MSO formula (bound first order variables
t′ in ϕ only have the comparison t′>t0, and there are no free variables other than t0, t1,
and hence no metric comparison exists in ϕ). Let reϕ be the regular expression equivalent
to ϕ(↓t0, t1). The presence of free variables t0, t1 implies that reϕ ie over the alphabet
2Σ×{0, 1}2, where the last two bits are for t0, t1. As seen in the case of QkMSO to RatMTL,
t0 is assigned the first position of reϕ since all other variables take up a position to its
right. Hence reϕ can be rewritten as (2Σ, 1, 0)re′. Since t1 is assigned a unique position,
there is exactly one occurrence of a symbol of the form (2Σ, 0, 1) in re′. Using (Lemma 7,
page 16) [4], we can write re′ as a finite union of disjoint expressions each of the form
re`(α, 0, 1)rer where α ∈ 2Σ, and re`, rer ⊆ [(2Σ, 0, 0)]∗. ϕ(↓ t0, t1) is thus equivalent to
having a symbol (α, 0, 1) at a time point t ∈ t0+I, and (2Σ, 0, 1)re` holds till t, and beyond
t, rer holds. This is captured by the formula FRatI,re′ [

∨
α∈2Σ(α, 0, 1) ∧ FRat(0,∞),rer

�⊥].
Here, re′ = (2Σ, 0, 1)re`, and the �⊥ symbolizes the fact that we see rer in the latter part
after (α, 0, 1) and no more symbols after that. See the full version for higher depth case.

2. FRatMTL ⊆e Q2MSO : Proof is similar to RatMTL ⊆e QkMSO and is in the full version.
J

6 Discussion

We have defined a new real-time logic QkMSO by extending MSO[<] with guarded quantifica-
tion with a block of k−1 metric quantifiers. We have shown that it is expressively equivalent
to 1-ATA where loops do not have clock-reset. We have also shown that it is expressively
equivalent to a powerful extension of MTL[UI] called RatMTL. This makes QkMSO as well
as RatMTL to be amongst highly expressive, real-time logics (future only) with decidable
satisfiability and model-checking. We have established a 4-variable property for QkMSO
and also characterized the expressive power of its two variable fragment. The question of a
logic expressively equivalent to full 1-ATA remains open. It may be noted that [5] gave an
extension of hybrid logic 1-TPTL with fixed point operators to get the expressive power of
full 1-ATA but our quest is for a more traditional logic. The expressive power of 3 variable
fragment of QkMSO also remains unexplored.

We briefly discuss some special cases and extensions of our results. PO-1-ATA [21] and
PO−C⊕D-1-ATA are subclasses of 1-ATA and C⊕D-1-ATA respectively, where the only loops
in the automaton are reset-free self-loops. Likewise, SfrMTL and FSfrMTL are subclasses of
RatMTL and FRatMTL respectively, where the regular expression used in the modality has
an equivalent star-free expression.
1. Thanks to theorems 13, 14 and 16, we can obtain the expressive equivalence of (i) QkFO,

SfrMTL and PO-1-ATA, and (ii) Q2FO, FSfrMTL and PO−C⊕D-1-ATA, In the absence
of second order quantification, the regular expressions have a star-free equivalent, and
the respective automata are aperiodic.
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2. The emptiness problem for non punctual C⊕D-1-ATA is elementarily decidable. The proof
is via a reduction to FRatMITL with least fix points [15]. To the best of our knowledge,
this is the largest known subclass of 1-ATA which is elementarily decidable.

3. Lastly, to obtain a logical equivalence with 1-ATA, the logic RatMTL with least fixpoint
operators suffices [15]. Previously, Haase et al [5] showed that 1−TPTL with fixed points
had the expressive power of 1-ATA.
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