
Verifying Arithmetic Assembly Programs in
Cryptographic Primitives
Andy Polyakov
The OpenSSL project
appro@openssl.org

Ming-Hsien Tsai1

Academia Sinica, Taiwan
mhtsai208@gmail.com

Bow-Yaw Wang2

Academia Sinica, Taiwan
bywang@iis.sinica.edu.tw

Bo-Yin Yang3

Academia Sinica, Taiwan
by@crypto.tw

Abstract
Arithmetic over large finite fields is indispensable in modern cryptography. For efficienty, these op-
erations are often implemented in manually optimized assembly programs. Since these arithmetic
assembly programs necessarily perform lots of non-linear computation, checking their correctness
is a challenging verification problem. We develop techniques to verify such programs automat-
ically in this paper. Using our techniques, we have successfully verified a number of assembly
programs in OpenSSL. Moreover, our tool verifies the boringSSL Montgomery Ladderstep (about
1400 assembly instructions) in 1 hour. This is by far the fastest verification technique for such
programs.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Formal verification, Cryptography, Assembly Programs

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.4

Category Invited Talk

1 Introduction

Cryptographic primitives are the building blocks of computer security. They are indispensable
in various encryption, authentication, and key exchange protocols. Underneath these critical
primitives, arithmetic over large finite fields is necessitated by modern cryptography. Efficiency
of arithmetic operations such as addition and multiplication is crucial to practical applicability
of cryptographic primitives due to their wide usage. Consequently, these operations are
implemented by low-level languages (such as C or assembly). Indeed, more than forty
arithmetic assembly subroutines for different architectures are found in the OpenSSL NIST

1 partially supported by the Academia Sinica Project AS-106-TP-A06
2 partially supported by the Academia Sinica Project AS-106-TP-A06
3 partially supported by the MOST Project 105-2221-E-001-014-MY3

© Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:appro@openssl.org
mailto:mhtsai208@gmail.com
mailto:bywang@iis.sinica.edu.tw
mailto:by@crypto.tw
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

P-256 elliptic curve cryptographic library. Each is manually optimized to attain the best
performance.

Since cryptographic primitives rely on arithmetic operations over large finite fields, correct
implementations of such operations are essential to computer security. For implementations
written in C, source codes are compiled into executable binary codes. Certified compilation
(for instance, the CompCert project) is necessary to ensure correctness after C codes are
verified. Even so, hand-optimized assembly implementations are still significantly more
efficient than C implementations (up to two times faster for the OpenSSL NIST P-256
Intel Broadwell microarchitecture). Manually optimized assembly implementations for
arithmetic operations are typical in practical cryptography. We verify such low-level codes
for cryptographic primitives in this paper.

Several obstacles must be overcome. Different architectures have different instruction sets.
Even for the same architecture (x86_64), different microarchitectures may have different
instruction sets (Broadwell versus its predecessors). Since one would like to develop verification
techniques across different instruction sets, a unified framework is preferred. Code sizes also
vary from operations significantly. From a dozen of instructions (multiplication by two) to
more than a thousand (group operation in elliptic curves), these assembly implementations
must be verified with reasonable resources. Last but not least, several assembly programs
realize non-linear multiplication over large finite fields. Such algebraic properties are hard
to verify by bit blasting. Existing SMT solvers for the bit-vector theory cannot verify the
multiplication of two 256-bit numbers. New techniques have to be developed for assembly
codes in this special domain.

We propose a domain specific language CryptoLine for modeling assembly programs
across different architectures. The language contains instructions used in implementations of
arithmetic operations. Different from assembly languages, operands and flags are explicit
in CryptoLine for clarity. CryptoLine moreover allows users to specify program properties
with assertions, pre- and post-conditions. Using CryptoLine, assembly programs of different
arithmetic operations from the OpenSSL cryptographic library are modeled and specified. We
feel CryptoLine is a suitable abstraction for assembly programs in cryptographic primitives.

Rewriting assembly codes in CryptoLine can be a daunting task. Moreover, assembly
programs can be written in various ways. For example, assembly code fragments can be
put in the asm statement in GNU C compilers; the OpenSSL library allows programmers to
write portable assembly codes with its Perl scripts. Instead of writing parsers for various
assembly development environments, we extract assembly codes from execution traces. Since
CryptoLine is designed to model assembly programs, each assembly instruction can be
translated to CryptoLine statements straightforwardly. Using a simple Python script,
extracted assembly codes are converted to CryptoLine programs automatically. Users can
transform their assembly programs to CryptoLine programs for verification via simple
scripts. Usability of our work is greatly improved.

For verification, we consider conjunctions of range and algebraic predicates. Range
predicates specify program variable ranges with the unsigned bit-vector theory; they are
resolved by SMT solvers rather straightforwardly. Algebraic predicates specify algebraic
properties among program variables; they are reduced to instances of the ideal membership
problem through a series of transformations. Instances of the ideal membership problem
are sent to and solved by computer algebra systems. Our hybrid technique decomposes
verification problems and takes advantages of recent developments in SMT solving and
computer algebra. It opens new opportunities in verifying non-linear arithmetic computation
in cryptographic programs.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:3

We report case studies in OpenSSL, boringSSL, and mbedTLS. For OpenSSL, we verify
eight assembly subroutines converted from execution traces in the OpenSSL NIST P-256
cryptographic library. These subroutines perform arithmetic computation including but not
limited to square and multiplication over the Galois field GF (2256−2224 +2192 +296−1). The
Montegomery multiplication subroutine over arbitrary 256-bit Montgomery primes is also
verified. For boringSSL, the multiplication and square subroutines over GF (2255 − 19) are
verified, as well as the Montgomery Ladderstep subroutine for X25519 (≈ 1400 instructions).
For mbedTLS, the multiplication subroutine accepts any size of inputs and involves both
assembly and C code. The execution traces are extracted and verified.

Related Work. A domain-specific language bvCryptoLine has been proposed to model low-
level mathematical constructs in cryptographic programs [16]. Programs in bvCryptoLine
can be verified automatically by a certified approach. Both the certified approach and
ours reduce the verification problem to SMT problems and ideal membership problems.
However, we introduce new instructions in our domain-specific language so that more low-
level arithmetic programs can be verified. Unlike the certified approach which verifies
programs in bvCryptoLine, we target on real industrial programs and provide scripts for
the extraction of assembly codes from execution traces and for the translation from assembly
codes to our domain-specific language. Although our approach is not certified, it verifies
programs much faster than the certified approach does. The tool gfverif [6] has been used
to automatically verify a C implementation of the Montgomery Ladderstep. In gfverif,
range properties and algebraic properties are verified separatedly by a specialized range
analysis and by the Sage computer-algebra system. A drawback of gfverif is that programs
not written in the constructs provided by gfverif cannot be verified.

A hand-optimized assembly implementation of the Montgomery Ladderstep has been
verified by a semi-automatic approach [8] with SMT solvers. As non-linear arithmetic
operations are hard for SMT solvers to verify, the semi-automatic approach requires manual
program annotation to reduce verification problems to smaller ones and Coq proofs for some
theorems about modulo operation. Similarly, several mathematical constructs have been
re-implemented in F* [18] and Vale [7] and to be verified using a combination of SMT solving
and manual proofs.

Fiat-Crypto can synthesize correct-by-construction assembly codes for mathematical
constructs but the synthesized codes are not as efficient as hand-optimized assembly im-
plementations [9]. Various implementations of mathematical constructs, hash functions,
and random number generators have been formalized and manually verified in proof assis-
tants [1, 3, 2, 14, 13, 4, 5, 17]. Cryptol/SAW can automatically verify several cryptographic
implementations in C and Java against their reference implementations but the correctness
of the reference implementations is not proven [15].

After preliminaries (Section 2), the domain specific language CryptoLine for crypto-
graphic assembly programs is presented in Section 3. Our verification algorithm is given in
Section 4. Case studies are reported in Section 5. Section 6 concludes the presentation.

2 Preliminaries

Let N be the set of non-negative integers and Z the set of integers. [n] = {0, 1, . . . , n} for
n ∈ N. Fix a set ~v = {x, y, z, . . .} of variables and a set ~c = {a, b, c, . . .} of carry flags such
that ~v ∩ ~c = ∅. Let ~x = ~v ∪ ~c. Z[~x] denotes the set of polynomials over ~x with coefficients in
Z. A set I ⊆ Z[~x] is an ideal if f + g ∈ I for every f, g ∈ I; and h× f ∈ I for every h ∈ Z[~x]
and f ∈ I. Given G ⊆ Z[~x], 〈G〉 is the minimal ideal containing G; G are the generators of
〈G〉. The ideal membership problem is to decide if f ∈ I for a given ideal I and f ∈ Z[~x].

CONCUR 2018

4:4 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Num ::= 0 | 1 | 2 | · · ·
Var ::= ~v

Flag ::= ~c

Expr ::= Num | Var | Flag |
Expr+Expr | Expr−Expr |
Expr×Expr

(a) Expressions.

APred ::= > | APred ∧APred |
Expr = Expr | Expr ≡ Expr mod Expr |

RPred ::= > | RPred ∧ RPred |
Expr <w Expr | Expr ≤w Expr

(b) Predicates.

Figure 1 Syntax of Expressions and Predicates.

3 Domain Specific Language – CryptoLine

CryptoLine is designed to model and specify arithmetic assembly programs in cryptograhpic
primitives. Arithmetic over large finite fields is essential to modern cryptography. In practice,
it is necessary to perform arithmetic computation with numbers in hundreds of bits lest
security may be compromised due to cryptoanalysis. We analyze real arithmetic assembly
programs, identify a small subset of assembly instructions, and formalize the subset in our
domain specific language CryptoLine. In order to specify properties about programs,
the language is enriched with statements like Assert and Assume. We detail the design of
CryptoLine in this section.

3.1 Syntax
As in low-level cryptographic programs, numbers are non-negative in CryptoLine. The
language also allows variables and binary flags. Expressions are only used in property
specifications. They admit arithmetic operators +, −, and × (Figure 1a). Property specifi-
cations are divided into two classes: algebraic and range predicates. An algebraic predicate
is a conjunction of equalities or modulo equalities. A range predicate is a conjunction of
finite-width comparisons4. For instance, Expr <w Expr means the w-bit less-than relation
between two expressions in Figure 1b.

CryptoLine statements contain assembly instructions used in arithmetic computation5.
They even have a similar syntax: mnemonic, destination variables, and source arguments in
order (Figure 2a). Set is the assignment statement. The Cmov statement is the conditional
assignment. Mul is the half multiplication whereas Mulf is the full multiplication. Add! is the
addition statement without setting the carry flag. Add is the addition statement with setting
the carry flag. Adc is the addition with carry statement. Similarly, Sub! is the subtraction
statement without setting the borrow flag, Sub is the subtraction with setting the borrow
flag, and Sbb is the subtraction with borrow statement. A predicate consists of an algebraic
and a range predicate separated by ‖ (Figure 2b). The Assert statement asserts a predicate.
The Assume statement assumes a predicate. A program is a sequence of statements. Finally,
a specification contains a program with two predicates as the pre- and post-conditions.

4 Range predicates such as negation, equality, and disjunction are also allowed in our implementation.
Expressions allowed in a range predicate also include signed/unsigned remainder, bit-wise and, bit-wise
or, and bit-wise xor.

5 Instructions such as setting a binary flag, clearing a binary flag, and instructions in [16] are also allowed
in our implementation.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:5

Stmt ::= SetVarArg | CmovVarFlagArgArg |
Add!VarArgArg | AddFlagVarArgArg |
Sub!VarArgArg | SubFlagVarArgArg |
AdcFlagVarArgArgFlag | MulVarArgArg |
SbbFlagVarArgArgFlag | MulfVarVarArgArg |
AssertPred | AssumePred

(a) Statements.

Arg ::= Num | Var
Prog ::= Stmt; | Stmt; Prog
Pred ::= RPred‖APred
Spec ::= (|Pred|)Prog(|Pred|)

(b) Programs and Specifications.

Figure 2 Syntax of Programs and Specifications.

1: Set r0 x0;
2: Set r1 x1;
3: Set r2 x2;
4: Set r3 x3;
5: Set r5 x4;

6: Add! r0 r0 4503599627370458;
7: Add! r1 r1 4503599627370494;
8: Add! r2 r2 4503599627370494;
9: Add! r3 r3 4503599627370494;
10: Add! r4 r4 4503599627370494;

11: Sub! r0 r0 y0;
12: Sub! r1 r1 y1;
13: Sub! r2 r2 y2;
14: Sub! r3 r3 y3;
15: Sub! r4 r4 y4;

Figure 3 Subtraction sub.

Example. Consider the CryptoLine program for the subtraction over GF (2255 − 19) in
X25519. In Figure 3, each element in the finite field is represented by five 51-bit numbers.
Each 51-bit number is a limb of the representation. The program first assigns the minuend
(xi’s) to the result (ri’s). It then adds 4503599627370458 = 252 − 38 to the lowest limb and
4503599627370494 = 252 − 2 to other limbs of the result. Finally, the program subtracts the
subtrahend (yi’s) from the result.

In order to specify the subtraction program, let radix51 (`4 , `3 , `2 , `1 , `0) denote

`4 × 251×4 + `3 × 251×3 + `2 × 251×2 + `1 × 251×1 + `0.

That is, radix51 (`4 , `3 , `2 , `1 , `0) is the element represented by `i’s. We have the following
specification for the program in Figure 3:

(|
∧4
i=0 xi ≤64 251 + 215 ∧

∧4
i=0 yi ≤64 251 + 215 ‖>|)

sub

(|
∧4
i=0 ri <64 254 ‖ radix51 (x4, x3, x2, x1, x0)− radix51 (y4, y3, y2, y1, y0)

≡ radix51 (r4, r3, r2, r1, r0) mod 2255 − 19 |).

Given each limb of the minuend and subtrahend slightly greater than 251, the specification
says the subtraction program computes the difference over GF (2255− 19) with the result less
than 254. To see why the subtraction program satisfies the algebraic specification, observe
that radix51 (251−1, 251−1, 251−1, 251−1, 251−19) = 2255−19. Hence radix51 (252−2, 252−
2, 252−2, 252−2, 252−38) = 2×(2255−19). That is, the subtraction program adds 2×(2255−19)
to the minuend and then subtracts the subtrahend. Since the algebraic specification only
requires modulo equality, the program is indeed correct. Adding 2× (2255 − 19) does not
induce the propagation of carry flags during addition. It moreover prevents borrow flag
propagation during subtraction.

3.2 Semantics
Let W be a architecture-dependent parameter: W = 264 for 64-bit architectures; W = 232

for 32-bit architectures. A state is a mapping from Var to [W − 1] and from Flag to {0, 1},

CONCUR 2018

4:6 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

and ⊥ is the designated error state. The error state does not satisfy any predicate. Figure 4
gives the operational semantics of each statement.

The semantics for CryptoLine is standard for unsigned bounded arithmetic. The Set
statement updates the value of a variable in a state. Cmov updates a variable by the given
flag. Add! updates a variable by the sum of arguments if the sum is smaller than W, and
otherwise results in the error state (overflows in this case). Add and Adc update a flag and a
variable by the sum of arguments. Sub! updates a variable by the difference of arguments if
the difference is non-negative, and otherwise results in the error state (underflows in this
case). Sub and Sbb update a flag and a variable by the difference of arguments. For the half
multiplication Mul, it is an error if the higher bits of the product is non-zero (overflows in
this case). The full multiplication Mulf always terminates successfully if the two updated
variables are different. Assert results in the error state if the current state does not satisfy
the given predicate. Assume ensures the new state satisfying the given predicate. Finally,
the error state always propagates.

Let σ and τ be states. The semantics of a program is inductively defined as follows.
σ

stmt−−−→ τ is defined in Figure 4. σ stmt;prog−−−−−−→ τ if there is a state λ such that σ stmt−−−→ λ and
λ

prog−−−→ τ . We call a program prog safe with respect to a predicate P if for every σ and τ ,
σ |= P and σ prog−−−→ τ imply τ 6= ⊥. We write |= (|P‖Q|)prog(|P ′‖Q′|) if for every σ, τ with
σ |= P ∧Q and σ prog−−−→ τ , we have τ |= P ′ ∧Q′. Note that 6|= (|P‖Q|)prog(|P ′‖Q′|) if there is
an assertion failure during execution.

Example (continued). The subtraction program will never reach the error state. For
example, consider the variable r0. The statement at line 1 assigns r0 the value of x0,
which is smaller than 251 + 215 by the precondition. The Add! statement at line 6 assigns
r0 a value between 4503599627370458 = 252 − 38 and 251 + 215 + 4503599627370458 =
251 + 215 + 252 − 38 < 264. Thus the Add! statement never goes to the error state. Finally,
observe y0 ≤ 251 + 215 ≤ 252 − 38 ≤ r0 after line 6. The Sub! statement at line 11 therefore
never goes to the error state.

4 Verifying CryptoLine Programs

We want to check if |= (|P‖Q|)prog(|P ′‖Q′|) for a given specification (|P‖Q|)prog(|P ′‖Q′|) with
range predicates P, P ′ and algebraic predicates Q,Q′. Firstly, we transform the specification
to static single assignments where variables are indexed such that no input variables are
assigned and every variable is assigned at most once. As CryptoLine programs are
straight-line, the transformation can be done easily so that the validity of specification is
preserved. In this section, we will assume the specification (|P‖Q|)prog(|P ′‖Q′|) is in static
single assignments and write x(i) to explicitly indicate a variable x with index i when needed.

Secondly, we need to ensure that all assertions in prog are valid. Consider the first
assertion AssertP ′′‖Q′′ in prog and let prog = prog1 ; AssertP ′′‖Q′′; prog2 . We verify the
validity of this assertion by checking if |= (|P‖Q|)prog1 (|P ′′‖Q′′|) is valid. Once the assertion
is valid, it is safe to be removed when verifying prog. Therefore all the assertion checking
can be reduced to specification checking of programs without assertions. In this section, we
will assume there is no assertion in prog.

Finally, observe |= (|P‖>|)prog(|P ′‖>|) and |= (|P‖Q|)prog(|>‖Q′|) imply |= (|P‖Q|)prog
(|P ′‖Q′|). The specification (|P‖>|)prog(|P ′‖>|) involves only range predicates; and the
specification (|P‖Q|)prog(|>‖Q′|) concerns only algebraic properties. We therefore divide the
verfication task into two parts: range and algebraic properties.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:7

[[n]]σ = n [[x]]σ = σ(x), for x ∈ ~v [[c]]σ = σ(c), for c ∈ ~c
σ

Set x u−−−−−−−−→ σ[x 7→ [[u]]σ]
σ

Cmov x b u v−−−−−−−−→ σ[x 7→ R] where R = [[u]]σ if [[b]]σ = 1; [[v]]σ if [[b]]σ = 0
σ

Add! x u v−−−−−−−−→ σ′ where R = [[u]]σ + [[v]]σ and σ′ = σ[x 7→ R]
if R/W = 0;⊥ otherwise

σ
Add b x u v−−−−−−−−→ σ[b, x 7→ R/W,R mod W] where R = [[u]]σ + [[v]]σ

σ
Adc b x u v c−−−−−−−−→ σ[b, x 7→ R/W,R mod W] where R = [[u]]σ + [[v]]σ + [[c]]σ

σ
Sub! x u v−−−−−−−−→ σ′ where R = [[u]]σ − [[v]]σ and σ′ = σ[x 7→ R]

if [[u]]σ ≥ [[v]]σ;⊥ otherwise
σ

Sub b x u v−−−−−−−−→ σ[b, x 7→ B,R mod W] where R = [[u]]σ − [[v]]σ +W and B = 0 if
[[u]]σ ≥ [[v]]σ; 1 otherwise

σ
Sbb b x u v c−−−−−−−−→ σ[b, x 7→ B,R mod W] where R = [[u]]σ − [[v]]σ − [[c]]σ +W and B

= 0 if [[u]]σ ≥ [[v]]σ + [[c]]σ; 1 otherwise
σ

Mul x u v−−−−−−−−→ σ′ where R = [[u]]σ × [[v]]σ and σ′ = σ[x 7→ R]
if R/W = 0;⊥ otherwise

σ
Mulf x y u v−−−−−−−−→ σ[x, y 7→ R/W,R mod W] if x 6= y and R = [[u]]σ × [[v]]σ

σ
AssertP‖Q−−−−−−−−→ σ′ where σ′ = σ if σ |= P ∧Q;⊥ otherwise

σ
AssumeP‖Q−−−−−−−−→ σ if σ |= P ∧Q

⊥ stmt−−−−−−−−→ ⊥ where stmt ∈ Stmt

Figure 4 Semantics.

4.1 Range Properties
Range properties are amenable to analysis by bit blasting. We therefore reduce the problem
of deciding |= (|P‖>|)prog(|P ′‖>|) to SMT solving. More specifically, we construct a formula
Ψ in the bit vector theory such that Ψ is satisfiable if and only if 6|= (|P‖>|)prog(|P ′‖>|). An
SMT solver is then employed to check range properties. Since the reduction is standard,
details are omitted here (see, for instance, [12]). Note that 6|= (|P‖>|)prog(|P ′‖>|) may be
caused by the violation of the post-condition or by the violation of program safety (that
is, overflow/underflow of some program statement). Therefore, safety check of prog is also
encoded in Ψ by the same way as in [16]) and |= (|P‖>|)prog(|P ′‖>|) actually indicates that
prog is safe with respect to P .

4.2 Algebraic Properties
Algebraic properties, especially those involving non-linear multiplication, are not suitable
for SMT solving. In order to effectively verify algebraic properties, we propose modular
polynomial abstraction. In modular polynomial abstraction, program behaviors are modeled
by solutions to systems of modular polynomial equations. Checking algebraic properties is
reduced to modular polynomial equation entailments. The modular polynomial equation
entailment problem in turn is reduced to the ideal membership problem. The ideal member-
ship problem is widely studied in commutative algebra. Decision procedures for the ideal
membership problem are available in computer algebra systems. We hence employ computer
algebra systems to verify algebraic properties.

CONCUR 2018

4:8 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Set x u ↪→ x− u = 0
Cmov x b u v ↪→ x− (b× u+ (1− b)× v) = 0
Add! x u v ↪→ x− (u+ v) = 0
Add b x u v ↪→ (x+ b×W)− (u+ v) = 0 ∧ b× (1− b) = 0
Adc b x u v c ↪→ (x+ b×W)− (u+ v + c) = 0 ∧ b× (1− b) = 0
Sub! x u v ↪→ x− (u− v) = 0
Sub b x u v ↪→ (x− b×W)− (u− v) = 0 ∧ b× (1− b) = 0
Sbb b x u v c ↪→ (x− b×W)− (u− v − c) = 0 ∧ b× (1− b) = 0
Mul x u v ↪→ x− (u× v) = 0
Mulf x y u v ↪→ (x×W + y)− (u× v) = 0
Assert P‖Q ↪→ >
Assume P‖Q ↪→ poly(Q)

Figure 5 Modular Polynomial Equations.

In the following, the three transformations from the verification problem of algebraic
properties on CryptoLine programs to the ideal membership problem are explained. We
first show how to transform program behaviors to systems of modular polynomial equations.
The algebraic property verification problem is then reduced to the modular polynomial
equation entailment problem. Finally, we explicate how to solve the entailment problem by
the ideal membership problem in commutative algebra.

4.2.1 Modular Polynomial Equations
Let f(~x), g(~x) ∈ Z[~x]. A modular polynomial equation is of the form f(~x) = 0 or f(~x) ≡
0 mod g(~x). A system of modular polynomial equations is denoted by

∧k
i=1 fi(~x) = 0 ∧∧l

i=1 gi(~x) ≡ 0 mod hi(~x) where fi(~x), gi(~x), hi(~x) ∈ Z[~x] for all i. A state σ is a solution
to a modular polynomial equation (written σ |= f(~x) = 0 or σ |= f(~x) ≡ 0 mod g(~x)) if
the equation holds under the valuation σ. A state σ is a solution to a system of modular
polynomial equations if it is a solution to every equations in the system.

Our first task is to describe program behaviors. Consider the transformation from
CryptoLine statements to systems of modular polynomial equations (Figure 5). Set is
transformed to the equation stating that the updated variable is equal to the argument. For
Cmov, the argument b can be either 0 or 1. Hence its corresponding equation identifying the
updated variable to u or v by the value of b. Add! and Sub! are transformed to equations
respectively mimicing the addition and the subtraction. In addition to the equations for the
updated variable and flag, Add, Adc, Sub, Sbb also have equations restricting the values of
flags to be 0 or 1. Mul and Mulf are transformed to equations mimicing the multiplication.
Assert is verified as another specification and is ignored. Finally, AssumeP‖Q is transformed
to poly(Q). Given Q ∈ Z[~x], poly(Q) is Q with e1 = e2 replaced by e1 − e2 = 0 and
e1 ≡ e2 mod e3 replaced by e1 − e2 ≡ 0 mod e3.

We have the following theorem for the transformation from CryptoLine to a system of
modular polynomial equations.

I Theorem 1. For each stmt ↪→ Φ in Figure 5 and non-error states σ and τ , we have
σ

stmt−−−→ τ implies τ |= Φ.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:9

1: Set r(0)
0 x

(0)
0 ;

2: Set r(0)
1 x

(0)
1 ;

3: Set r(0)
2 x

(0)
2 ;

4: Set r(0)
3 x

(0)
3 ;

5: Set r(0)
5 x

(0)
4 ;

6: Add! r(1)
0 r

(0)
0 4503599627370458;

7: Add! r(1)
1 r

(0)
1 4503599627370494;

8: Add! r(1)
2 r

(0)
2 4503599627370494;

9: Add! r(1)
3 r

(0)
3 4503599627370494;

10: Add! r(1)
4 r

(0)
4 4503599627370494;

11: Sub! r(2)
0 r

(1)
0 y

(0)
0 ;

12: Sub! r(2)
1 r

(1)
1 y

(0)
1 ;

13: Sub! r(2)
2 r

(1)
2 y

(0)
2 ;

14: Sub! r(2)
3 r

(1)
3 y

(0)
3 ;

15: Sub! r(2)
4 r

(1)
4 y

(0)
4 ;

Figure 6 sub in static single assignments.

Sketch. We only show the proof for two statements here. Suppose σ Add b x u v−−−−−−−−→ τ . If
[[u]]σ + [[v]]σ < W , [[b]]τ = 0 and [[x]]τ = [[u]]σ + [[v]]σ. Otherwise, we have [[b]]τ = 1 and
[[x]]τ = [[u]]σ + [[v]]σ −W . As statements are in static single assignments, [[u]]τ = [[u]]σ and
[[v]]τ = [[v]]σ. Hence τ |= (x+ b×W)− (u+ v) = 0 and τ |= b× (1− b) = 0 in both cases.

Now suppose σ Cmov x b u v−−−−−−−−→ τ . If [[b]]σ = 1, [[x]]τ = [[u]]σ = [[b]]σ× [[u]]σ. Otherwise [[b]]σ = 0
and [[x]]τ = [[v]]σ = (1−[[b]]σ)×[[v]]σ. As statements are in static single assignments, [[b]]τ = [[b]]σ,
[[u]]τ = [[u]]σ and [[v]]τ = [[v]]σ. In both cases, we have τ |= x− (b× u+ (1− b)× v) = 0. J

By the assumption that programs are in static single assignments and Theorem 1, a
system of modular polynomial equations whose solutions are program execution traces is
constructed. More formally, we have the following corollary:

I Corollary 2. Suppose stmt1 ; stmt2 ; · · · ; stmtn is in static single assignments. Let σ and τ
be non-error states with σ stmt1 ;stmt2 ;··· ;stmtn−−−−−−−−−−−−−→ τ. Suppose stmti ↪→ Φi (Figure 5) for every
1 ≤ i ≤ n. Then τ |=

∧n
i=1 Φi.

Example (continued). Let us compute the system of modular polynomial equations for
the subtraction program in Figure 3. We rewrite the program in static single assignments
(Figure 6). The specification concerning algebraic properties, denoted by aspecsub, is rewritten
as well:

(| ∧4
i=0 x

(0)
i ≤64 251 + 215 ∧

∧4
i=0 y

(0)
i ≤64 251 + 215 ‖>|)

sub

(|>‖ radix51 (x(0)
4 , x

(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)

≡ radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) mod 2255 − 19

|)

For each statement in the static single assignments, we apply the transformation in Figure 5.
Figure 7 shows the corresponding modular polynomial equations.

4.2.2 Modular Polynomial Equation Entailment
Let Φ and Φ′ be systems of modular polynomial equations with variables over ~x. A modular
polynomial entailment is a formula of the form ∀~x(Φ =⇒ Φ′). Given a modular polynomial
entailment, the modular polynomial entailment problem is to decide whether the entailment
holds in the theory of integers. Given systems of modular polynomial equations describ-
ing program behaviors and intended algebraic properties, it is standard to transform the
verification problem to an instance of the modular polynomial entailment problem.

CONCUR 2018

4:10 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

1: r
(0)
0 − x(0)

0 = 0 ∧
2: r

(0)
1 − x(0)

1 = 0 ∧
3: r

(0)
2 − x(0)

2 = 0 ∧
4: r

(0)
3 − x(0)

3 = 0 ∧
5: r

(0)
4 − x(0)

4 = 0 ∧
6: r

(1)
0 −(r(0)

0 + 4503599627370458)=0 ∧
7: r

(1)
1 −(r(0)

1 + 4503599627370494)=0 ∧
8: r

(1)
2 −(r(0)

2 + 4503599627370494)=0 ∧

9: r
(1)
3 −(r(0)

3 +4503599627370494)=0 ∧
10: r

(1)
4 −(r(0)

4 +4503599627370494)=0 ∧
11: r

(2)
0 − (r(1)

0 − y(0)
0) = 0 ∧

12: r
(2)
1 − (r(1)

1 − y(0)
1) = 0 ∧

13: r
(2)
2 − (r(1)

2 − y(0)
2) = 0 ∧

14: r
(2)
3 − (r(1)

3 − y(0)
3) = 0 ∧

15: r
(2)
4 − (r(1)

4 − y(0)
4) = 0

Figure 7 System of Modular Polynomial Equations Φsub for sub.

I Theorem 3. Given a specification (|P‖Q|)prog(|>‖Q′|) in static single assignments and
the corresponding system of modular polynomial equations Φprog for prog where there is no
Assert statement, if prog is safe with respect to P and ∀~x(poly(Q) ∧ Φprog =⇒ poly(Q′))
holds, then |= (|P‖Q|)prog(|>‖Q′|).

Example (continued). We apply Theorem 3 to verify algebraic properties on the subtraction
program in Figure 3. Recall the system of modular polynomial equations Φsub for the program
in Figure 7. If we can show

∀~x

[
> ∧ Φsub =⇒ radix51 (x(0)

4 , x
(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)

−radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) ≡ 0 mod 2255 − 19

]
,

denoted by entsub, then |= aspecsub.
Our next task is to solve the modular polynomial entailment problem. It is known how

to replace modular polynomial equations with polynomial equations and hence simplify the
modular polynomial entailment problem [11]. In the following, we review the simplication
for the sake of completeness.

Let ei(~x), fj(~x), nj(~x)gk(~x), hl(~x),ml(~x) ∈ Z[~x] for i ∈ [I], j ∈ [J], k ∈ [K], and l ∈ [L].
Consider the instance of the modular polynomial entailment problem:

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒∧
k∈[K]

gk(~x) = 0 ∧
∧
l∈[L]

hl(~x) ≡ 0 mod ml(~x)]

Its consequent has K + L+ 2 modular polynomial equations. We decompose the problem
into K + L+ 2 instances of the modular polynomial entailment problem. Each instance is of
the form

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒ g(~x) = 0]; or

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒ h(~x) ≡ 0 mod m(~x)].

For the first form, we expand the modular polynomial equations and obtain

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

[∃dj .fj(~x)− dj · nj(~x) = 0] =⇒ g(~x) = 0],

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:11

〈 2255 − 19, r(0)
0 − x(0)

0 , r
(0)
1 − x(0)

1 , r
(0)
2 − x(0)

2 , r
(0)
3 − x(0)

3 , r
(0)
4 − x(0)

4 ,

r
(1)
0 − r(0)

0 − 4503599627370458, r(1)
1 − r(0)

1 − 4503599627370494,
r

(1)
2 − r(0)

2 − 4503599627370494, r(1)
3 − r(0)

3 − 4503599627370494,
r

(1)
4 − r(0)

4 − 4503599627370494,
r

(2)
0 − r(1)

0 + y
(0)
0 , r

(2)
1 − r(1)

1 + y
(0)
1 , r

(2)
2 − r(1)

2 + y
(0)
2 , r

(2)
3 − r(1)

3 + y
(0)
3 ,

r
(2)
4 − r(1)

4 + y
(0)
4 ,

〉

Figure 8 Ideal for Checking Algebraic Property on Subtraction.

which in turn is equivalent to

∀~x∀~d[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x)− dj · nj(~x) = 0 =⇒ g(~x) = 0].

Similarly, we obtain the following entailment for the second form:

∀~x∀~d[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x)− dj · nj(~x) = 0 =⇒ h(~x) ≡ 0 mod m(~x)].

Note that antecedents in both forms are but polynomial equations. In order to solve the
modular polynomial entailment problem, it suffices to solve the following forms:

∀~x[
∧
i∈[I]

ei(~x) = 0 =⇒ g(~x) = 0] (1)

∀~x[
∧
i∈[I]

ei(~x) = 0 =⇒ h(~x) ≡ 0 mod m(~x)] (2)

4.2.3 Solving Modular Polynomial Equation Entailment Problem
There is an interesting connection between solving the formula (2) and the ideal membership
problem. Suppose h(~x) ∈ 〈ei(~x),m(~x)〉i∈[I]. By the definition of ideal, h(~x) is a linear
combination of ei(~x) and m(~x). Hence, there are c(~x), ci(~x) ∈ Z[~x] such that

h(~x) = c(~x) ·m(~x) +
∑
i∈[I]

ci(~x) · ei(~x).

When ei(~x) = 0 for every i ∈ [I], we have h(~x) = c(~x) ·m(~x), that is, h(~x) ≡ 0 mod m(~x).
The following theorem summarizes the connection:

I Theorem 4 ([11]). Let ei(~x), g(~x), h(~x),m(~x) ∈ Z[~x] for i ∈ [I].
1. The formula (1) holds if g(~x) is in the ideal 〈ei(~x)〉i∈[I];
2. The formula (2) holds if h(~x) is in the ideal 〈ei(~x),m(~x)〉i∈[I].

Example (continued). Recall that we would like to establish entsub. By Theorem 4, it
suffices to show radix51 (x(0)

4 , x
(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0) − radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0) −

radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) is in the ideal from Figure 8.

4.2.4 Completeness
The reduction from the algebraic verification problem to the ideal membership problem is
sound but incomplete. There are instances of (1) or (2) whose corresponding ideal membership
problems do not hold.

CONCUR 2018

4:12 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

4.2.5 Optimization
The ideal membership problem typically becomes harder when the number of polynomials
grows [10]. To reduce the number of polynomials, we apply variable substitution same as
in [16]. For the instruction Set x u and its corresponding modular polynomial equation
x − u = 0, we remove the equation and replace x with u in all other modular polynomial
equations. Other instructions that update only one variable are processed similarly. Consider
Mulf x y u v and its corresponding modular polynomial equation (x×W + y)− (u× v) = 0
for an example of instructions that update two variables. Since (x×W + y)− (u× v) = 0
implies y = u × v − x ×W , we remove the equation and replace y with u × v − x ×W in
all other modular polynomial equations. For an AssumeP‖Q statement with an equation
e1 − e2 = 0 in poly(Q), we identify a variable x and an expression e such that e1 − e2 = 0 if
and only if x = e. Then e1 − e2 = 0 is removed after replacing x with e.

Example (continued). By the optimization, it suffices to show

radix51 (x(0)
4 , x

(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)−

radix51 (x(0)
4 + 4503599627370494− y(0)

4 , x
(0)
3 + 4503599627370494− y(0)

3 ,

x
(0)
2 + 4503599627370494− y(0)

2 , x
(0)
1 + 4503599627370494− y(0)

1 ,

x
(0)
0 + 4503599627370458− y(0)

0)

is in the ideal of 〈2255 − 19〉.

5 Evaluation

We have implemented our approach in OCaml. Followed by a case study on Montgomery mul-
tiplication in this section, the verification of arithmetic assembly programs in cryptographic
libraries is reported.

5.1 Montgomery Multiplication
Consider modulo arithmetic computation over Zm. Since results must be in Zm, a modulo
operation is necessary. For modulo addition or subtraction, it is relatively easy since results
are obtained by subtracting or adding m respectively. For modulo multiplication, the naïve
algorithm requires division. This is inefficient. Consider, for instance, modulo arithmetic
computation over Z93. Let a = 79 and b = 39. We have a + b = 118 and 118 − 93 = 25.
Hence (a + b) mod 93 = 25. But a × b = 79 × 39 = 3081. Since 3081 = 93 × 33 + 12. We
obtain (79× 39) mod 93 = 12 by division.

To avoid inefficient division, cryptographic programs perform modulo arithmetic com-
putation over Zm in Montgomery forms. Two numbers R and m′ with gcd(R,m) = 1 and
mm′ ≡ −1 mod R are chosen by programmers. For any a ∈ Zm, its Montgomery repre-
sentation is aR mod m. For modulo addition and subtraction, it is still easy to compute
in Montgomery forms since (a ± b)R ≡ aR ± bR mod m. For modulo multiplication, one
would like to compute the Montgomery representation abR mod m from the representations
aR mod m and bR mod m of a and b respectively. Yet aR · bR ≡ abR2 mod m. It appears
that one has to multiply the inverse of R and then modulo m to obtain the result.

Surprisingly, Montgomery proposed a reduction algorithm which multiplies the inverse
of R and modulo m simultaneously. The following computation performs the Montgomery

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:13

reduction on a number T in Montgomery representation:

n = ((T mod R)×m′) mod R
t = (T + n×m)/R
r = if t ≥ m then t−m else t

We will illustrate by an example. Choose (m,R,m′) = (93, 100, 43). We have gcd(100, 93) = 1
and 93 × 43 ≡ −1 mod 100. The numbers a and b in Montgomery representation are
7900 mod 93 = 88 and 3900 mod 93 = 87 respectively (two hard divisions). To perform the
Montegomery reduction on T = 88× 87 = 7656, we compute n = ((7656 mod 100)× 43) mod
100 = (56×43) mod 100 = 2408 mod 100 = 8. t = (7656+8×93)/100 = 8400/100 = 84. Since
84 < m = 93, we obtain the product 84 in Montgomery representation. To compute ab mod m,
we perform Montgomery reduction again on T = 84. Thus n = ((84 mod 100)×43) mod 100 =
(84× 43) mod 100 = 3612 mod 100 = 12 and t = (84 + 12× 93)/100 = 1200/100 = 12. Since
12 < 93, we have (79× 39) mod 93 = 12 as before. Observe that only two hard divisions are
necessary for computing Montgomery representations of 79 and 39. Modulo 100 and dividing
multiples of 100 by 100 are trivial. If a number of arithmetic operations are required (as in
the case for cryptographic primitives), computation in Montgomery representation is much
more efficient than textbook algorithms. Cryptographic libraries subsequently implement
arithmetic in Montgomery representation.

Assembly subroutines in OpenSSL go even further than that. Previously, we compute
multiplication 88 × 87 followed by reduction to perform one Montgomery multiplication.
In practice, multiplication and reduction are performed simultaneously in Montgomery
multiplication. OpenSSL moreover uses the multi-limb Montegomery multiplication algorithm
where R can be a large power of 2. Consider the four-limb Montgomery multiplication with
64-bit limbs. m is hence a 256-bit number. Choose R = 2256. Define radix64 (`3 , `2 , `1 , `0)
to be the expression

`3 × 264×3 + `2 × 264×2 + `1 × 264×1 + `0.

Let m = radix64 (m3,m2,m1,m0), x = radix64 (x3, x2, x1, x0), y = radix64 (y3, y2, y1, y0)
and m′ ∈ [264 − 1] be inputs and r = radix64 (r3, r2, r1, r0) the output. The four-limb
Montgomery multiplication subroutine bn_mul_mont_4 in OpenSSL has the following
specification:

(|>‖m0 ≡ 1 mod 2 ∧m′ ×m+ 1 ≡ 0 mod 264|)
r = bn_mul_mont_4(x, y,m,m′)

(|>‖x× y ≡ r × 2256 mod m|)

The precondition m0 ≡ 1 mod 2 is equivalent to gcd(m, 264) = 1. On input numbers
x = aR mod m and y = bR mod m in Montgomery representation, the output r satisfies
xy ≡ abR2 ≡ rR mod m. That is, r ≡ abR mod m. The output r is the product of a and b
in Montgomery representation.

The Montgomery multiplication subroutine for x86_64 is invoked by the C fragment:

bn_mul_mont(r, x, y, m, m’, n_limbs);

where x, y, m, m’ are arrays of 64-bit unsigned integer and n_limbs is the number of limbs.
We compile the C code and link it with the OpenSSL cryptographic library. The program
execution trace is then extracted by gdb along with effective addresses automatically. For
4-limb bn_mul_mont_4 (n_limbs = 4), there are about 350 assembly instructions. As an
illustration, the following three instructions load the value of m’, y[0], and x[0] to the
registers r8, rbx, and rax respectively.

CONCUR 2018

4:14 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

mov (%r8),%r8 #! EA = L0x6060e0
mov (%r12),%rbx #! EA = L0x6060a0
mov (%rsi),%rax #! EA = L0x606080

For each instruction, we write a Python script to translate it to a CryptoLine statement.
Here are the corresponding CryptoLine code for the three instructions:

Set r8 L0x6060e0;
Set rbx L0x6060a0;
Set rax L0x606080;

In our automatic translation, each memory cell is a variable identified by its address. Each
register is also a variable with the same name. Since effective addresses are obtained from
gdb, indirect memory operands (such as -0x10(%rsp,%r15,8)) are translated to variables
corresponding to their effective addresses. It remains to initialize memory cells for inputs.

1: Set L0x606080 x0; 5: Set L0x6060a0 y0; 9: Set L0x6060c0 m0;
2: Set L0x606088 x1; 6: Set L0x6060a8 y1; 10: Set L0x6060c8 m1;
3: Set L0x606090 x2; 7: Set L0x6060b0 y2; 11: Set L0x6060d0 m2;
4: Set L0x606098 x3; 8: Set L0x6060b8 y3; 12: Set L0x6060d8 m3;

13: Set L0x6060e0 m′;

The Assert and Assume statements are indispensable in verifying bn_mul_mont. Consider
the following fragment extracted from the assembly subroutine:

1 : Set rbx y0; 4 : Mulf rdx rax rbx rax; 7 : Mulf unused rbp r10 rbp;
2 : Set rax x0; 5 : Set r10 rax; 8 : Mulf rdx rax rbp rax;
3 : Set rbp m′; 6 : Set rax m0; 9 : Add! carry r10 rax r10;

At line 5, we have r10 ≡ y0 × x0 mod 264. At line 7, rbp ≡ y0 × x0 ×m′ mod 264. At line 8,
rax ≡ y0×x0×m′×m0 mod 264. Finally at line 9, we have r10 ≡ (y0×x0×m′×m0)+(y0×
x0) ≡ (y0×x0)× (m′×m0 + 1) mod 264. From the precondition m′×m+ 1 ≡ 0 mod 264, we
have m′ × radix64 (m3,m2,m1,m0) + 1 ≡ 0 mod 264 and m′ ×m0 + 1 ≡ 0 mod 264. Hence
r10 ≡ (y0 × x0)× (m′ ×m0 + 1) ≡ 0 mod 264. Now r10 is a 64-bit register. r10 ≡ 0 mod 264

implies r10 = 0 on x86_64. Its value can be safely discarded. The equality is essential to the
proof of correctness in the Montgomery multiplication program.

Although r10 ≡ 0 mod 264 can be verified by modular polynomial equation entailment,
the algebraic technique fails to prove r10 = 0. In order to verify bn_mul_mont_, we add two
instructions following the code fragment: Assert>‖r10 ≡ 0 mod 264 and Assume>‖r10 = 0.
The Assert statement is automatically verified; the Assume statement is safe because r10 ≡
0 mod 264 implies r10 = 0 when r10 is a 64-bit register.

5.2 Arithmetic in Cryptographic Libraries
We have successfully verified assembly codes extracted from the arithmetic programs in
cryptographic libraries OpenSSL, boringSSL, and mbedTLS. The extracted traces are not
affected by the inputs in all programs except mbedTLS. The big integer multiplication in
mbedTLS contains a loop with undetermined iterations in C for propagating carry chains.
For this multiplication, we extracted and verified assembly codes for different cases of carry
chains but only report two cases with longest carry chains. All the verification tasks are
performed on a Linux machine with a 3.47GHz CPU and 128GB memory. We use Boolector

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:15

Table 1 Experimental Results.

library program ln assert range alg total

OpenSSL

ecp_nistz256_add 89 0.44 4.17 0.03 4.63
ecp_nistz256_sub 88 - 18.54 ~0 18.55

ecp_nistz256_from_mont 82 - 0.41 0.02 0.45
ecp_nistz256_mul_mont 192 - 21.49 0.03 21.53
ecp_nistz256_mul_mont+ 153 - 15.43 0.03 15.47
ecp_nistz256_mul_by_2 49 - 0.05 0.02 0.08
ecp_nistz256_sqr_mont 148 - 16.43 0.03 16.47
ecp_nistz256_sqr_mont+ 131 - 22.50 0.03 22.54

x86_64_mont_2 228 832.60 13.41 0.03 846.05
x86_64_mont_4 490 8279.87 523.27 0.91 8804.06

boringSSL
x25519_x86_64_mul 226 - 28.73 0.03 28.78
x25519_x86_64_sqr 171 - 6.14 0.03 6.18

x25519_x86_64_ladderstep 1459 - 2921.82 107.93 3029.78

mbedTLS
mbedtls_mpi_mul_mpi_2 76 0.46 0.42 0.03 0.92
mbedtls_mpi_mul_mpi_4 249 12.85 9.27 0.02 22.16

2.4.0 for SMT solving and use Singular 4.1.0 for ideal membership solving. Table 1 shows
the verification results. For each arithmetic program, we report the number of lines (ln)
in CryptoLine (including the specification), the time in seconds for assertion checking
(assert), range checking (range), algebraic checking (alg), and overall verification (total). A
“-” in the assertion column indicates that the program contains no assertion. In OpenSSL,
two versions of ecp_nistz256_mul_mont and ecp_nistz256_sqr_mont are availble: one for
typical x86_64 microarchitectures, the other for Broadwell microarchitecture (annotated
by “+” in the table). For multiplication, we verified 2- and 4-limb versions in OpenSSL
(x86_64_mont_*) and mbedTLS (mbedtls_mpi_mul_mpi_*).

To the best of our knowledge, our work is the first on automatically verifying assembly
codes extracted from low-level arithmetic implementations of industrial cryptographic libraries.
Most of the other works verified re-implementations of arithmetic operations written in
high-level languages. In the most related work [16], an implementation of the Montgomery
Ladderstep in bvCryptoLine was verified in days. With our approach, the implementation
of the Montgomery Ladderstep in boringSSL can be verified in 1 hour.

6 Conclusion

We have described a domain-specific language CryptoLine for modeling arithmetic assembly
programs in cryptographic primitives across different instruction sets. Scripts have been
developed to extract execution traces from programs as assembly codes and to translate
assembly codes to CryptoLine. A specification for a program in CryptoLine is divided into
range predicates and algebraic predicates. While range predicates are verified by SMT solving,
algebraic predicates are verified via transformation to ideal membership problems solved by
computer algebra systems. We have implemented our verification approach to successfully
verified several arithmetic programs in cryptographic libraries OpenSSL, boringSSL, and
mbedTLS.

We are working on a certified translator to accurately generate CryptoLine codes from
different assembly. The case studies in mbedTLS expose limitations of verifying cryptographic
codes with CryptoLine. We would like to extend our techniques to such programs.

CONCUR 2018

4:16 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

References
1 Reynald Affeldt. On construction of a library of formally verified low-level arithmetic

functions. Innovations in Systems and Software Engineering, 9(2):59–77, 2013.
2 Reynald Affeldt and Nicolas Marti. An approach to formal verification of arithmetic func-

tions in assembly. In Mitsu Okada and Ichiro Satoh, editors, Advances in Computer Science,
volume 4435 of LNCS, pages 346–360. Springer, 2007.

3 Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with formal
security proofs: The case of BBS. Science of Computer Programming, 77(10–11):1058–
1074, 2012.

4 Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM Transactions
on Programming Languages and Systems, 37(2):7:1–7:31, 2015. doi:10.1145/2701415.

5 Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified correct-
ness and security of openssl HMAC. In USENIX Security Symposium 2015, pages 207–221.
USENIX Association, 2015.

6 Daniel J. Bernstein and Peter Schwabe. gfverif: Fast and easy verification of finite-field
arithmetic, 2016. URL: http://gfverif.cryptojedi.org.

7 B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying high-performance cryptographic assembly code.
In USENIX Security Symposium 2017, pages 917–934. USENIX Association, 2017.

8 Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-
Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying curve25519 software. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, CCS, pages 299–309. ACM, 2014.

9 Fiat-crypto. https://github.com/mit-plv/fiat-crypto, 2015. Accessed: 2017-05-19.
10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and company, 1979.
11 John Harrison. Automating elementary number-theoretic proofs using Gröbner bases. In

Frank Pfenning, editor, CADE, volume 4603 of LNCS, pages 51–66. Springer, 2007.
12 D. Kroening and O. Strichman. Decision Procedures - an algorithmic point of view. EATCS.

Springer, 2008.
13 Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum implementation

in x86-64 machine code. In Certified Programs and Proofs, volume 8307 of LNCS, pages
66–81. Springer, 2013. doi:10.1007/978-3-319-03545-1_5.

14 Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically modelled machine
code. In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of LNCS, pages
568–582. Springer, 2007.

15 Aaron Tomb. Automated verification of real-world cryptographic implementations. IEEE
Security & Privacy, 14(6):26–33, 2016. doi:10.1109/MSP.2016.125.

16 Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of algebraic
properties on low-level mathematical constructs in cryptographic programs. In David Evans,
Tal Malkin, and Dongyan Xu, editors, CCS. ACM, 2017.

17 Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher,
and Andrew W. Appel. Verified correctness and security of mbedtls HMAC-DRBG. In
CCS, pages 2007–2020. ACM, 2017. doi:10.1145/3133956.3133974.

18 Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A verified modern cryptographic library. In CCS, pages 1789–1806.
ACM, 2017. doi:10.1145/3133956.3134043.

http://dx.doi.org/10.1145/2701415
http://gfverif.cryptojedi.org
https://github.com/mit-plv/fiat-crypto
http://dx.doi.org/10.1007/978-3-319-03545-1_5
http://dx.doi.org/10.1109/MSP.2016.125
http://dx.doi.org/10.1145/3133956.3133974
http://dx.doi.org/10.1145/3133956.3134043

	Introduction
	Preliminaries
	Domain Specific Language – CryptoLine
	Syntax
	Semantics

	Verifying CryptoLine Programs
	Range Properties
	Algebraic Properties
	Modular Polynomial Equations
	Modular Polynomial Equation Entailment
	Solving Modular Polynomial Equation Entailment Problem
	Completeness
	Optimization

	Evaluation
	Montgomery Multiplication
	Arithmetic in Cryptographic Libraries

	Conclusion

