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—— Abstract

Coalgebra is a categorical modeling of state-based dynamics. Final coalgebras — as categorical
greatest fixed points — play a central role in the theory; somewhat analogously, most coalgeb-
raic proof techniques have been devoted to greatest fixed-point properties such as safety and
bisimilarity. In this tutorial, I introduce our recent coalgebraic framework that accommodates
those fixed-point specifications which are not necessarily the greatest. It does so specifically by

characterizing the accepted languages of Biichi and parity automata in categorical terms. We
present two characterizations of accepted languages. The proof for their coincidence offers a
unique categorical perspective of the correspondence between (logical) fixed-point specifications
and the (combinatorial) parity acceptance condition.
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Studies of automata, and state-based transition systems in general, have been shed a fresh
categorical light in the 1990s by the theory of coalgebra [7, 5]. In the theory, a state-based
dynamics is modeled by a coalgebra, that is, an arrow ¢: X — F X in a category C; and this
simple modeling has produced numerous results that capture mathematical essences and
provide general techniques.

Final coalgebras as “categorical greatest fixed points” play a central role in the theory of
coalgebra. Somewhat analogously, most coalgebraic proof methods have focused on greatest
fixed-point properties — a notable example being a span-based categorical characterization of
bisimilarity.

In this tutorial, I will outline our recent results [10, 8] about how we can accommodate,
in the theory of coalgebra, those fixed-point properties which are not necessarily the greatest.
This takes the concrete form of characterizing the accepted languages of Biichi and parity
automata in the language of category theory. Our framework, based on the so-called Kleisli
approach to coalgebraic trace semantics [6, 4, 2, 1], is generic and covers both automata with
nondeterministic and probabilistic branching. It covers both word and tree automata, too.
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Coalgebraic Theory of Biichi and Parity Automata

We present two characterizations of the accepted languages of Biichi and parity automata.
The first one is called logical fixed points; it is formulated in terms of the order-enriched
structure of the underlying Kleisli category (where the monad in question models branching
type) [10]. The second one, called categorical fixed points, utilizes nested datatypes specified
by a functor. The latter resembles repeated application of (co)free (co)monads. We exhibit a
proof for the coincidence of the two characterizations. What arises through it is a categorical
perspective of one of the key observations that underpin the recent developments in computer
science — namely the fact that the combinatorial notion of parity acceptance condition
represents logical specifications given by nested and alternating fixed points.

The tutorial is based on the speaker’s joint works with Corina Cirstea, Bart Jacobs,
Shunsuke Shimizu, Ana Sokolova, and Natsuki Urabe [2, 3, 8, 10]. A detailed account of the
technical material of the tutorial will be given in a forthcoming paper [9].
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