
Submodular Functions and Valued Constraint
Satisfaction Problems over Infinite Domains
Manuel Bodirsky1

Institut für Algebra, Technische Universität Dresden
Germany
manuel.bodirsky@tu-dresden.de

Marcello Mamino
Dipartimento di Matematica, Università di Pisa
Italy
marcello.mamino@dm.unipi.it

Caterina Viola2

Institut für Algebra, Technische Universität Dresden
Germany
caterina.viola@tu-dresden.de

Abstract
Valued constraint satisfaction problems (VCSPs) are a large class of combinatorial optimisation
problems. It is desirable to classify the computational complexity of VCSPs depending on a
fixed set of allowed cost functions in the input. Recently, the computational complexity of all
VCSPs for finite sets of cost functions over finite domains has been classified in this sense. Many
natural optimisation problems, however, cannot be formulated as VCSPs over a finite domain.
We initiate the systematic investigation of infinite-domain VCSPs by studying the complexity
of VCSPs for piecewise linear homogeneous cost functions. We remark that in this paper the
infinite domain will always be the set of rational numbers. We show that such VCSPs can be
solved in polynomial time when the cost functions are additionally submodular, and that this is
indeed a maximally tractable class: adding any cost function that is not submodular leads to an
NP-hard VCSP.

2012 ACM Subject Classification Mathematics of computing → Mathematical optimization,
Theory of computation → Complexity theory and logic

Keywords and phrases Valued constraint satisfaction problems, Piecewise linear functions, Sub-
modular functions, Semilinear, Constraint satisfaction, Optimisation, Model Theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.12

1 Introduction

In a valued constraint satisfaction problem (VCSP) we are given a finite set of variables, a
finite set of cost functions that depend on these variables, and a cost u; the task is to find
values for the variables such that the sum of the cost functions is less than u. By restricting
the set of possible cost functions in the input, a great variety of computational optimisation

1 The first and second author have received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681988,
CSP-Infinity).
The first author has also received funding from the DFG (Project number 622397)

2 This author is supported by DFG Graduiertenkolleg 1763 (QuantLA).

© Manuel Bodirsky, and Marcello Mamino, and Caterina Viola;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.bodirsky@tu-dresden.de
mailto:marcello.mamino@dm.unipi.it
mailto:caterina.viola@tu-dresden.de
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Submodular Functions and VCSPs over Infinite Domains

problems can be modelled as a valued constraint satisfaction problem. By allowing the cost
functions to evaluate to +∞, we can even model ‘crisp’ constraints, given by relations that
have to be satisfied by the variable assignments. Hence the class of (classical) constraint
satisfaction problems (CSPs) is a subclass of the class of all VCSPs.

If the domain is finite, the computational complexity of the VCSP has recently been
classified for all sets of cost functions, assuming the Feder-Vardi conjecture for classical
CSPs [14, 13, 15]. Even more recently, two solutions to the Feder-Vardi conjecture have been
announced [18, 6]. These fascinating achievements settle the complexity of the VCSP over
finite domains.

Several outstanding combinatorial optimisation problems cannot be formulated as VCSPs
over a finite domain, but they can be formulated as VCSPs over the domain Q, the set of
rational numbers. One example is the famous linear programming problem, where the task is
to optimise a linear function subject to linear inequalities. This can be modelled as a VCSP
by allowing unary linear cost functions and cost functions of higher arity to express the crisp
linear inequalities. Another example is the minimisation problem for sums of piecewise linear
convex cost functions (see, e.g., [5]). Both of these problems can be solved in polynomial
time, e.g. by the ellipsoid method (see, e.g., [10]).

Despite the great interest in such concrete VCSPs over the rational numbers in the
literature, VCSPs over infinite domains have not yet been studied systematically. In order
to obtain general results we need to restrict the class of cost functions that we investigate,
because without any restriction it is already hopeless to classify the complexity of infinite-
domain CSPs (any language over a finite alphabet is polynomial-time Turing equivalent to
an infinite domain CSP [2]). One restriction that captures a variety of optimisation problems
of theoretical and practical interest is the class of all piecewise linear homogeneous cost
functions over Q, defined below. We first illustrate by an example the type of cost functions
that we want to capture in our framework.

I Example 1.1. An internet provider charges the clients depending on the amount of data
x downloaded and the amount of data y that is uploaded. The cost function of the provider
could be the partial function f : Q2 → Q given by

f(x, y) :=


3x if 0 ≤ y < 2x
3
2y if 0 ≤ 2x ≤ y
undefined otherwise.

A partial function f : Qn → Q is called piecewise linear homogeneous (PLH) if it is first-
order definable over the structure L := (Q;<, 1, (c·)c∈Q); being undefined at (x1, . . . , xn) ∈ Qn
is interpreted as f(x1, . . . , xn) = +∞. The structure L has quantifier elimination (see
Section 3.2) and hence there are finitely many regions such that f is a homogeneous linear
polynomial in each region; this is the motivation for the name piecewise linear homogeneous.
The cost function from Example 1.1 is PLH.

The cost function in Example 1.1 satisfies an additional important property: it is
submodular (defined in Section 3.3). Submodular cost functions naturally appear in several
scientific fields such as, for example, economics, game theory, machine learning, and computer
vision, and play a key role in operational research and combinatorial optimisation (see,
e.g., [9]). Submodularity also plays an important role for the computational complexity
of VCSPs over finite domains, and guided the research on VCSPs for some time (see, e.g.,
[7, 12]), even though this might no longer be visible in the final classification obtained
in [14, 13, 15].

M. Bodirsky, and M. Mamino, and C. Viola 12:3

In this paper we show that VCSPs for submodular PLH cost functions can be solved in
polynomial time (Theorem 5.1 in Section 5). To solve this problem, we first describe how
to solve the feasibility problem (does there exist a solution satisfying all crisp constraints)
and then how to find the optimal solution. The first step follows from a new, more general
polynomial-time tractability result, namely for max-closed PLH constraints (Section 4). To
then solve the optimisation problem for PLH constraints, we introduce a technique to reduce
the task to a problem over a finite domain that can be solved by a fully combinatorial
polynomial-time algorithm for submodular set-function optimisation by Iwata and Orlin [11].
Moreover, we show that submodularity defines a maximal tractable class: adding any cost
function that is submodular leads to an NP-hard VCSP (Section 6). Section 7 closes with
some problems and challenges.

2 Valued Constraint Satisfaction Problems

A valued constraint language Γ (over D) (or simply language) consists of
a signature τ consisting of function symbols f , each equipped with an arity ar(f),
a set D = dom(Γ) (the domain),
for each f ∈ τ a cost function, i.e., a function fΓ : Dar(f) → Q ∪ {+∞}.

Here, +∞ is an extra element with the expected properties that for all c ∈ Q ∪ {+∞}

(+∞) + c = c+ (+∞) = +∞
and c < +∞ iff c ∈ Q.

Let Γ be a valued constraint language with a finite signature τ . The valued constraint
satisfaction problem for Γ, denoted by VCSP(Γ), is the following computational problem.

I Definition 2.1. An instance I of VCSP(Γ) consists of
a finite set of variables VI ,
an expression φI of the form

m∑
i=1

fi(xi1, . . . , xiar(fi))

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and
a value uI ∈ Q ∪ {+∞}.

The task is to decide whether there exists a map α : VI → dom(Γ) whose cost, defined as
m∑
i=1

fΓ
i (α(xi1), . . . , α(xiar(fi)))

is finite, and if so, whether there is one whose cost is smaller or equal to uI .

A solution of an instance of VCSP(Γ) is a tuple x ∈ D|VI | such that x ∈ dom(f) for all
valued constraint f in the instance.
Note that since the signature τ of Γ is finite, it is inessential for the computational complexity
of VCSP(Γ) how the function symbols in φI are represented. The function described by the
expression φI is also called the objective function. When uI = +∞ then this problem is called
the feasibility problem, which can also be modelled as a (classical) constraint satisfaction
problem. The choice of defining the VCSP as a decision problem and not as an optimisation
problem is motivated by two major issues that do not occur in the finite domain case: in the
infinite domain setting one needs to decide whether the infimum is attained, and to model
the case in which the infimum is −∞.

CSL 2018

12:4 Submodular Functions and VCSPs over Infinite Domains

Many well-known optimisation problems can only be formulated when we allow infinite
domains D.

I Example 2.2. Let Γ be the valued constraint language with signature τ = {g1, g2, g3} and
the cost functions

gΓ
1 : Q→ Q defined by g1(x) = −x,
gΓ

2 : Q2 → Q defined by g2(x, y) := min(x,−y), and
gΓ

3 : Q3 → Q defined by g3(x, y, z) := max(x, y, z).
Two examples of instances of VCSP(Γ) are

g1(x) + g1(y) + g1(z) + g2(x, y)
+g3(x, y, z) + g3(x, x, x) + g3(x, x, x) (1)

and g1(x) + g1(y) + g1(z)
+g3(x, y, z) + g3(x, x, y) + g3(y, z, z) (2)

We can make the cost function described by the expression in (1) arbitrarily small by fixing
x to 0 and choosing y and z sufficiently large. On the other hand, the minimum for the cost
function in (2) is 0, obtained by setting x, y, z to 0. Note that g1 and g3 are convex functions,
but g2 is not, nevertheless, as we will see later, VCSP(Γ) can be solved in polynomial time.

3 Cost functions over the rationals

In this section we describe natural and large classes of cost functions over the domain
D = Q, the rational numbers. These classes are most naturally introduced using first-order
definability.

We give two examples of structures that play an important role in this article.

I Example 3.1. Let S be the structure with domain Q and the signature {+, 1,≤} where
+ is a binary function symbol that denotes the usual addition over Q,
1 is a constant symbol that denotes 1 ∈ Q, and
≤ is a binary relation symbol that denotes the usual linear order of the rationals.

I Example 3.2. Let L be the structure with the (countably infinite) signature τ0 :=
{<, 1} ∪ {c·}c∈Q where

< is a relation symbol of arity 2 and <L is the strict linear order of Q,
1 is a constant symbol and 1L := 1 ∈ Q, and
c· is a unary function symbol for every c ∈ Q such that (c·)L is the function x 7→ cx

(multiplication by c).

3.1 Quantifier Elimination
Let τ be a signature. We adopt the usual definition of first-order logic.

We say that a τ -structure A has quantifier elimination if every first-order τ -formula is
equivalent to a quantifier-free τ -formula over A.

I Theorem 3.3 ([8]). The structure S from Example 3.1 has quantifier elimination.

I Theorem 3.4. The structure L from Example 3.2 has quantifier elimination.

Proof. See the appendix. J

M. Bodirsky, and M. Mamino, and C. Viola 12:5

Observe that every atomic τ0-formula has at most two variables:
if it has no variables, then it is equivalent to > or ⊥,
if it has only one variable, say x, then it is equivalent to c·xσ d·1 or to d·1σ c·x for
σ ∈ {<,=} and c, d ∈ Q. Moreover, if c = 0 then it is equivalent to a formula without
variables, and otherwise it is equivalent to xσ d

c ·1 or to d
c ·1σ x for σ ∈ {<,=}, which we

abbreviate by the more common x < d
c , x = d

c , and
d
c < x, respectively.

if it has two variables, say x and y, then it is equivalent to c·xσ d·y or c·xσ d·y for
σ ∈ {<,=}. Moreover, if c = 0 or d = 0 then the formula is equivalent to a formula with
at most one variable, and otherwise it is equivalent to xσ d

c ·y or to d
c ·y σ x.

3.2 Piecewise Linear Homogeneous Functions
A partial function of arity n ∈ N over a set A is a function

f : dom(f)→ A for some dom(f) ⊆ An .

Let A be a τ -structure with domain A. A partial function over A is called first-order definable
over A if there exists a first-order τ -formula φ(x0, x1, . . . , xn) such that for all a1, . . . , an ∈ A

if (a1, . . . , an) ∈ dom(f) then A |= φ(a0, a1, . . . , an) if and only if
a0 = f(a1, . . . , an), and
if f(a1, . . . , an) /∈ dom(f) then there is no a0 ∈ A such that
A |= φ(a0, a1, . . . , an).

In the following, we consider cost functions over Q, which will be functions from Qn →
Q∪{+∞}. It is sometimes convenient to view a cost function as a partial function over Q.
If t ∈ Qar(f) \ dom(f) we interpret this as f(t) = +∞.

I Definition 3.5. A cost function f : Qn → Q∪{+∞} (viewed as a partial function) is called
piecewise linear (PL) if it is first-order definable over S, piecewise linear functions are
sometimes called semilinear functions;
piecewise linear homogeneous (PLH) if it is first-order definable over L (viewed as a
partial function).

A valued constraint language Γ is called piecewise linear (piecewise linear homogeneous) if
every cost function in Γ is PL (or PLH, respectively).

Every piecewise linear homogeneous cost function is also piecewise linear, since all
functions of the structure L are clearly first-order definable in S. The cost functions in the
valued constraint language from Example 2.2 are PLH.

We would like to point out that already the class of PLH cost functions is very large.
In particular, one can view it as a generalisation of the class of all cost functions over a
finite domain D. Indeed, every VCSP for a valued constraint language over a finite domain
is also a VCSP for a language that is PLH. To see this, suppose that f : Dd → Q∪{+∞}
is such a cost function, identifying D with a subset of Q in an arbitrary way. Then the
function f ′ : Qd → Q∪{+∞} defined by f ′(x1, . . . , xn) := f(x1, . . . , xn) if x1, . . . , xn ∈ D,
and f ′(x1, . . . , xn) = +∞ otherwise, is PLH.

3.3 Submodularity
Let D be a set. When x1, . . . , xk ∈ Dn and g : Dk → D is a function, then g(x1, . . . , xk)
denotes the n-tuple obtained by applying g component-wise, i.e.,

g(x1, . . . , xk) := (g(x1
1, . . . , x

k
1), . . . , g(x1

n, . . . , x
k
n)).

CSL 2018

12:6 Submodular Functions and VCSPs over Infinite Domains

I Definition 3.6. Let D be a totally ordered set and let G be a totally ordered Abelian
group. A partial function f : Dn → G is called submodular if for all x, y ∈ Dn

f(max(x, y)) + f(min(x, y)) ≤ f(x) + f(y).

Note that in particular if x, y ∈ dom(f), then min(x, y) ∈ dom(f) and max(x, y) ∈ dom(f).
All cost functions in Example 2.2 are submodular.
Other examples of submodular PLH functions are those that can be written as the maximum
of two increasing linear homogeneous functions or as the minimum of two linear homogeneous
functions with different monotonicity.

4 Tractability of Max-Closed PLH Constraints

The question whether an instance of VCSP(Γ) is feasible, namely has a solution, can be
viewed as a (classical) constraint satisfaction problem. Formally, the constraint satisfaction
problem for a structure A with a finite relational signature τ is the following computational
problem, denoted by CSP(A):

the input is a finite conjunction ψ of atomic τ -formulas, and
the question is whether ψ is satisfiable in A.

We can associate to Γ the following relational structure Feas(Γ): for every cost function f of
arity n from Γ the signature of Feas(Γ) contains a relation symbol Rf of arity n such that
R

Feas(Γ)
f = dom(f).
Every polynomial-time algorithm for VCSP(Γ), in particular, has to solve CSP(Feas(Γ)).

In fact, an instance φ of VCSP(Γ) can be translated into an instance ψ of CSP(Feas(Γ)) by
replacing subexpressions of the form f(x1, . . . , xn) in φ by Rf (x1, . . . , xn) and by replacing +
by ∧. It is easy to see that φ is a feasible instance of VCSP(Γ) if and only if ψ is satisfiable
in Feas(Γ).

I Definition 4.1. Let A be a structure with relational signature τ and domain A. Then
a function g : Ak → A is called a polymorphism of A if for all R ∈ τ we have that RA

is preserved by g, namely g(x1, . . . , xk) ∈ RA for all x1, . . . , xk ∈ RA (where g is applied
component-wise).

I Definition 4.2. A relation R ⊆ Qn is called piecewise linear homogeneous (PLH) if it is
first-order definable over L (see Example 3.2).

In general, a valued constraint language can have infinitely many cost functions. If we
consider Γ to be a finite submodular PLH valued constraint language, then Feas(Γ) is a
relational structure all of whose relations are

PLH, and
preserved by the polymorphisms max and min.

We observed that for the polynomial-time tractability of VCSP(Γ) we need, in particular,
that CSP(Feas(Γ)) be tractable. In this section we prove a more general result:

I Theorem 4.3. Let A be a structure having domain Q and finite relational signature τ .
Assume that for all R ∈ τ , the interpretation RA is PLH and preserved by max. Then
CSP(A) is polynomial-time solvable.

This result is incomparable to known results about max-closed semilinear relations [4]. In
particular, there, the weaker bound NP ∩ co-NP has been shown for a larger class, and

M. Bodirsky, and M. Mamino, and C. Viola 12:7

polynomial tractability only for a smaller class (which does not contain many max-closed
PLH relations, for instance x ≥ max(y, z)).

We use a technique introduced in [3] which relies on the following concept.

I Definition 4.4. Let A be a structure with a finite relational signature τ . A sampling
algorithm for A takes as input a positive integer d and computes a finite τ -structure B such
that every finite conjunction of atomic τ -formulas having at most d distinct free variables is
satisfiable in A if, and only if, it is satisfiable in B. A sampling algorithm is called efficient
if its running time is bounded by a polynomial in d.

The definition above is a slight re-formulation of Definition 2.2 in [3], and it is easily
seen to give the same results using the same proofs. We decided to bound the number of
variables instead of the size of the conjunction of atomic τ -formulas because this is more
natural in our context. These two quantities are polynomially related by the assumption
that the signature τ is finite.

I Definition 4.5. A k-ary function g : Dk → D is called totally symmetric if g(x1, . . . , xk) =
g(y1, . . . , yk) for all x1, . . . , xk, y1, . . . , yk ∈ D such that {x1 . . . , xk} = {y1, . . . , yk}.

I Theorem 4.6 (Bodirsky-Macpherson-Thapper, [3], Theorem 2.5). Let A be a structure over
a finite relational signature with totally symmetric polymorphisms of all arities. If there
exists an efficient sampling algorithm for A then CSP(A) is in P.

In this section, we study CSP(A), where A is a τ -structure satisfying the hypothesis
of Theorem 4.3. We give a formal definition of the numerical data in A, we will need it
later on. By quantifier elimination (Theorem 3.4), we can write each of the finitely many
relations RA for R ∈ τ as a quantifier-free τ0-formula φR. We can assume (as in the proof of
Theorem 3.4) that all formulas φR are positive (namely contain no negations). From now on,
we will fix one such representation. Let At(φR) denote the set of atomic subformulas of φR.
Each atomic τ0-formula is of the form t1

<
= t2, where t1 and t2 are terms. We call the atomic

formula non-trivial if it is not equivalent to ⊥ or >, from now on we make the following
assumptions on the atomic formulas (cf. again the proof of Theorem 3.4)

that atomic formulas except >,⊥ are non-trivial
that the functions k· are never composed, because k · h · x can be replaced by (kh) · x
that, in any atomic formula k · xi <=h · xj , the constants k and h are not both negative.

Given a set of non-trivial atomic formulas Φ, we define

H(Φ) =
{
c1
c2

∣∣∣∣ t1 = c1 · xi, t2 = c2 · xj , for some t1
<

= t2 in Φ
}

K(Φ) =
{
c2
c1

∣∣∣∣ t1 = c1 · xi, t2 = c2 · 1, for some t1
<

= t2 in Φ
}

∪
{
c1
c2

∣∣∣∣ t1 = c1 · 1, t2 = c2 · xj , for some t1
<

= t2 in Φ
}

We describe now the numeric domain Q? in which our algorithm operates.

I Definition 4.7. We call Q? the ordered Q-vector space

Q? = {x+ yε | x, y ∈ Q}

CSL 2018

12:8 Submodular Functions and VCSPs over Infinite Domains

where ε is merely a formal device, namely x+yε represents the pair (x, y). We define addition
and multiplication by a scalar component-wise

(x1 + y1ε) + (x2 + y2ε) = (x1 + x2) + (y1 + y2)ε
c · (x+ yε) = (cx) + (cy)ε.

The order is induced by Q extended with 0 < ε� 1, namely the lexicographical order of the
components x and y

(x1 + y1ε) < (x2 + y2ε) iff
{
x1 < x2 or
x1 = x2 ∧ y1 < y2.

Q is clearly embedded in Q? (the embedding is given by the map k 7→ k + 0ε).
Any τ0-formula has an obvious interpretation in any ordered Q-vector space Q extending Q,
and, in particular, in Q?.

I Proposition 4.8. Let φ(x1 . . . xd) and ψ(x1 . . . xd) be τ0-formulas. Then φ and ψ are
equivalent in Q if, and only if, they are equivalent in any ordered Q-vector space Q extending Q
(for instance Q = Q?).

Proof. It follows from [17, Chapter 1, Remark 7.9] that the first-order theory of ordered
Q-vector spaces in the signature τ0 ∪ {+,−} is complete. As a consequence the formula
∀x1 . . . xdφ(x1 . . . xd)↔ ψ(x1 . . . xd) holds in Q if and only if it does in Q. J

The proposition gives us a natural extension A? of A to the domain Q?. Namely the
τ -structure obtained by interpreting each relation symbol R ∈ τ by the relation RA? defined
on Q? by the same (quantifier-free) τ0-formula φR that defines RA over Q (by the proposition,
the choice of equivalent τ0-formulas is immaterial). Similarly, we will see that, as long as
satisfiability is concerned, there is no difference between A and A?.

I Corollary 4.9. Let φ be an instance of CSP(A), and let φ? be the corresponding instance
of CSP(A?). Then φ is satisfiable if and only if φ? is.

Proof. From Proposition 4.8 observing that φ (resp. φ?) is unsatisfiable if and only if it is
equivalent to ⊥. J

As a consequence, we can work in the extended structure A?. Our goal is to prove the
following theorem.

I Theorem 4.10. There is an efficient sampling algorithm for A?.

Assuming, for a moment, Theorem 4.10, it is easy to prove Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.7, for all k ≥ 1 the function

(x1, . . . , xk) 7→ max(x1, . . . , xk)

is a k-ary totally symmetric polymorphism of CSP(A?). Therefore, CSP(A?) is in P by
Theorem 4.10 and Theorem 4.6. Finally, by Corollary 4.9, CSP(A?) and CSP(A) are
equivalent. J

Let φ be an atomic τ0-formula. We write φ̄ for the formula t1 ≤ t2 if φ is of the form
t1 < t2, and for the formula t1 = t2 if φ is of the form t1 = t2.

M. Bodirsky, and M. Mamino, and C. Viola 12:9

I Lemma 4.11. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Assume that Φ̄ :=

⋃
φ∈Φ φ̄ has a simultaneous solution (x1 . . . xd) ∈ Q>0 in positive numbers.

Then Φ̄ has a solution taking values in the set CΦ,d ⊂ Q defined as follows

CΦ,d =
{
|k|

s∏
i=1
|hi|ei

∣∣∣∣∣ k ∈ K(Φ), e1 . . . es ∈ Z,
s∑
r=1
|er| < d

}

where h1 . . . hs is an enumeration of the (finitely many) elements of H(Φ).

Proof. See the appendix. J

I Lemma 4.12. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Assume that the formulas in Φ are simultaneously satisfiable in Q. Then they are simultan-
eously satisfiable in DΦ,d := −C?Φ,d ∪ {0} ∪ C?Φ,d where

C?Φ,d = {x+ nxε | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d}

CΦ,d is defined as in Lemma 4.11, and −C?Φ,d denotes the set {−x | x ∈ C?Φ,d}.

Proof. See the appendix. J

Proof of Theorem 4.10. The sampling algorithm produces the finite substructure A?At(τ),d
of A? having domain DAt(τ),d where At(τ) :=

⋃
R∈τ At(φR), namely the τ -structure with

domainDAt(τ),d in which each relation symbol R ∈ τ denotes the restriction of RA? toDAt(τ),d.
It is immediate to observe that this structure has size polynomial in d.

Since A?At(τ),d is a substructure of A?, it is clear that if an instance is satisfiable in A?At(τ),d,
then it is a fortiori satisfiable in A?.

The vice versa follows from Lemma 4.12. In fact, consider a set Ψ of atomic τ -formulas
having free variables x1 . . . xd. Assume that Ψ is satisfied in A? by one assignment xi = ai
for i ∈ {1 . . . d}. For each φR ∈ Ψ let ΦR ⊂ At(φR) be the set of atomic subformulas of φR
which are satisfied by our assignment ai. Clearly the atomic τ0-formulas Φ :=

⋃
φR∈Ψ ΦR

are simultaneously satisfiable. Remembering that the formulas φR have no negations by
construction, it is obvious that any simultaneous solution of Φ must also satisfy Ψ. By
Lemma 4.12, Φ has a solution in the set DΦ,d defined therein. We can observe that
CΦ,d ⊂ CAt(τ),d, hence DΦ,d ⊂ DAt(τ),d and the claim follows. J

5 Tractability of Submodular PLH Valued Constraints

Here we extend the method developed in Section 4 to the treatment of VCSPs. To better
highlight the parallel with Section 4, so that the reader already familiar with it may quickly get
an intuition of the arguments here, we will use identical notations to represent corresponding
objects. This choice has the drawback that some symbols, notably Q?, need to be re-defined
(the new Q?, for instance, will contain the old one). In this section, we will sometimes skip
details that can be borrowed unchanged from Section 4.

Our goal is to prove the following result

I Theorem 5.1. Let Γ be a PLH valued finite constraint language. Assume that all cost
functions in Γ are submodular. Then VCSP(Γ) is polynomial-time solvable.

Let us begin with the new definition of Q?.

CSL 2018

12:10 Submodular Functions and VCSPs over Infinite Domains

I Definition 5.2. We let Q? denote the ring Q((ε)) of formal Laurent power series in the
indeterminate ε. Namely Q? is the set of formal expressions

+∞∑
i=−∞

aiε
i

where ai 6= 0 for only finitely many negative values of i. Clearly Q is embedded in Q?. The
ring operations on Q? are defined as usual

+∞∑
i=−∞

aiε
i +

+∞∑
i=−∞

biε
i =

+∞∑
i=−∞

(ai + bi)εi

+∞∑
i=−∞

aiε
i ·

+∞∑
i=−∞

biε
i =

+∞∑
i=−∞

 +∞∑
j=−∞

ajbi−j

 εi
where the sum in the product definition is always finite by the hypothesis on ai, bi with
negative index i. The order is the lexicographical order induced by 0 < ε� 1, namely

+∞∑
i=−∞

aiε
i <

+∞∑
i=−∞

biε
i iff ∃i ai < bi ∧ ∀j < i aj = bj .

It is well known that Q? is an ordered field, namely all non-zero elements have a multiplicative
inverse and the order is compatible with the field operations. We define the following subsets
of Q? for m ≤ n

Q?m,n :=
{

n∑
i=m

εiai

∣∣∣∣∣ ai ∈ Q

}
⊂ Q?

I Definition 5.3. We define a new structure L?, that is both an extension and an expansion
of L (see Example 3.2), namely it has Q? as domain and τ1 := τ0 ∪ {k}k∈Q?

−1,1
as signature,

where the interpretation of symbols in τ0 is formally the same as for L and the symbols
k ∈ Q?−1,1 denote constants (zero-ary functions).

Notice that, for technical reasons, we allow only constants in Q?−1,1. During the rest of this
section, τ1-formulas will be interpreted in the structure L?. We make on τ1-formulas the
same assumptions of Section 4 (that atomic subformulas are non-trivial and not negated),
also H(Φ) and K(Φ) where Φ is a set of atomic τ1-formulas are defined similarly to Section 4.
Observe that the reduct of L? obtained by restricting the language to τ0 is elementarily
equivalent to L, namely it satisfies the same first-order sentences.

The following lemmas 5.4, 5.5, and 5.6 are analogues of Lemma 4.11 and Lemma 4.12.

I Lemma 5.4. Let Φ be a finite set of atomic τ1-formulas having free variables in {x1 . . . xd}.
Call Φ̄ the set φ̄ | φ ∈ Φ. Suppose that there is 0 < r ∈ Q? such that all satisfying assignments
of Φ̄ in the domain Q? also satisfy 0 < xi ≤ r for all i. Let u, α1 . . . αd be elements of Q?.
Assume that the formulas in Φ are simultaneously satisfiable by a point (x1 . . . xd) ∈ Q? such
that

∑
i αixi < u. Let us define the set

CΦ,d =
{
|k|

s∏
i=1
|hi|ei

∣∣∣∣∣ k ∈ K(Φ), e1 . . . es ∈ Z,
s∑
r=1
|er| < d

}
⊆ Q?−1,1

where h1 . . . hs is an enumeration of the (finitely many) elements of H(Φ). Then there is
a point in (x′1 . . . x′d) ∈ CdΦ,d ⊆ Q? with

∑
i αix

′
i < u that satisfies simultaneously all φ̄,

for φ ∈ Φ.

M. Bodirsky, and M. Mamino, and C. Viola 12:11

Proof. See the appendix. J

I Lemma 5.5. Let Φ be a finite set of atomic τ1-formulas having free variables in {x1 . . . xd}.
Suppose that there are 0 < l < r ∈ Q? such that all satisfying assignments of Φ in the
domain Q? also satisfy l < xi < r for all i. Let α1 . . . αd be rational numbers and u ∈ Q?−1,1.
Assume that the formulas in Φ are simultaneously satisfiable by a point (x1 . . . xd) ∈ Q?

such that
∑
i αixi ≤ u. Then the same formulas are simultaneously satisfiable by a point

(x′1 . . . x′d) ∈ (C?Φ,d)d ⊆ (Q?)d such that
∑
i αix

′
i ≤ u where

C?Φ,d = {x+ nxε3 | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q?−1,4 .

Proof. See the appendix. J

I Lemma 5.6. Let Φ be a finite set of atomic τ0-formulas having free variables in {x1 . . . xd}.
Let u, α1 . . . αd be rational numbers. Then the following are equivalent
1. The formulas in Φ are simultaneously satisfiable in Q, by a point (x1 . . . xd) ∈ Qd such

that
∑
i αixi ≤ u.

2. The formulas in Φ are simultaneously satisfiable in DΦ,d ⊆ Q?, by a point (x′1 . . . x′d) ∈
Dd

Φ,d such that
∑
i αix

′
i ≤ u, where the set DΦ,d is defined as follows

DΦ,d := −C?Φ′,d ∪ {0} ∪ C?Φ′,d ⊆ Q?−1,4

Φ′ := Φ ∪ {x > ε, x < −ε, x > −ε−1, x < ε−1}

Proof. The implication 2→ 1 is immediate observing that the conditions Φ and
∑
i αixi ≤ u

are first-order definable in S. In fact, any assignment with values in DΦ,d satisfying the
conditions is, in particular, an assignment in Q?, and, by completeness of the first-order
theory of ordered Q-vector spaces, we have an assignment taking values in Q.

For the vice versa, fix any assignment xi = ai with ai ∈ Q for i ∈ {1 . . . d}. We pre-process
the formulas in Φ producing a new set of atomic formulas Φ′ as follows. We replace all
variables xi such that ai = 0 with the constant 0 = 0·1. Then we replace each of the remaining
variables xi with either yi or −yi according to the sign of ai. Finally, we add the constraints
ε < yi and yi < ε−1 for each of these variables. Similarly we produce new coefficients
α′i = sign(ai)αi. It is clear that the new set of formulas Φ′ has a satisfying assignment in
positive rational numbers with

∑
i α
′
iyi ≤ u. Observing that a positive rational x always

satisfies ε < x < ε−1, we see that Φ′ satisfies the hypothesis of Lemma 5.5 with l = ε

and r = ε−1. Hence the statement. J

Two roads diverge now. Clearly the formulas Φ in Lemma 5.6 are going to define a
piece of the domain of a piecewise linear homogeneous function, while the coefficients αi
define the function on that piece. We could decide to interpret our PLH functions in the
domain Q? or we could decide to substitute a suitably small rational value of ε in the formal
expression of DΦ,d and map the problem to Q. In the first case we have to transfer the
known approaches for Q to the new domain, in the second case we can use them (after having
computed a suitable ε). It is not clear which road is the less traveled by. For reasons that
will be discussed in Subsection 5.1 we take the one of transferring.

It is obvious that one can extend Definition 2.1 considering VCSPs whose cost functions
take values in any totally ordered ring containing Q, and in particular in Q?. We will need
to establish the basics of such extended VCSPs. More precisely, we will need to prove
Corollary 5.12 hereafter, that builds on a fully combinatorial algorithm (Theorem 5.11) due
to Iwata and Orlin [11].

CSL 2018

12:12 Submodular Functions and VCSPs over Infinite Domains

I Definition 5.7. Let R be a totally ordered commutative ring with unit. Let R be a totally
ordered commutative ring with unit. A problem over R can be solved in fully combinatorial
polynomial time if there exists a polynomial-time (uniform) machine on R (see [1], Chapters
3-4) solving it by performing only additions and comparisons of elements in R as fundamental
operations. We recall that a uniform machine on a totally ordered commutative ring with
unity operates on strings of symbols that represent elements of an ordered commutative ring,
rather than bits as in classical Turing machines. (Notice that in such a machine there are no
machine-constants except 1.)

I Definition 5.8. A set function is a function ψ defined on the set 2V , of subsets of a given
set V .

I Definition 5.9. A set function ψ : 2V → Q with values in a totally ordered Abelian group
Q is submodular if for all U,W ∈ 2V

ψ(U) + ψ(W) ≥ ψ(U ∩W) + ψ(U ∪W).

I Definition 5.10. A collection C of subsets of a given set Q is said to be a ring family if it
is closed under union and intersection.

Equivalently, a ring family is a distributive sublattice of P(Q) with respect to union and
intersection, notably every distributive lattice can be represented in this form (Birkhoff’s
representation theorem). Computationally, we represent a ring family following [16, Section 6].
Namely, fixed a representation for the elements of Q, the ring family C is represented by
the smallest set M ⊆ Q in C, and an oracle that given an element of v ∈ Q returns the
smallest Mv ⊂ Q in C such that v ∈Mv. The construction of Section 6 in [16] proves that
any algorithm capable of minimising submodular set functions can be used to minimise
submodular set functions defined on a ring family represented in this way. Observe that this
construction is fully combinatorial.

I Theorem 5.11 (Iwata-Orlin [11] + Schrijver [16]). There exists a fully combinatorial
polynomial-time algorithm over Q that

taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q, represented as
in [16, Section 6] (namely as above),
having access to an oracle computing a submodular set-function ψ : C → Q,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded by a polynomial
p(n) in the size n of the domain.

I Corollary 5.12. Let R be a totally ordered commutative ring with unit (for instance Q?),
there exists a fully combinatorial polynomial-time algorithm over R that

taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q, represented as in
Theorem 5.11,
having access to an oracle computing a submodular set-function ψ : C → R,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded by a polynomial
p(n) in the size n of the domain.

Proof. Theorem 5.11 provides a fully combinatorial algorithm to minimise submodular
functions that, over Q, runs in polynomial time and computes a correct result. We claim
that any such algorithm must be correct and run in polynomial time over R as well. To show
this, we prove the following:
1. The algorithm terminates in time p(n), where p(n) is as in Theorem 5.11.
2. The output of the algorithm coincides with the minimum of ψ.

M. Bodirsky, and M. Mamino, and C. Viola 12:13

Let Rψ denote the subgroup of the additive group (R,+) generated by ψ(C), and let
Eψ := {g1, . . . , gm} be a set of free generators of Rψ. For any tuple r = (r1, . . . , rm) ∈ Qm,
we define a group homomorphism hr : Rψ → Q, by hr(gi) = ri. Let RN := N ·(Eψ∪{0}∪−Eψ)
be the subset of R consisting of the elements of the form ±x1 ± x2 . . . ± xk, with k ≤ N ,
x1, x2, . . . , xk ∈ Eψ.

In general, the group homomorphisms hr are not order preserving. We claim that for
all N , there exists r ∈ Qm such that hr|RN

is order preserving. To see this, assume that no
such tuple r exists. The inequalities denoting that hr|RN

is order preserving are expressed
by a finite linear program P in the variables r1, . . . , rm. By the assumption and Farkas’
lemma there is a linear combination (with coefficients in Z) of the inequalities of P which
is contradictory. Therefore P is contradictory in any ordered ring, and, in particular, in R.
However ri = gi, for all i ∈ {1, . . . ,m}, is a valid solution of P in R.

Fix N := N̂ · 2p(n), where N̂ is such that ψ(S) ∈ RN̂ for all S ∈ C. For this N , let r be
a tuple satisfying the claim. We run two parallel instances of the algorithm, one over R
with input ψ, and the other in Q with input hr ◦ ψ. We can prove that the two runs are
exactly parallel for at least p(n) steps, therefore, since the second run stops within these p(n)
steps, also the first one must do so. Formally, we prove, in a register machine model, that,
at each step i ≤ p(n), if a register contains the value g in the first run, it must contain the
value hr(g) in the second. This is easily established proving by induction on i that a value
computed at step i must be in RN̂ ·2i . Point 1 is thus established.

For point 2, let minR and minQ be the output of the algorithm over (ψ,R) and (hr ◦ψ,Q),
respectively. The induction above shows, in particular, that minQ = hr(minR). We know
that hr(minR) = minQ = hr ◦ ψ(S0) for some S0 and hr ◦ ψ(S) ≥ minQ = hr(minR) for
each element S of C. By our choice of N , the corresponding relations, minR = ψ(S0) and
ψ(S) ≥ minR for each element S of C, must hold in R. J

The following lemma is essentially contained in [7, Theorem 6.7], except that we replace
the set of values by an arbitrary totally ordered commutative ring with unit R. To state
the lemma properly, we need to observe that, given a submodular function f defined on Qd,
where Q = {1, . . . , n}, we can associate to it the following ring family Cf ⊆ P(Q×{1, . . . , d}).
For every x = (x1, . . . , xd) ∈ Qd define

Cx := {(q, i) | q ∈ Q, q ≤ xi} ⊆ Q× {1, . . . , d}

then we let Cf be the union of Cx for all x such that f(x) < +∞.

I Lemma 5.13. Let R ⊇ Q be a totally ordered ring. There exists a fully combinatorial
polynomial-time algorithm over R that

taking as input a finite set Q = {1, . . . , n} and an integer d,
having access to an oracle computing a partial submodular f : Qd → R,
given the representation of Cf as in Theorem 5.11,

computes an x ∈ Qd such that f(x) is minimal, in time polynomial in n and d.

Proof. The problem reduces to minimising a submodular set-function on the ring family Cf ,
for the details see the proof of Theorem 6.7 in [7]. J

Proof of Theorem 5.1. Similarly to the proof of Theorem 4.3, we will use a sampling
technique. Namely, given an instance I of VCSP(Γ), we will employ Lemma 5.6 to fix a finite
structure ΓI , of size (and also representation size) polynomial in |VI |, having a subset Q?I
of Q?−1,4 as domain, such that the variables VI of I have an assignment in Q having cost ≤ uI
if and only if they have one in Q?I . Once we have ΓI , we will conclude by Lemma 5.13.

CSL 2018

12:14 Submodular Functions and VCSPs over Infinite Domains

The structure ΓI obviously needs to have the same signature τ as Γ. For each function
symbol f ∈ τ we consider a τ0-formula φf defining fΓ and we let fΓI be the function defined
in Q? by the same formula. By Proposition 4.8 the choice of φf is immaterial. Remains to
define the domain Q?I ⊂ Q?.

By quantifier-elimination (Theorem 3.4), any piecewise linear homogeneous cost function
f : Qn → Q∪{+∞} can be written as

f(x1, . . . , xn) =


tf,1 if χf,1
· · ·
tf,mf

if χf,mf

+∞ otherwise

where tf,1, . . . , tf,mf
are τ0-terms, χf,1, . . . , χf,mf

are conjunctions of atomic τ0-formulas
with variables from {x1, . . . , xn, and χf,1, . . . , χf,mf

define disjoint subsets of Qn. We fix
such a representation for each of the cost functions in Γ, and we collect all the atomic
formulas appearing in every one of the conjunctions χf,i, for f ∈ Γ and 1 ≤ i ≤ mf , into the
set Φ. Clearly Φ is finite and depends only on the fixed language Γ. Finally, Q?I := DΦ,|VI |
as defined in Lemma 5.6.

The size of Q?I is clearly polynomial by simple inspection of the definition. Its repres-
entation has also polynomial size if the numbers are represented in binary, and, with this
representation, the evaluation of fΓI for f ∈ τ takes polynomial time.

Given an assignment α : VI → Q?I of value ≤ uI we have, a fortiori, an assignment VI → Q?

of value ≤ uI , hence, by the usual completeness of the first-order theory of ordered Q-vector
spaces, there is an assignment VI → Q with the same property.

Finally let β : VI → Q be an assignment having value ≤ uI . We need to find an
assignment β′ : VI → Q?I with value ≤ uI . Let

φI =
m∑
i=1

fi(xi1, . . . , xiar(fi))

(cf. Definition 2.1). For each i ∈ {1, . . . ,m} select the formula χi among χfi,1, . . . , χfi,mfi
that

is satisfied by the assignment β. Clearly, the conjunction of atomic τ0-formulas χ :=
∧m
i=1 χi

is satisfiable. Moreover, φI restricted to the subset of (Q?)|VI | where χ holds is obviously
linear. Then we can apply Lemma 5.6, and we get an assignment β′ whose values are
in Dχ,|VI | (where, by a slight abuse of notation, we wrote χ for the set of conjuncts of χ).
We conclude observing that Dχ,|VI | ⊆ DΦ,|VI | = Q?I .

It remains to check that Lemma 5.13 applies to our situation. Clearly R = Q?, the
function f is the objective function described by φI , and we let n = |Q?I | so that we identify
Q with an enumeration of Q?I in increasing order (which can be computed in polynomial
time without obstacle). The oracle computing f is straightforward to implement since sums
and comparisons in Q? merely reduce to the corresponding component-wise operations on
the coefficients. The representation of the ring family Cf requires a moment of attention.
To construct the oracle, as well as to find the minimal element M , we need an algorithm
that, given a variable x ∈ VI and a value q ∈ Q?I , finds the component-wise minimal feasible
assignment αx : VI → Q?I that gives to x a value ≥ q (which exists observing that the set of
feasible assignments is min-closed). This algorithm is easy to construct observing that the
feasibility problem is a min-closed CSP. We describe how to find M , the procedure for Mv is
essentially the same.

M. Bodirsky, and M. Mamino, and C. Viola 12:15

Suppose that for each variable x ∈ VI we can find the smallest element β(x) ∈ Q?I
such that there is a feasible assignment γx : VI → Q?I such that γx(x) = β(x), then, by the
min-closure, β = minx∈VI

γx is the minimal assignment. To find β(x) it is sufficient to solve
the feasibility problem, using Theorem 4.3, adding a constraint x ≥ k for increasing values
of k ∈ Q?I . J

5.1 Why Q??

It might appear that in more than one occasion we chose to work in mathematically
overcomplicated structures. For example, the algorithm for Theorem 5.1 merely manipulates
points in Q?−1,4, which is just Q6 with the lexicographic order, yet we went to the trouble
of introducing the field of formal Laurent power series. More radically, one might observe
that assigning a rational value to the formal variable ε small enough, we could have mapped
the entire algorithm to Q, thus dispensing with non-Archimedean extensions entirely. As we
believe to owe to our reader an explanation for this, we better give three.

First, the idea of limiting our horizon to Q?−1,4 ' Q6 might seem a simplification, but,
in practice, it makes things more complicated. For example, in several places we used the
fact that Q? has a field structure to make proofs more direct and intuitive. Second, going
for the most elementary exposition, namely choosing an ε small enough explicitly, would
have completely obfuscated any idea in the arguments, which would have been converted
in some unsightly bureaucracy of inequalities. Even computationally, mapping everything
to Q is tantamount as converting arrays of small integers into bignums by concatenation,
hardly an improvement. Finally, the existence of an efficiently computable rational value
of ε that works is not necessary for our method, even though, in this case, a posteriori, such
an ε exists.

Our third, and most important, justification, is that we desire to present the approach
used in this paper, which is quite generic, as much as the results. To this aim, it is convenient
to express the underlying ideas in their natural language. For example, Corollary 5.12 is
a completely black-boxed way to transfer combinatorial algorithms between domains that
share some algebraic structure. We do not claim great originality in that observation, yet we
believe that the method is interesting, and worthy of being presented in the cleanest form
that we could devise.

6 Maximal Tractability

A sublanguage of a valued constraint language Γ is a valued constraint language that can be
obtained from Γ by dropping some of the cost functions.

I Definition 6.1. Let V be a class of valued constraint languages over a fixed domain D and
let Γ be a language of V. We say that Γ is maximally tractable within V if

VCSP(Γ′) is polynomial time solvable for every finite sublanguage Γ′ of Γ; and
for every valued constraint language ∆ in V properly containing Γ, there exists a finite
sublanguage ∆′ of ∆ such that VCSP(∆′) is NP-hard.

Using [7, Theorem 6.7], it is easy to show the following. (See the appendix for details.)

I Theorem 6.2. The valued constraint language consisting of all submodular PLH cost
functions is maximally tractable within the class of PLH valued constraint languages.

CSL 2018

12:16 Submodular Functions and VCSPs over Infinite Domains

7 Conclusion and Outlook

We have presented a polynomial-time algorithm for submodular PLH cost functions over
the rationals. In fact, our algorithm not only decides the feasibility problem and whether
there exists a solution of cost at most uI , but can also be adapted to efficiently compute the
infimum of the cost of all solutions (which might be −∞), and decides whether the infimum
is attained. The modification is straightforward observing that the sample computed does
not depend on the threshold uI .

We also showed that submodular PLH cost functions are maximally tractable within the
class of PLH cost functions. Such maximal tractability results are of particular importance
for the more ambitious goal to classify the complexity of the VCSP for all classes of PLH cost
functions: to prove a complexity dichotomy it suffices to identify all maximally tractable
classes.

Another challenge is to extend our tractability result to the class of all submodular
piecewise linear VCSPs. We believe that submodular piecewise linear VCSPs are in P,
too. But note that already the structure (Q; 0, S,D) where S := {(x, y) | y = x + 1} and
D := {(x, y) | y = 2x} (which has both min and max as a polymorphism) does not admit an
efficient sampling algorithm (it is easy to see that for every d ∈ N every d-sample must have
exponentially many vertices in d), so a different approach than the approach in this paper is
needed.

References
1 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real compu-

tation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.
2 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complex-

ity. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,
pages 184–196. Springer Verlag, July 2008.

3 Manuel Bodirsky, Dugald Macpherson, and Johan Thapper. Constraint satisfaction tract-
ability from semi-lattice operations on infinite sets. Transaction of Computational Logic
(ACM-TOCL), 14(4):1–30, 2013.

4 Manuel Bodirsky and Marcello Mamino. Tropically convex constraint satisfaction. Theory
of Computing Systems, pages 1–29, 2017. An extended abstract of the paper appeared
under the title “Max-Closed Semilinear Constraints" in the proceedings of CSR’16; preprint
available under ArXiv:1506.04184.

5 Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

6 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 319–330, 2017.

7 David A Cohen, Martin C Cooper, Peter G Jeavons, and Andrei A Krokhin. The complexity
of soft constraint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

8 Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

9 Satoru Fujishige. Submodular Functions and Optimization. volume 58 of Annals of Discrete
Mathematics. North-Holland, Amsterdam, 2005. 2nd edition.

10 M. Grötschel, L. Lovász, and L. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer, Heidelberg, 1994. 2nd edition.

M. Bodirsky, and M. Mamino, and C. Viola 12:17

11 Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for submodular func-
tion minimization. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 1230–1237, Philadelphia, PA, USA, 2009. Society
for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=
1496770.1496903.

12 Peter Jonsson, Fredrik Kuivinen, and Johan Thapper. Min CSP on four elements: Mov-
ing beyond submodularity. In Principles and Practice of Constraint Programming - CP
2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings, pages 438–453, 2011.

13 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The complexity of general-
valued csps. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1246–1258, 2015.

14 Vladimir Kolmogorov, Johan Thapper, and Stanislav Zivny. The power of linear program-
ming for general-valued csps. SIAM J. Comput., 44(1):1–36, 2015.

15 Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 846–858, 2015.

16 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

17 Lou van den Dries. Tame topology and o-minimal structures, volume 248 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
doi:10.1017/CBO9780511525919.

18 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 331–342, 2017.

A Appendix

A.1 Quantifier Elimination: Proof of Theorem 3.4
To prove Theorem 3.4 it suffices to prove the following lemma.

I Lemma A.1. For every quantifier-free τ0-formula ϕ there exists a quantifier-free τ0-formula
ψ such that ∃x.ϕ is equivalent to ψ over L.

Proof. We define ψ in seven steps.
1. Rewrite ϕ, using De Morgan’s laws, in such a way that all the negations are applied to

atomic formulas.
2. Replace

¬(s = t) by s < t ∨ t < s, and
¬(s < t) by t < s ∨ s = t,

where s and t are τ0-terms.
3. Write ϕ in disjunctive normal form in such a way that each of the clauses is a conjunction

of non-negated atomic τ0-formulas (this can be done by distributivity).
4. Observe that ∃x

∨
i

∧
j χi,j , where the χi,j are atomic τ0-formulas, is equivalent to∨

i ∃x
∧
j χi,j . Therefore, it is sufficient to prove the lemma for ϕ =

∧
j χj where the χj

are atomic τ0-formulas. As explained above, we can assume without loss of generality
that the χj are of the form >, ⊥, xσ c, c σ x, or xσ cy, for c ∈ Q and σ ∈ {<,=}. If χj
equals ⊥, then ϕ is equivalent to ⊥ and there is nothing to be shown. If χj equals >
then it can simply be removed from ϕ. If χj equals x = c or x = cy then replace every
occurrence of x by c · 1 or by c · y, respectively. Then ϕ does not contain the variable x
anymore and thus ∃x.ϕ is equivalent to ϕ.

CSL 2018

http://dl.acm.org/citation.cfm?id=1496770.1496903
http://dl.acm.org/citation.cfm?id=1496770.1496903
http://dx.doi.org/10.1017/CBO9780511525919

12:18 Submodular Functions and VCSPs over Infinite Domains

5. We are left with the case that all atomic τ0-formulas involving x are (strict) inequalities,
that is, ϕ =

∧
i χi ∧

∧
i χ
′
i ∧
∧
i χ
′′
l , where

the χi are atomic formulas not containing x,
the χ′i are atomic formulas of the form x > ui,
the χ′′i are atomic formulas of the form x < vi.

Then ∃x.ϕ is equivalent to
∧
i χi ∧

∧
i,j(ui < vj).

Each step of this procedure preserves the satisfying assignments for ϕ and the resulting
formula is in the required form; this is obvious for all but the last step, and for the last step
follows from the correctness of Fourier-Motzkin elimination for systems of linear inequalities.
Therefore the procedure is correct. J

Proof (of Theorem 3.4). Let ϕ be a τ0-formula. We prove that it is equivalent to a quantifier-
free τ0-formula by induction on the number n of quantifiers of ϕ. For n = 1 we have two
cases:

If ϕ is of the form ∃x.ϕ′ (with ϕ′ quantifier-free) then, by Lemma A.1, it is equivalent to
a quantifier-free τ0-formula ψ.
If ϕ is of the form ∀x.ϕ′ (with ϕ′ quantifier-free), then it is equivalent to ¬∃x.¬ϕ′. By
Lemma A.1, ∃x.¬ϕ′ is equivalent to a quantifier-free τ0-formula ψ. Therefore, ϕ is
equivalent to the quantifier-free τ0-formula ¬ψ.

Now suppose that ϕ is of the form Q1x1Q2x2 · · ·Qnxn.ϕ′ for n ≥ 2 and Q1, . . . , Qn ∈ {∀,∃},
and suppose that the statement is true for τ0-formulas with at most n− 1 quantifiers. In
particular, Q2x2 · · ·Qnxn.ϕ′ is equivalent to a quantifier -free τ0-formula ψ. Therefore, ϕ
is equivalent to Q1x1.ψ, that is, a τ0-formula with one quantifier that is equivalent to a
quantifier-free τ0-formula, again by inductive hypothesis. J

A.2 Proof of Lemma 4.11 and Lemma 4.12
Proof of Lemma 4.11. Let γ ≤ β be maximal such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β},

where si, s′i, tj , t′j are τ0-terms for all i, j, and Ψ1 ∪Ψ2 ∪Ψ3 is satisfiable in positive numbers.
Clearly the space of positive solutions of Ψ1 ∪Ψ2 must be contained in that of Ψ3. In fact,
by construction, they intersect: consider any straight line segment connecting a solution of
Ψ1 ∪Ψ2 ∪Ψ3 and a solution of Ψ1 ∪Ψ2 not satisfying Ψ3, on this segment there must be a
solution of Ψ1 ∪Ψ2 ∪Ψ3 lying on the boundary of one of the inequalities of Ψ3, contradicting
the maximality of γ. By the last observation it suffices to prove that there is a solution
of Ψ1 ∪Ψ2 taking values in CΦ,d. Put an edge between two variables xi and xj when they
appear in the same formula of Ψ1 ∪Ψ2. For each connected component of the graph thus
defined, either it contains at least one variable xi such that there is a constraint of the
form h · xi = k · 1, or all constraints are of the form h · xi = h′ · xj . In the first case assign
xi = k

h , in the second assign one of the variables xi arbitrarily to 1, then, in any case, since
the diameter of the connected component is < d, all variables in it are forced to take values
in CΦ,d by simple propagation of xi. J

M. Bodirsky, and M. Mamino, and C. Viola 12:19

Proof of Lemma 4.12. First we fix a solution xi = ai for i = 1 . . . d of Φ. In general, some
of the values ai will be positive, some 0, and some negative: we look for a new solution
z1 . . . zd ∈ DΦ,d such that zi is positive, respectively 0 or negative, if and only if ai is.

To this aim we rewrite the formulas in Φ replacing each variable xi with either yi, or 0
(formally 0 · 1), or −yi (formally −1 · yi). We call Φ+ the new set of formulas, which, by
construction, is satisfiable in positive numbers yi = bi. To establish the lemma, it suffices to
find a solution of Φ+ taking values in C?Φ,d.

By Lemma 4.11, we have an assignment yi = ci of values c1 . . . cd in CΦ+,d ⊆ CΦ,d that
satisfies simultaneously all formulas φ̄ with φ ∈ Φ+. Let −d ≤ n1 . . . nd ≤ d be integers such
that for all i, j

ni < nj if and only if bi

ci
<

bj

cj

0 < ni if and only if 1 < bi

ci

ni < 0 if and only if bi

ci
< 1

Such numbers exist: simply sort the set {1} ∪
{
bi

ci
| i = 1 . . . d

}
and consider the positions in

the sorted sequence counting from that of 1. We claim that the assignment yi = ci+niciε ∈ Q?

satisfies all formulas of Φ+. To check this, we consider the different cases for atomic formulas
k · yi < h · yj : if kci < hcj this is obviously satisfied. Otherwise kci = hcj , in this case k
and h are positive and the constraint

kci + kniciε < hcj + hnjcjε

is equivalent to ni < nj . This, in turn, is equivalent by construction to bi

ci
<

bj

cj
which we

get by observing that bihcj = bikci < bjhci.
k ·yi = h ·yj : obviously kbi = hbj and kci = hcj , therefore bi

ci
= bj

cj
, and, as a consequence,

also ni = nj from which the statement.
k · 1 < h · yj : similarly to the first case, if k < hcj this is immediate. Otherwise k = hcj ,
so k and h are positive, the constraint

k · 1 < hcj + hnjcjε

is equivalent to 0 < nj , in other words 1 < bj

cj
, which follows observing that hcj = k < hbj .

k · yi < h · 1: as the case above.
k · 1 = h · yj : obviously k · 1 = hbj = hcj , therefore bj

cj
= 1, so nj = 0 and the case follows.

k · yi = h · 1: as the case above. J

A.3 Proof of Lemma 5.4 and Lemma 5.5
Proof of Lemma 5.4. As in the proof of Lemma 4.11 (to which we direct the reader for
many details) we take a maximal γ ≤ β such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β}

and Ψ1 ∪ Ψ2 ∪ Ψ3 is satisfiable by an assignment with
∑
i αixi < u. As in the proof of

Lemma 4.11 the set of solutions of Ψ1∪Ψ2 satisfying
∑
i αixi < u is contained in the solutions

of Ψ3. So, here too, it suffices to show that there is a solution of Ψ1 ∪Ψ2 with
∑
i αixi < u

CSL 2018

12:20 Submodular Functions and VCSPs over Infinite Domains

taking values in CΦ,d. The proof of Lemma 4.11 shows that there is a solution of Ψ1 ∪Ψ2
taking values in CΦ,d without necessarily meeting the requirement that

∑
i αixi < u. We

will prove that, in fact, any such solution meets the additional constraint.
Let xi = ai, bi be two distinct satisfying assignments for Ψ1 ∪Ψ2 such that

∑
i αiai < u

and
∑
i αibi ≥ u. We know that the first exists, and we assume the second towards a

contradiction. The two assignments must differ, so, without loss of generality a1 6= b1. For
t ∈ Q?, with t ≥ 0, define the assignment xi(t) = (1 + t)ai − tbi. Since all constraints
in Ψ1 ∪ Ψ2 are equalities, it is clear that the new assignment xi(t) satisfies Ψ1 ∪ Ψ2 for
all t ∈ Q?. Moreover, if t ≥ 0

∑
i

αixi(t) ≤
∑
i

αiai − t

(∑
i

αibi −
∑
i

αiai

)
< u

Let t = 2r
|b1−a1| . Then

x1(t) = a1 + 2r
|b− a|

(a− b)

is either ≥ 2r or < 0 depending on the sign of (a− b). In either case we have a solution xi =
xi(t) of Ψ1 ∪ Ψ2 satisfying

∑
i αixi(t) < u, which must therefore be a solution of Φ, that

does not satisfy 0 < xi ≤ r. J

Proof of Lemma 5.5. We consider two cases: either all satisfying assignments satisfy the
inequality

∑
i αixi ≥ u or there is a satisfying assignment (x1 . . . xd) for Φ such that∑

i αixi < u.
In the first case, we claim that all satisfying assignments, in fact, satisfy

∑
i αixi = u.

In fact, assume that xi = ai, bi are two satisfying assignments such that
∑
i αiai = u

and v :=
∑
i αibi > u. As in the proof of Lemma 5.4, consider assignments of the form xi(t) =

(1+t)ai−tbi for t ∈ Q?. Clearly
∑
i αixi(t) = u−t(v−u) < u for all t > 0. As in Lemma 5.4,

the new assignment must satisfy all equality constraints in Φ. Each inequality constraint
implies a strict inequality on t (remember that Φ only has strict inequalities). Since all of
these must be satisfied by t = 0, there is an open interval of acceptable values of t around 0,
and, in particular, an acceptable t > 0. Our claim is thus established. Therefore, in this
case, it suffices to find any satisfying assignment for Φ taking values in C?Φ,d. The assignment
is now constructed as in the proof of Lemma 4.12, replacing the formal symbol ε in that
proof by ε3. Namely take a satisfying assignment xi = bi for Φ, and, by Lemma 5.4, one
satisfying assignment xi = ci for Φ̄ taking values in CΦ,d. Observe that the hypothesis that
all solutions of Φ satisfy l < xi for all i is used here to ensure that all solutions of Φ̄ assign
positive values to the variables, which is required by Lemma 5.4. Let −d ≤ n1 . . . nd ≤ d be
integers such that for all i, j

ni < nj if and only if bi

ci
<

bj

cj

0 < ni if and only if 1 < bi

ci

ni < 0 if and only if bi

ci
< 1

The assignment yi = ci + niciε
3 can be seen to satisfy all formulas of Φ by the same check

as in the proof of Lemma 4.12. Observe that we have to replace ε in Lemma 4.12 by ε3 here,
so that Q?−1,1 ∩ ε3 Q?−1,1 = ∅.

For the second case, fix a satisfying assignment xi = bi. By Lemma 5.4 there is an
assignment xi = ci ∈ CΦ,d such that

∑
i αici < u and this assignment satisfies φ̄ for all φ ∈ Φ.

M. Bodirsky, and M. Mamino, and C. Viola 12:21

From these two assignments construct the numbers ni and then the assignment yi = ci+niciε3

as before. For the same reason it is clear that the new assignment satisfies Φ. To conclude
that

∑
i αiyi < u we write∑

i

αiyi =
∑
i

αici + ε3
∑
i

αinici < u

because the first summand is in Q?−1,1 and < u, therefore the second summand is neglected
in the lexicographical order. J

A.4 Proof of the maximal tractability
In this appendix we prove Theorem 6.2. We will make use of the following result.

I Theorem A.2 (Cohen-Cooper-Jeavons-Krokhin, [7], Theorem 6.7). Let D be a finite totally
ordered set. Then the valued constraint language consisting of all submodular cost functions
over D is maximally tractable within the class of all valued constraint languages over D.

We show that the class of submodular piecewise linear homogeneous languages is maximally
tractable within the class of PLH valued constraint languages.

I Definition A.3. Given a finite set D ⊂ Q, we define the partial function χD : Q→ Q by

χD(x) =
{

0 x ∈ D
+∞ x ∈ Q \D.

For every finite set D ⊂ Q, the cost function χD is submodular and PLH.

I Definition A.4. Given a finite domain D ⊂ Q and a partial function f : Dn → Q we define
the canonical extension of f as f̂ : Qn → Q, by

f̂(x) =
{
f(x) x ∈ Dn

+∞ otherwise.

Note that the canonical extension of a submodular function over a finite domain is
submodular and PLH.

Proof of Theorem 6.2. Polynomial-time tractability of the VCSP for finite sets of submod-
ular PLH cost functions has been shown in Theorem 5.1.

Now suppose that f is a cost function over Q that is not submodular, i.e., there exists a
couple of points, a := (a1, . . . , an), b := (b1, . . . , bn) ∈ Qn such that

f(a) + f(b) < f(min(a, b)) + f(max(a, b)).

Let ΓD be the language of all submodular functions on

D := {a1, . . . , an, b1, . . . , bn} ⊂ Q .

Notice that f |D is not submodular, for our choice of D. Therefore, by Theorem A.2, there
exists a finite language Γ′D ⊂ ΓD such that VCSP(Γ′D ∪ {f |D}) is NP-hard.

We define the finite submodular PHL language Γ′ by replacing every cost function g in
Γ′D by its canonical extension ĝ. Then Γ′ ∪ {f, χD}, where χD is defined as in Definition
A.3, has an NP-hard VCSP. Indeed, for every instance I of VCSP(Γ′D ∪ {f |D}), we define an
instance J of VCSP(Γ′ ∪ {f, χD}) in the following way:

CSL 2018

12:22 Submodular Functions and VCSPs over Infinite Domains

replace every function symbol g in φI by the symbol for its canonical extension,
replace the function symbol for f |D in φI by f , and
add to Jφ the summand χD(v) for every variable v ∈ VI .

Because of the terms involving χD, the infimum of φJ is smaller than +∞ if, and only if, it
is attained in a point having coordinates in D. Therefore, the infimum of φJ coincides with
the infimum of φI . Since J is computable in polynomial-time from I, the NP-hardness of
VCSP(Γ′ ∪ {f, χD}) follows from the NP-hardness of VCSP(Γ′ ∪ {f |D}). J

	Introduction
	Valued Constraint Satisfaction Problems
	Cost functions over the rationals
	Quantifier Elimination
	Piecewise Linear Homogeneous Functions
	Submodularity

	Tractability of Max-Closed PLH Constraints
	Tractability of Submodular PLH Valued Constraints
	Why Q*?

	Maximal Tractability
	Conclusion and Outlook
	Appendix
	Quantifier Elimination: Proof of Theorem 3.4
	Proof of Lemma 4.11 and Lemma 4.12
	Proof of Lemma 5.4 and Lemma 5.5
	Proof of the maximal tractability

