
Graphical Conjunctive Queries
Filippo Bonchi
University of Pisa, Italy

Jens Seeber
IMT School for Advanced Studies Lucca, Italy

Paweł Sobociński
University of Southampton, UK

Abstract
The Calculus of Conjunctive Queries (CCQ) has foundational status in database theory. A
celebrated theorem of Chandra and Merlin states that CCQ query inclusion is decidable. Its
proof transforms logical formulas to graphs: each query has a natural model – a kind of graph –
and query inclusion reduces to the existence of a graph homomorphism between natural models.

We introduce the diagrammatic language Graphical Conjunctive Queries (GCQ) and show
that it has the same expressivity as CCQ. GCQ terms are string diagrams, and their algebraic
structure allows us to derive a sound and complete axiomatisation of query inclusion, which
turns out to be exactly Carboni and Walters’ notion of cartesian bicategory of relations. Our
completeness proof exploits the combinatorial nature of string diagrams as (certain cospans of)
hypergraphs: Chandra and Merlin’s insights inspire a theorem that relates such cospans with
spans. Completeness and decidability of the (in)equational theory of GCQ follow as a corol-
lary. Categorically speaking, our contribution is a model-theoretic completeness theorem of free
cartesian bicategories (on a relational signature) for the category of sets and relations.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases conjunctive query inclusion, string diagrams, cartesian bicategories

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.13

1 Introduction

Conjunctive queries (CCQ) are first-order logic formulas that use only relation symbols,
equality, truth, conjunction, and existential quantification. They are a kernel language of
queries to relational databases and are the foundations of several languages: they are select-
project-join queries in relational algebra [16], or select-from-where queries in SQL [13]. While
expressive enough to encompass queries of practical interest, they admit algorithmic analysis:
in [14], Chandra and Merlin showed that the problem of query inclusion is NP-complete.

For an example of query inclusion in action, consider formulas

φ = ∃z0 : (x0 = x1)∧R(x0, z0) and ψ = ∃z0, z1 : R(x0, z0)∧R(x1, z0)∧R(x0, z1)∧R(x1, z1),

with free variables x0, x1. Irrespective of model, and thus the interpretation of the relation
symbol R, every free variable assignment satisfying φ satisfies ψ: i.e. φ is included in ψ.

Chandra and Merlin’s insight involves an elegant reduction to graph theory, namely the
existence of a hypergraph homomorphism from a graphical encoding of ψ to that of φ. Below
on the left we give a graphical rendering of ψ and φ, respectively: vertices represent variables,
while edges are labelled with relation symbols. The dotted connections are not, strictly
speaking, a part of the underlying hypergraphs. They constitute an interface: a mapping

© Filippo Bonchi, Jens Seeber, and Paweł Sobociński;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Graphical Conjunctive Queries

R

R
R

R

00

11
R

00

11

R

R
R

R

R

00

11

00

11

from the free variables {x0, x1} to the vertices. The aforementioned query inclusion is
witnessed by an interface-preserving hypergraph homomorphism, displayed above on the
right. In category-theoretic terms, hypergraphs-with-interfaces are discrete cospans, and the
homomorphisms are cospan homomorphisms.

In previous work [5], the first and third authors with Gadducci, Kissinger and Zanasi
showed that such cospans characterise an important family of string diagrams – i.e. diagram-
matic representations of the arrows of monoidal categories – namely those equipped with
an algebraic structure known as a special Frobenius algebra. This motivated us to study
the connection between this fashionable algebraic structure – which has been used in fields
as diverse as quantum computing [1, 17, 30, 25], concurrency theory [7, 8, 10, 9], control
theory [6, 3] and linguistics [31] – and conjunctive queries.

We introduce the logic of Graphical Conjunctive Queries (GCQ). Although superficially un-
like CCQ, we show that it is equally expressive. Its syntax lends itself to string-diagrammatic
representation and diagrammatic reasoning respects the underlying logical semantics. GCQ
string diagrams for ψ and φ are drawn below. Note that, while GCQ syntax does not have
variables, the concept of CCQ free variable is mirrored by “dangling” wires in diagrams.

R

R

R

R

R

While interesting in its own right as an example of a string-diagrammatic representation
of a logical language – which has itself become a topic of recent interest [21] – GCQ comes
into its own when reasoning about query inclusion, which is characterised by the laws of
cartesian bicategories. This important categorical structure was introduced by Carboni and
Walters [12] who were, in fact, aware of the logical interpretation, mentioning it in passing
without giving the details. Our definition of GCQ, its expressivity, and soundness of the laws
of cartesian bicategories w.r.t. query inclusion is testament to the depth of their insights.

The main contribution of our work is the completeness of the laws of cartesian bicategories
for query inclusion (Theorem 17).

As a side result, we obtain a categorical understanding of the proof by Chandra and Merlin.
This uncovers a beautiful triangle relating logical, combinatorial and categorical structures,
similar to the Curry-Howard-Lambek correspondence relating intuitionistic propositional
logic, λ-calculus and free cartesian closed categories.

Logical
CCQ=GCQ

pp

Chandra and Merlin [14]
..

hh

Theorem 17 ++

Combinatorial
hypergraphs

with interfaces55

Theorem 31ss

Categorical
free cartesian bicategories

The rightmost side of the triangle (Theorem 31) provides a combinatorial characterisation
of free cartesian bicategories as discrete cospans of hypergraphs, with the Chandra and

F. Bonchi, J. Seeber, and P. Sobociński 13:3

Merlin ordering: the existence of a cospan homomorphism in the opposite direction. This
result can also be regarded as an extension of the aforementioned [5] to an enriched setting.
The fact that the Chandra and Merlin ordering is not antisymmetric forces us to consider
preorder-enrichment as opposed to the usual [12] poset-enrichment of cartesian bicategories.1

The step from posets to preorders is actually beneficial: it provides a one-to-one corres-
pondence between hypergraphs and models which we see as functors, following the tradition
of categorical logic. The model corresponding to a hypergraph G is exactly the (contravariant)
Hom-functor represented by G. By a Yoneda-like argument, we obtain a “preorder-enriched
analogue” of Theorem 17 (Theorem 37). With this result, proving Theorem 17 reduces to
descending from the preorder-enriched setting down to poset-enrichment.

Working with both poset- and preorder-enriched categories means that there is a relatively
large number of categories at play. We give a summary of the most important ones in the
table below, together with pointers to their definitions. The remainder of this introduction is
a roadmap for the paper, focussing on the roles played by the categories mentioned below.

preordered posetal
free categories CB≤Σ (Def 29) CBΣ (Def 21)

semantic domains for the logic Span≤ Set (Def 33) Rel (Ex 20)
combinatorial structures Csp≤ FHypΣ (Def 26) -

We begin by justifying the “equation” CCQ=GCQ in the triangle above: we recall CCQ
and introduce GCQ in Sections 2 and 3, respectively, and show that they have the same
expressivity. We explore the algebraic structure of GCQ in Sections 4 and 5, which – as we
previously mentioned – is exactly that of cartesian bicategories. As instances of these, we
introduce CBΣ, the free cartesian bicategory, and Rel, the category of sets and relations.

In Section 6 we introduce preordered cartesian bicategories (the free one denoted by CB≤Σ)
and the category of discrete cospans of hypergraphs with the Chandra and Merlin preorder,
denoted by Csp≤FHypΣ. Theorem 31 states that these two are isomorphic.

Theorem 37 is proved in Section 7. Rather than Rel, the preordered setting calls for
models in Span≤ Set, the preordered cartesian bicategory of spans of sets. In Section 8, we
explain the passage from preorders to posets, completing the proof of Theorem 17.

We delay a discussion of the ramification of our work, a necessarily short and cursory
account – due to space restrictions – of the considerable related work, and directions for future
work to Section 9. We conclude with the observation that (i) the diagrammatic language
for formulas, (ii) the semantics, e.g. of composition of diagrams – what we understand in
modern terms as the combination of conjunction and existential quantification – and (iii)
the use of diagrammatic reasoning as a powerful method of logical reasoning actually go
back to the pre-Frege work of the 19th century American polymath CS Peirce on existential
graphs. Interestingly, it is only recently (see, e.g. [29]) that this work has been receiving the
attention that it richly deserves.

Preliminaries. We assume familiarity with basic categorical concepts, in particular symmet-
ric monoidal, ordered and preordered categories. We do not assume familiarity with cartesian
bicategories: the acquainted reader should note that what we call “cartesian bicategories”

1 While cartesian bicategories were later generalised [11] to a bona fide higher-dimensional setting, our
preorder-enriched variant seems to be an interesting stop along the way.

CSL 2018

13:4 Graphical Conjunctive Queries

are “cartesian bicategories of relations” in [12]. A prop is a symmetric strict monoidal
category where objects are natural numbers, and the monoidal product on objects is addition
m⊕ n := m+ n. Due to space restrictions, most proofs are in the Appendix.

2 Calculus of Conjunctive Queries

Assume a set Σ of relation symbols with arity function ar : Σ → N and a countable set
V ar = {xi | i ∈ N} of variables. The grammar for the calculus of conjunctive queries is:

Φ ::= > | Φ ∧ Φ | xi = xj | R(→x) | ∃x.Φ (CCQ)

where R ∈ Σ, ar(R) = n, and →x is a list of length n of variables from V ar. We assume the
standard bound variable conventions and some basic metatheory of formulas; in particular we
write φ[→x/→y], where →x,→y are variable lists of equal length, for the simultaneous substitution
of variables from →x for variables in →y . We write →x [m,n], where m ≤ n, for the list of variables
xm, xm+1, . . . , xn. Given a formula φ, fv(φ) is the set of its free variables.

The semantics of (CCQ) formulas is standard and inherited from first order logic.

I Definition 1. A modelM = (X, ρ) is a set X and, for each R ∈ Σ, a set ρ(R) ⊆ Xar(R).

Given a modelM = (X, ρ), the semantics [[φ]]M is the set of all assignments of elements from
X to fv(φ) that makes it evaluate to truth, given the usual propositional interpretation.

In order to facilitate a principled definition of the semantics (Definition 3) and to serve
the needs of our diagrammatic approach, we will need to take a closer look at free variables.
To this end, we give an alternative, sorted presentation of (CCQ) that features explicit free
variable management. As we shall see, the system of judgments below will allow us to derive
n ` φ where n ∈ N, whenever φ is a formula of CCQ and fv(φ) ⊆ {x0, . . . , xn−1}.

(>)
0 ` >

R ∈ Σ ar(R) = n
(Σ)

n ` R(x0, . . . , xn−1)

n ` φ
(∃)

n− 1 ` ∃xn−1.φ

(=)
2 ` x0 = x1

m ` φ n ` ψ
(∧)

m+ n ` φ ∧ (ψ[→x [m,m+n−1]/
→
x [0,xn−1]])

Note that the above are restrictive: e.g. (∧) enforces disjoint sets of variables, and (∃) allows
quantification only over the last variable. To overcome these limitations we include three
structural rules that allow us to manipulate (swap, identify, and introduce) free variables.

n ` φ (0 ≤ k < n− 1)
(Swn,k)

n ` φ[xk+1, xk/xk, xk+1]

n ` φ
(Idn)

n− 1 ` φ[xn−2/xn−1]
n ` φ

(Nun)
n+ 1 ` φ

Rule Sw allows us to swap two free variables. Alone, Id identifies the final and the penultimate
free variable; used together with Sw it allows for the identification of any two. Finally, Nu
introduces a free variable. The eight suffice for any CCQ formula, in the following sense:

I Proposition 2. φ is a formula derived from (CCQ) with fv(φ) ⊆ {x0, . . . , xn−1} iff n ` φ.

We use the sorted presentation to define the semantics.

I Definition 3. Given a model M = (X, ρ), the semantics of n ` φ is a set of tuples
[[n ` φ]]M ⊆ Xn. We define it in Figure 1 by recursion on the derivation of n ` φ.

Finally, we define the concepts that are of central interest: query equivalence and inclusion.

I Definition 4. Given n ` φ and n ` ψ, we say that φ and ψ are equivalent and write
φ ≡ ψ if for all modelsM we have [[n ` φ]]M = [[n ` ψ]]M. We write φ 5 ψ when, for allM,
[[n ` φ]]M ⊆ [[n ` ψ]]M. Clearly φ 5 ψ and ψ 5 φ implies φ ≡ ψ.

F. Bonchi, J. Seeber, and P. Sobociński 13:5

[[0`>]]M = {•} (>) (→u , v, w,→x) ∈ [[n`φ[xk+1,xk/xk,xk+1]]]M ⇔ (→u ,w, v,→x) ∈ [[n`φ]]M (Swn,k)

[[n`R(x0,...,xn−1)]]M = ρ(R) (Σ) (→v , w) ∈ [[n−1`φ[xn−2/xn−1]]]M ⇔ (→v , w,w) ∈ [[n`φ]]M (Idn)

[[2`x0=x1]]M = {(v, v) | v ∈ X} (=) →
v ∈ [[n−1`∃xn−1.φ]]M ⇔ ∃w ∈ X. (

→
v , w) ∈ [[n`φ]]M (∃)

[[n+1`φ]]M = [[n`φ]]M ×X (Nun) [[m+n`φ∧(ψ[...])]]M = [[m`φ]]M × [[n`ψ]]M (∧)

Figure 1 Semantics of CCQ for a modelM = (X, ρ). We write • for the unique element of X0.

: (1, 2) : (1, 0)

R∈Σn,m

R : (n,m) : (2, 1) : (0, 1) : (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c;d : (n,m)

c : (n,m) d : (p, q)

c⊕d : (n+p,m+q)

Figure 2 Sort inference rules.

3 Graphical conjunctive queries

We introduce an alternative logic, called Graphical Conjunctive Queries (GCQ). GCQ and
CCQ are – superficially – quite different. Nevertheless, in Propositions 9 and 10 we show
that they have the same expressive power. The grammar of GCQ formulas is given below.

c ::= | | | | | | | c⊕ c | c ; c | R (GCQ)

GCQ syntax is a radical departure from (CCQ). Rather than use CCQ’s existential quanti-
fication and conjunction, GCQ uses the operations of monoidal categories: composition and
monoidal product. There are no variables, thus no assumptions of their countable supply,
nor any associated metatheory of capture-avoiding substitution.

The price is a simple sorting discipline. A sort is a pair (n, m), with n,m ∈ N. We
consider only terms sortable according to Figure 2. There and in (GCQ), R ranges over the
symbols of a monoidal signature Σ, a set of relation symbols equipped with both an arity and
a coarity: Σn,m consists of the symbols in Σ with arity n and coarity m. A GCQ signature
plays a similar role to relation symbols in CCQ: we abuse notation for this reason. A simple
induction shows sort uniqueness: if c : (n, m) and c : (n′, m′) then n = n′ and m = m′.

In (GCQ) we used a graphical rendering of GCQ constants. Indeed, we will not write
terms of GCQ as formulas, but instead represent them as 2-dimensional diagrams. The
justification for this is twofold: the diagrammatic conventions introduced in this section mean
that a diagram is a readable, faithful and unambiguous representation of a sorted (GCQ)
term. More importantly, our characterisation of query inclusion in subsequent sections
consists of intuitive topological deformations of the diagrammatic representations of formulas.

A GCQ term c : (n, m) is drawn as a diagram with n “dangling wires” on the left,
and m on the right. Roughly speaking, dangling wires are GCQ’s answer to the free
variables of CCQ. Composing (;) means connecting diagrams in series and tensoring means
stacking. The shorthand m stands for m wires in parallel. The box n m

R stands
for a relation symbol R ∈ Σn,m. Thus, given c : (n, m), c′ : (m, k), c ; c′ : (n, k)

is drawn kmn
c c0 , and given d : (p, q), c ⊕ d : (n + p, m + q) is drawn

m
c

d
p q

n

.

CSL 2018

13:6 Graphical Conjunctive Queries

[[]]M =
{(
x,
(

x
x

))
| x ∈ X

}
[[]]M = {(x, •) | x ∈ X} [[c⊕ d]]M = [[c]]M ⊕ [[d]]M [[]]M = {(•, •)}

[[]]M =
{((

x
x

)
, x
)
| x ∈ X

}
[[]]M = {(•, x) | x ∈ X} [[c ; d]]M = [[c]]M ; [[d]]M [[R]]M = ρ(R)

[[]]M =
{((

x
y

)
,
(

y
x

))
| x, y ∈ X

}
[[]]M = {(x, x) | x ∈ X}

Figure 3 Semantics of GCQ for a modelM = (X, ρ). We used the notation R ; S = {(x, z) | ∃y ∈
Y s.t. (x, y) ∈ R and (y, z) ∈ S} and R ⊕ S = {

((
x
u

)
,
(

y
v

))
| (x, y) ∈ R and (u, v) ∈ S}. • is the

unique element of X0 and
 x0

.

.

.

xn−1

 an element of Xn.

I Example 5. Consider ((⊕) ⊕); (R ⊕ S) : (2, 1), assuming
R ∈ Σ2,0, S ∈ Σ1,1. Its diagrammatic rendering is on the right. Note that the
use of the dotted boxes induces a tree-like quality to diagrams. Indeed, they
are a faithful representation for syntactic terms constructed from (GCQ).

S

R

We now turn to semantics. First, the notion of model of GCQ is similar to a model of CCQ.

I Definition 6. A modelM = (X, ρ) is a set X and, for each R ∈ Σn,m, ρ(R) ⊆ Xn ×Xm.

Given a modelM = (X, ρ), the semantics of c : (n, m) is the relation [[c]]M ⊆ Xn ×Xm

defined recursively in Figure 3. Armed with a notion of semantics, we can define query
equivalence (≡) and inclusion (5) for GCQ terms analogously to Definition 4.

I Example 7. Consider the GCQ term of sort (0, 0). For a model M = (X, ρ), its
semantics [[]]M ⊆ X0 ×X0 is either the empty relation ∅, if X is empty, or the relation
{(•, •)}, if X is not empty. Since ∅ ⊆ {(•, •)}, and since [[]]M = {(•, •)} for all modelsM,
it holds that 5 . Intuitively, the first term corresponds to the CCQ formula ∃x.>,
holding in all non empty models, while the second corresponds to the formula >. In the
remainder of this section we will make this intuition precise.

3.1 Expressivity
We now give a semantics preserving translation Θ from CCQ to GCQ. For each CCQ
relation symbol R ∈ Σ of arity n, we assume a corresponding GCQ symbol R ∈ Σn,0. Using
Proposition 2, it suffices to consider judgments n ` φ. For each, we obtain a GCQ term
Θ(n ` φ) : (n, 0). The translation Θ, given in Figure 4, is defined by recursion on the
derivation of n ` φ. Given a CCQ modelM = (X, ρ), let Θ(M) = (X, ρ′) be the obvious
corresponding GCQ model: ρ′(R) = ρ(R)× {•}. The following confirms that semantics is
preserved.

I Proposition 8. For a CCQ modelM = (X, ρ): →v ∈ [[n ` φ]]M iff (→v , •) ∈ [[Θ(n ` φ)]]Θ(M).

Furthermore, to characterise query inclusion in CCQ, it is enough to characterise it in GCQ.

I Proposition 9. For all CCQ formulas n ` φ and n ` ψ, φ 5CCQ ψ iff Θ(φ) 5GCQ Θ(ψ).

Proposition 8 yields the left-to-right direction. For right-to-left, we give a semantics-preserving
translation Λ from GCQ to CCQ in Appendix A. Modulo ≡, Λ is inverse of Θ.

I Proposition 10. There exists a semantics preserving translation Λ from GCQ to CCQ
such that for all GCQ terms c, d : (n, m), it holds that c 5GCQ d iff Λ(c) 5CCQ Λ(d).

F. Bonchi, J. Seeber, and P. Sobociński 13:7

Θ (0 ` >) = (>) Θ (n ` φ[xk+1, xk/xk, xk+1]) = ⇥(n ` �)

k

n � k � 2
(Swn,k)

Θ (2 ` x0 = x1) = (=) Θ (n− 1 ` φ[xn−2/xn−1]) = ⇥(n ` �)

n � 2

(Idn)

Θ (n ` R(x0, . . . , xn−1)) = R
n (Σ) Θ (n− 1 ` ∃xn−1.φ) = ⇥(n ` �)

n � 1

(∃)

Θ (n+ 1 ` φ) = ⇥(n ` �)
n

(Nun) Θ (m+ n ` φ ∧ (ψ[. . .])) =
m

⇥(m ` �)

n ⇥(n `)

(∧)

Figure 4 Translation Θ from CCQ to GCQ.

Propositions 9 and 10 together imply that CCQ and GCQ have the same expressive power.

I Example 11. Recall from Example 7, that is related to ∃x.>. By translating the

CCQ formula 0 ` ∃x0.> via Θ, one obtains . The latter and are different –

syntactically – but they are equal modulo ≡. Note that their diagrams are similar: in the
next section, we prove that terms differing only by dashed boxes are equal modulo ≡.

4 From terms to string diagrams

The first step towards an equational characterisation of query inclusion is to move from GCQ,
where the graphical notation was a faithful representation of ordinary syntactic terms, to
bona fide string diagrams; that is, graphical notation for the arrows of a prop, a particularly
simple kind of symmetric monoidal category (SMC). This is an advantage of GCQ syntax: its
operations are amenable to an elegant axiomatisation. A hint of the good behaviour of GCQ
operations is that query inclusion (and, therefore, query equivalence is) a (pre)congruence.

I Lemma 12.
(i) Let c, c′ : (n, m) and d, d′ : (m, k) with c 5 c′ and d 5 d′. Then (c ; d) 5 (c′ ; d′).
(ii) Let c, c′ : (n, m) and d, d : (p, q) with c 5 c′ and d 5 d′ Then (c⊕ d) 5 (c′ ⊕ d′).

We now consider the laws of strict symmetric monoidal categories (Figure 5) and discover
that any two GCQ terms identified by them are logically equivalent. This means that we
can eliminate the clutter of dashed boxes from our graphical notation.

I Proposition 13. ≡ satisfies the axioms in Figure 5.

The terms of GCQ up-to query equivalence, therefore, organise themselves as arrows of
a monoidal category (axioms (i)-(v)), and the operation of “erasing all dotted boxes” from
diagrams is well-defined. The resulting structure is the well-known combinatorial/topological
concept of string diagram. Equality reduces to the connectivity of their components, and is

CSL 2018

13:8 Graphical Conjunctive Queries

c1 c2 c3

(i)= c1 c2 c3

c1

(ii)= c1

(ii)= c1

c1

c2

c3

(iii)=

c1

c2

c3

c1

(iv)= c1

(iv)= c1

c1 c2

c3 c4

(v)=
c1 c2

c3 c4

mj

n
c

j (vi)=
c mj

n j

m

n
c

j

j

(vii)= c
mj

n j

j

m m

j

(viii)= m

j

m

j

Figure 5 Axioms of strict symmetric monoidal categories. Wire annotations in (i)-(v) have been
omitted for clarity.

thus stable under intuitive topological transformations, known as diagrammatic reasoning.
For instance, axioms (ii) and (v) in Figure 5 imply that for c1 : (m1, n1) and c2 : (m2, n2)

c1

c2

≡
c1

c2

.

Axioms (vi)-(viii) assert that GCQ terms modulo ≡ form a symmetric monoidal category

(SMC). Therein,
n

nm

m

stands for the crossing of n wires over m wires. This has a standard

recursive definition, using , and the operations of GCQ. Intuitively, boxes “slide
over” wire crossings. Moreover, it is well-known that (vi) and (vii) of Figure 5 imply the
Yang-Baxter equation for crossings, which – with (viii) – implies that in diagrammatic
reasoning wires do not “tangle” and crossings act like permutations of finite sets.

5 Axiomatisation

We have seen that, up-to query equivalence, GCQ enjoys the structural properties of SMCs.
Here we give further properties that characterise query equivalence (≡) and inclusion (5).

Our first observation is that and form, modulo ≡, a commutative monoid,
i.e., they satisfy axioms (A), (C) and (U) in Figure 6. Similarly, and form a
cocommutative comonoid (axioms (Aop), (Cop) and (Uop)). Monoid and comonoid together
give rise to a special Frobenius bimonoid (axioms (S) and (F)), a well-known algebraic
structure that is important in various domains [1, 17, 7, 6].

I Proposition 14. ≡ satisfies the axioms in Figure 6.

Figure 7 shows a set of properties of query inclusion. The two axioms on the left state
that is the left adjoint of and the central axioms assert that is the left adjoint
of . For the rightmost ones, it is convenient to introduce some syntactic sugar: n ,

n , n and n stand for the n-fold versions of monoid and comonoid. Now, axiom (L1)
asserts that n m

R laxly commutes with m , while axiom (L2) states that it laxly commutes

with m . In a nutshell, n m
R is required to be a lax comonoid morphism.

I Proposition 15. 5 satisfies the axioms of Figure 7.

Interestingly, the observations we made so far suffice to characterise query equivalence
and inclusion. This is the main theorem which we will prove in the remainder of this paper.

F. Bonchi, J. Seeber, and P. Sobociński 13:9

(A)=

(C)=

(U)=

(Aop)=

(Cop)=

(Uop)=

(S)=
(F)=

Figure 6 Axioms for special Frobenius bimonoids.

(UC)
≤

(CU)
≤

(MC)
≤

(CM)
≤

mn
R

(L1)
≤ n

mn
R

(L2)
≤ m

n

R

m
R

Figure 7 Axioms for adjointness of and (left) adjointness of and (center) lax
comonoid morphism (right).

I Definition 16. The relation ≤CBΣ on the terms of GCQ is the smallest precongruence
containing the equalities in Figures 5, 6, their converses and the inequalities in Figure 7. The
relation =CBΣ is the intersection of ≤CBΣ and its converse.

I Theorem 17. ≤CBΣ=5

I Remark. There is an apparent redundancy in Figure 7: (CM) follows immediately from (S)
in Figure 6, while (S) can by derived from (CU), (Uop) and (U) for one inclusion and (CM)
for the other. We kept both (CM) and (S) because, as we shall see in §6, it is important to
keep the algebraic structures of Figures 6 and 7 separate.

I Example 18. Recall the example from the Introduction. We can now prove the inclusion
of queries using diagrammatic reasoning, as shown below. In the unlabeled equality we make
use of the well-known spider theorem, which holds in every special Frobenius algebra [27].

R

R

R

R

(L2)
≥

R

R

= R

R (MC)
≥ R

R

(L2)
≥ R

(S)= R
(Uop)= R

5.1 Cartesian bicategories
The structure in Figures 6 and 7 is not arbitrary: these are exactly the laws of cartesian
bicategories, a concept introduced by Carboni and Walters [12], that we recall below.

I Definition 19. A cartesian bicategory is a symmetric monoidal category B with tensor ⊕
and unit I, enriched over the category of partially ordered sets, such that:
1. every object X has a special Frobenius bimonoid: a monoid X : X⊕X → X, X : I →

X, a comonoid X : X → X ⊕X, X : X → I satisfying the axioms in Figure 6;
2. the monoid and comonoid on X are adjoint (axioms in Figure 7, left and center);
3. every arrow R : X → Y is a lax comonoid morphism (axioms in Figure 7, right).
Furthermore, a morphism F of cartesian bicategories is a functor F : B1 → B2 preserving
the tensor, the partial orders and the monoid and comonoid on every object.

CSL 2018

13:10 Graphical Conjunctive Queries

I Example 20. The archetypal cartesian bicategory is the category of sets and relations
Rel, with cartesian product × as tensor and 1 = {•} as unit. To be precise, Rel has
sets as objects and relations R ⊆ X × Y as arrows X → Y . Composition and tensor
are defined as in Figure 3. For each set X, the monoid and comonoid structure is:

X = {(x, (xx)) | x ∈ X} , X = {(x, •) | x ∈ X} , X = {((xx) , x) | x ∈ X} , X = {(•, x) | x ∈ X} .

Cartesian bicategories allow us to employ the usual construction from categorical logic:
the arrows of the cartesian bicategory freely generated from Σ are GCQ terms modulo =CBΣ ,
and morphisms from this cartesian bicategory to Rel are exactly GCQ models.

I Definition 21. The ordered prop CBΣ has GCQ terms of sort (n, m) modulo =CBΣ as
arrows n→ m. These are ordered by ≤CBΣ .

I Lemma 22. CBΣ is a cartesian bicategory.

I Proposition 23. Models of GCQ (Definition 6) are in bijective correspondence with
morphisms of cartesian bicategories CBΣ → Rel.

6 Discrete cospans of hypergraphs

In order to prove Theorem 17, in this section we give a combinatorial characterisation of free
cartesian bicategories as hypergraphs-with-interfaces, formalised as a (bi)category of cospans
equipped with an ordering inspired by Merlin and Chandra [14].

Indeed, the appearance of graph-like structures in the context of conjunctive queries
should not come as a shock. Merlin and Chandra, to compute inclusion ϕ 5 ψ of CCQ queries,
translate them into hypergraphs Gϕ, Gψ with “interfaces” that represent free variables. Then
ϕ 5 ψ iff there exists an interface-preserving homomorphism from Gψ to Gφ.

6.1 Hypergraphs and Cospans
Our goal in this part is the characterisation of GCQ diagrams as certain combinatorial
structures. We start by introducing the notion of Σ-hypergraph.

I Definition 24 (Σ-hypergraph). Let Σ be a monoidal signature. A Σ-hypergraph G is a set
GV of vertices and, for each R ∈ Σn,m, a set of R-labeled hyperedges GR, with source and
target functions sR : GR → (GV)n, tR : GR → (GV)m. A morphism f : G→ G′ is a function
fV : GV → G′V and a family fR : GR → G′R, for each R ∈ Σn,m, s.t. the following commutes.

(GV)n
fV
��

GR
sRoo

tR //

fR
��

(GV)m
fV
��

(G′V)n G′R
s′R

oo

t′R

// (G′V)m

A Σ-hypergraph G is finite if GV and GR are finite. Σ-hypergraphs and morphisms form the
category HypΣ. Its full subcategory of finite Σ-hypergraphs is denoted by FHypΣ.

We visualise hypergraphs as follows: is a vertex and R is a hyperedge with ordered
tentacles. An example is shown below left, where S ∈ Σ1,0 and R ∈ Σ2,1.

R

SR

R

SR
0

1
2

0

(1)

F. Bonchi, J. Seeber, and P. Sobociński 13:11

In order to capture GCQ diagrams, we need to equip hypergraphs with interfaces, as
illustrated in (1) on the right. Roughly speaking, an interface consists of two sets, called the
left boundary and the right boundary. Each has an associated function to the underlying set
of hypergraph vertices, depicted by the dotted arrows. Graphical structures with interfaces
are common in computer science, (e.g., in automata theory [22], graph rewriting [18], Petri
nets [32]). Categorically speaking, they are (discrete) cospans.

I Definition 25 (Cospan). Let C be a finitely cocomplete category. A cospan from X to Y is a
pair of arrows X → A ← Y in C. A morphism α : (X → A ← Y) ⇒
(X → B ← Y) is an arrow α : A→ B in C s.t. the diagram on the right
commutes. Cospans X → A← Y and X → B ← Y are isomorphic if

A

α
��

X

..

00

Y

nn

qqB

(2)

there exists an isomorphism A → B. For X ∈ C, the identity cospan is X idX−−→ X
idX←−− X.

The composition of X → A
f←− Y and Y

g−→ B ← Z is X → A +f,g B ← Z, obtained by
taking the pushout of f and g. This data is the bicategory [4] Cospan(C): the objects are
those of C, the arrows are cospans and 2-cells are homomorphisms. Finally, Cospan(C) has
monoidal product given by the coproduct in C, with unit the initial object 0 ∈ C.

To avoid the complications of non-associative composition, it is common to consider
a category of cospans, where isomorphic cospans are equated: let therefore Cospan≤C be
the monoidal category that has isomorphism classes of cospans as arrows. Note that,
when going from bicategory to category, after identifying isomorphic arrows it is usual
to simply discard the 2-cells. Differently, we consider Cospan≤C to be locally preordered
with (X → A ← Y) ≤ (X → B ← Y) if there exists a morphism α going the other way:
α : (X → B ← Y)⇒ (X → A← Y). It is an easy exercise to verify that this (pre)ordering is
well-defined and compatible with composition and monoidal product. Note that, in general,
≤ is a genuine preorder: i.e. it is possible that both (X → A← Y) ≤ (X → B ← Y) and
(X → B ← Y) ≤ (X → A← Y) without the cospans being isomorphic.

Armed with the requisite definitions, we can be rigorous about hypergraphs with interfaces.

I Definition 26. The preorder-enriched category Csp≤FHypΣ is the full subcategory of
Cospan≤FHypΣ with objects the finite ordinals and arrows (isomorphism classes of) finite
hypergraphs, inheriting the preorder. We call its arrows discrete cospans.

The above deserves an explanation: an ordinal n can be considered as the discrete hypergraph
with vertices {0, . . . , n− 1}. An arrow n→ m in Csp≤FHypΣ is thus a cospan n→ G← m

where G is a hypergraph and n→ G and m→ G are functions to its vertices. The picture
in (1) shows a discrete cospan 3→ 1, with dotted lines representing the two morphisms.

6.2 Preordered cartesian bicategories
Here we explore the algebraic structure of Cospan≤C. It is closely related to that of cartesian
bicategories, yet – given the discussion above – it is more natural to consider Cospan≤C as a
locally preordered category. We therefore need a slight generalisation of Definition 19.

I Definition 27. A preordered cartesian bicategory has the same structure as a cartesian
bicategory (Definition 19), with one difference: the ordering is not required to be a partial
order, merely a preorder – it is for this reason we separated the equational and inequational
theories in Figures 6 and 7. The definition of morphism is as expected.

I Proposition 28. Cospan≤C is a preordered cartesian bicategory.

CSL 2018

13:12 Graphical Conjunctive Queries

bb cc = 1→ 1← 2, bb cc = 2→ 1← 1, bb cc = 1→ 1← 1
bb cc = 1→ 1← 0, bb cc = 0→ 1← 1, bb cc = 0→ 0← 0

bb cc = 0
1

0
1 , bbc ; dcc = bbccc ; bbdcc, bbc⊕ dcc = bbccc ⊕ bbdcc

bbRcc =
0
1

0

n-1
R

1

m-1

Figure 8 Inductive definition of the isomorphism bb·cc : CB≤Σ → Csp≤ FHypΣ. In the first two
lines, the finite ordinal n denotes the discrete hypergraph with n vertexes, and the functions between
ordinals are uniquely determined by initiality of 0 and finality of 1.

As a consequence, Cospan≤FHypΣ, and thus also Csp≤FHypΣ, are preordered cartesian
bicategories. The latter is of particular interest: the main result of this section, Theorem 31,
states that Csp≤FHypΣ is the free preordered cartesian bicategory on Σ, defined as follows.

I Definition 29. The preordered prop CB≤Σ has, as arrows n → m, GCQ terms of sort
(n, m) modulo the smallest congruence generated by = in Figures 5 and 6. These are ordered
by the smallest precongruence generated by ≤ in Figure 7.

I Remark. Intuitively, the ordered prop CBΣ of Definition 21 is the “poset reduction” of the
preordered prop CB≤Σ introduced above. We will make this formal in Section 8.

Theorem 3.3 in [5] states that Csp≤FHypΣ and CB≤Σ are isomorphic as mere categories,
i.e. forgetting the preorders. We thus need only to prove that the preorder of the two
categories coincides, that is for all c, d in CB≤Σ ,

c ≤ d iff bbccc ≤ bbdcc (3)

where bb·cc : CB≤Σ → Csp≤FHypΣ is the isomorphism from [5] recalled in Figure 8. The
‘only-if’ part is immediate from Proposition 28. An alternative proof consists of checking, for
each of the inclusions c ≤ d in Figure 7, that there exists a morphism of cospans from bbdcc
to bbccc, as illustrated by the following example.

I Example 30. The left and the right hand side of (L2) in Figure 7 for R ∈ Σ1,1 are translated
via bb·cc into the cospans on the left and right below. The morphism from the rightmost
hypergraph to the leftmost one, depicted by the dashed lines, witnesses the preorder.

R

R
R

00
00

11

00

00

11

The ‘if’ part of (3) requires some work. Its proof is given in full detail in Appendix B.2.

I Theorem 31. Csp≤FHypΣ
∼= CB≤Σ as preordered cartesian bicategories.

I Example 32. Recall Example 18. The derivation corresponds via bb·cc to the homomorphism
of cospans of hypergraphs illustrated in the Introduction.

7 Completeness for spans

Having established a combinatorial characterisation of the free preordered cartesian bicategory,
here we prove our central completeness result, Theorem 37. In the preordered setting,
completeness holds for “multirelational” models: the role of the poset-enriched category Rel
of sets and relations is taken by a (preorder-enriched) bicategory of spans of functions.

F. Bonchi, J. Seeber, and P. Sobociński 13:13

I Definition 33 (Span, Span≤). Given a finitely complete category C, the bicategory
Span(C) is dual to that of cospans of Definition 25: it can be defined
as Cospan(Cop). More explicitly, objects are those of C, arrows of
type X → Y are spans X ← A → Y , composition ; is defined by
pullback and ⊕ by categorical product. The 2-cells from

B
����

X Y

A

BB]]
α

OO

(4)

X ← A → Y to X ← B → Y are span homomorphisms, that is arrows α : A → B

such that the diagram on the right commutes. As before, the bicategory Span(C) can be
seen as a category by identifying isomorphic spans. We obtain a category Span≤C, on
which we define a preorder in a similar way to Cospan≤C, but in the reverse direction:
(X → A← Y) ≤ (X → B ← Y) when there is a homomorphism (4).
I Lemma 34. Span≤C is a preordered cartesian bicategory.

Models are now morphismsM : CB≤Σ → Span≤ Set of preordered cartesian bicategories.
Observe that, since the interpretation of the monoid and comonoid structure is predetermined,
a morphism is uniquely determined by its value on the object 1 and on R ∈ Σ. In other words,
a model consists of a setM(1) and, for each R ∈ Σn,m, a spanM(1)n ← Y →M(1)m. This
data is exactly the definition of a (possibly infinite) Σ-hypergraph (Definition 24).

I Proposition 35. MorphismsM : CB≤Σ → Span≤ Set are in bijective correspondence with
Σ-hypergraphs.

Given this correspondence and the fact that CB≤Σ ∼= Csp≤FHypΣ, each hypergraph G

induces a morphism UG : Csp≤FHypΣ → Span≤ Set. Moreover, G acts like a representing
object of a contravariant Hom-functor, in the following sense: UG maps n ι−→ G′

ω←− m to

HypΣ[n,G] ι;−←−− HypΣ[G′, G] ω;−−−→ HypΣ[m,G]

where HypΣ[G′, G] is the set of hypergraph homomorphisms from G′ to G, and (ι ; −) and
(ω ; −) are defined, given f ∈ HypΣ[G′, G], by (ι ; −)(f) = ι ; f and (ω ; −)(f) = ω ; f .

I Proposition 36. Suppose that n ι−→ G′
ω←− m a discrete cospan in Csp≤FHypΣ. Then

UG(n ι→ G′
ω← m) = HypΣ[n,G] ι;−←−− HypΣ[G′, G] ω;−−−→ HypΣ[m,G].

Proof. The conclusion of Theorem 31 allows us to use induction on n
ι→ G′

ω← m. The
inductive cases follow since the contravariant Hom-functor sends colimits to limits. Four of
the base cases, bb cc, bb cc, bb cc and bb cc, follow by the same argument, and the
others (bb cc, bb cc and bbRcc) are easy to check. The details are in Appendix B.3. J

I Theorem 37 (Completeness for Span≤ Set). Let n ι−→ G
ω←− m and n

ι′−→ G′
ω′←− m be

arrows in Csp≤FHypΣ. If, for all morphisms M : Csp≤FHypΣ → Span≤ Set, we have
M(n ι−→ G

ω←− m) ≤M(n ι′−→ G′
ω′←− m), then (n ι−→ G

ω←− m) ≤ (n ι′−→ G′
ω′←− m).

Proof. If the inequality holds for all morphisms, it holds for UG. By the conclusion of
Proposition 36, there is a function α : HypΣ[G,G]→ HypΣ[G′, G] making the diagram on

HypΣ[G,G] ω;−
))

ι;−
uu

α

��

G′

α(idG)
��

HypΣ[n,G] HypΣ[m,G] n

ι --

ι′ 11

m

ω′mm

ωppHypΣ[G′, G] ω′;−

55

ι′;−

ii

G

the left commute. We take the identity idG ∈ HypΣ[G,G] and consider α(idG) : G′ → G.
By the commutativity of the left diagram, we have that ι = ι′ ; α(idG) and ω = ω′ ; α(idG).
This means that the right diagram commutes, that is (n ι−→ G

ω←− m) ≤ (n ι′−→ G′
ω′←− m). J

CSL 2018

13:14 Graphical Conjunctive Queries

I Remark. The reader may have noticed that, in the above proof, UG plays a role analogous
to Chandra and Merlin’s [14] natural model for the formula corresponding to n ι−→ G

ω←− m.
Given the completeness theorem of this section, proving completeness for models of CBΣ

in Rel is a simple step that we illustrate in the next section.

8 Completeness for relations

We conclude by showing how Theorem 37 leads to a proof of Theorem 17. The key observation
lies in the tight connection between the preordered setting and the posetal one.

I Definition 38. Let C be a preorder-enriched category. The poset-reduction of C is the
category C∼ having the same objects as C and morphisms in C∼ are equivalence classes of
those in C modulo ∼=≤ ∩ ≥. Composition is inherited from C; this is well-defined as ∼ is a
congruence wrt composition.

This assignment extends to a functor (·)∼ from the category of preorder-enriched categories
and functors to the category of poset-enriched ones. See Appendix B.4 for details.

We have already seen, although implicitly, an example of this construction in passing
from CB≤Σ (Definition 29) to CBΣ (Definition 21): it is indeed immediate to see that(
CB≤Σ

)∼
= CBΣ. Another crucial instance is provided by the following observation, where

Span∼C is a shorthand for
(

Span≤C
)∼

.

I Proposition 39. Span∼ Set ∼= Rel as cartesian bicategories.

The above proposition implicitly makes use of the following fact.

I Proposition 40. The functor (·)∼ maps preorder-enriched cartesian bicategories and
morphisms into poset-enriched cartesian bicategories and morphisms.

To conclude, it is convenient to establish a general theory of completeness results.

I Definition 41. Let C,D be preorder-enriched categories and let F be a class of preordered
functors C → D. We say that C is F -complete for D if for all arrows x, y in C,M(x) ≤M(y)
for allM∈ F entails that x ≤ y.

I Lemma 42 (Transfer lemma). Let C,D be preorder-enriched categories and F a class of
preordered functors C → D. Assume C to be F-complete for D.
1. Then C∼ is F∼-complete for D∼, where F∼ = {F∼ | F ∈ F}.
2. If F ⊆ F ′, then C is F ′-complete for D.

All the pieces are now in place for a

Proof of Theorem 17. We need to show completeness – that is – assuming c 5 c′, we need
to prove c ≤CBΣ c

′ for all GCQ terms c and c′. Observe that c ≤CBΣ c
′ if and only if

c ≤ c′ as arrows of CBΣ (Definition 21). (†)

Moreover, using Proposition 23, c 5 c′ iff

Mc ≤Mc′, for all morphisms of cartesian bicategoriesM : CBΣ → Rel . (‡)

Our task becomes, therefore, to show that (‡) implies (†). In other words, we need to prove
CBΣ to be G-complete for Rel, where G is the class of morphisms of cartesian bicategories

F. Bonchi, J. Seeber, and P. Sobociński 13:15

of type : CBΣ → Rel. Let F be the class of morphisms of preorder-enriched cartesian bicat-
egories from CB≤Σ to Span≤ Set. Since, by Theorem 37, CB≤Σ is F-complete for Span≤ Set,
we can conclude by Lemma 42.1 that

(
CB≤Σ

)∼
is F∼-complete for

(
Span≤ Set

)∼
. By Pro-

position 39, this is equivalent to CBΣ being F∼-complete for Rel. Now, by Proposition 40
F∼ ⊆ G, so the claim follows by Lemma 42.2. J

9 Discussion, related and future work

We introduced a string diagrammatic language for conjunctive queries and demonstrated a
sound and complete axiomatisation for query equivalence and inclusion. To prove complete-
ness, we showed that our language provides an algebra able to express all hypergraphs and
that our axioms characterise both hypergraph isomorphisms and existence of hypergraph
morphisms. A recent result [19] introduced an extension of the allegorical fragment of
the algebra of relations [33] that is able to express all graphs with tree-width at most 2.
Furthermore, the isomorphism of these graphs can be axiomatised. The algebra in [19], which
is clearly less expressive than ours, can be elegantly encoded into our string diagrams. The
same holds for the representable allegories by Freyd and Scedrov [20].

We also prove completeness with respect to Span≤ Set, the structure of which is closely
related to the bag semantics of conjunctive queries in SQL. Indeed, the join of two SQL-tables
is given by composition in Span≤ Set and not in Rel: in the resulting table the same row
can occur several times. As we have seen, with the relational semantics, query inclusion can
be decided with Chandra and Merlin’s algorithm [14] and its reduction to existence of a
hypergraph homomorphism. On the other hand, decidability of inclusion for the bag semantic
is, famously, open. Originally posed by Vardi and Chaudhuri [15], it has been studied for
different fragments and extensions of conjunctive queries [23, 2, 24]. It is worth mentioning
that it is known [26] that there is a reduction to the homomorphism domination problem,
which seems intimately related with our Proposition 36. Unfortunately, the preorder in
Span≤ Set – the existence of a span morphism – does not directly correspond to bag inclusion:
one must restrict to the existence of an injective morphism. We leave this promising path for
future work.

References
1 Samson Abramsky and Bob Coecke. Categorical quantum mechanics. CoRR,

abs/1401.4973, 2008. URL: http://arxiv.org/abs/0808.1023.
2 Foto N. Afrati, Matthew Damigos, and Manolis Gergatsoulis. Query containment under

bag and bag-set semantics. Inf. Process. Lett., 110(10):360–369, 2010. doi:10.1016/j.
ipl.2010.02.017.

3 John Baez and Jason Erbele. Categories in control. Theory and Application of Categories,
30:836–881, 2015.

4 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
pages 1–77. Springer, 1967.

5 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi.
Rewriting modulo symmetric monoidal structure. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 710–719. ACM, 2016.

6 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstraction for signal flow graphs.
In POPL 2015, pages 515–526. ACM, 2015.

7 Roberto Bruni, Ivan Lanese, and Ugo Montanari. A basic algebra of stateless connectors.
Theoretical Computer Science, 366(1–2):98–120, 2006.

CSL 2018

http://arxiv.org/abs/0808.1023
http://dx.doi.org/10.1016/j.ipl.2010.02.017
http://dx.doi.org/10.1016/j.ipl.2010.02.017

13:16 Graphical Conjunctive Queries

8 Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for P/T
nets interactions. In CONCUR 2011, volume 6901 of LNCS, pages 312–326. Springer, 2011.
doi:10.1093/jigpal/6.2.349.

9 Roberto Bruni, Hernán C. Melgratti, Ugo Montanari, and Paweł Sobociński. Connector
algebras for C/E and P/T nets’ interactions. Log Meth Comput Sci, 9(16), 2013.

10 Roberto Bruni, Ugo Montanari, Gordon D. Plotkin, and Daniele Terreni. On hierarchical
graphs: Reconciling bigraphs, gs-monoidal theories and gs-graphs. Fundam. Inform., 134(3-
4):287–317, 2014.

11 Aurelio Carboni, G Max Kelly, Robert FC Walters, and Richard J Wood. Cartesian bicat-
egories ii. Theory and Applications of Categories, 19(6):93–124, 2008.

12 Aurelio Carboni and Robert FC Walters. Cartesian bicategories i. Journal of pure and
applied algebra, 49(1-2):11–32, 1987.

13 Donald D Chamberlin and Raymond F Boyce. Sequel: A structured english query language.
In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description,
access and control, pages 249–264. ACM, 1974.

14 Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 77–90. ACM, 1977.

15 Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real conjunctive queries. In Catriel
Beeri, editor, Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 25-28, 1993, Washington, DC, USA, pages 59–70.
ACM Press, 1993. URL: http://dl.acm.org/citation.cfm?id=153850, doi:10.1145/
153850.153856.

16 Edgar F Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377–387, 1970.

17 B. Coecke and A. Kissinger. Picturing Quantum Processes. A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2016.

18 A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Loewe. Algebraic
approaches to graph transformation, part i: Basic concepts and double pushout approach.
In Handbook of Graph Grammars, pages 163–246. World Scientific, 1997.

19 Enric Cosme-Llópez and Damien Pous. K4-free graphs as a free algebra. In 42nd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August
21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 76:1–76:14, 2017.

20 Peter J Freyd and Andre Scedrov. Categories, allegories, volume 39. Elsevier, 1990.
21 Dan R. Ghica and Aliaume Lopez. A structural and nominal syntax for diagrams. CoRR,

abs/1702.01695, 2017. arXiv:1702.01695, doi:10.4204/EPTCS.266.4.
22 Victor Mikhaylovich Glushkov. The abstract theory of automata. Russian Mathematical

Surveys, 16(5):1, 1961.
23 Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of conjunctive queries: Beyond

relations as sets. ACM Trans. Database Syst., 20(3):288–324, 1995. doi:10.1145/211414.
211419.

24 T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. The containment problem for REAL
conjunctive queries with inequalities. In Stijn Vansummeren, editor, Proceedings of the
Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 80–89. ACM, 2006. URL:
http://dl.acm.org/citation.cfm?id=1142351, doi:10.1145/1142351.1142363.

25 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of
the zx-calculus for clifford+ t quantum mechanics. arXiv preprint arXiv:1705.11151, 2017.

26 Swastik Kopparty and Benjamin Rossman. The homomorphism domination exponent. Eur.
J. Comb., 32(7):1097–1114, 2011. doi:10.1016/j.ejc.2011.03.009.

http://dx.doi.org/10.1093/jigpal/6.2.349
http://dl.acm.org/citation.cfm?id=153850
http://dx.doi.org/10.1145/153850.153856
http://dx.doi.org/10.1145/153850.153856
http://arxiv.org/abs/1702.01695
http://dx.doi.org/10.4204/EPTCS.266.4
http://dx.doi.org/10.1145/211414.211419
http://dx.doi.org/10.1145/211414.211419
http://dl.acm.org/citation.cfm?id=1142351
http://dx.doi.org/10.1145/1142351.1142363
http://dx.doi.org/10.1016/j.ejc.2011.03.009

F. Bonchi, J. Seeber, and P. Sobociński 13:17

27 Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163,
2004.

28 Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science
& Business Media, 2013.

29 Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of lawvere’s
presheaf hyperdoctrine. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 555–564,
2016. doi:10.1145/2933575.2934525.

30 Kang Feng Ng and Quanlong Wang. A universal completion of the zx-calculus. arXiv
preprint arXiv:1706.09877, 2017.

31 Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The frobenius anatomy of word
meanings I: subject and object relative pronouns. CoRR, abs/1404.5278, 2014.

32 Vladimiro Sassone and Paweł Sobociński. A congruence for Petri nets. Electronic Notes in
Theoretical Computer Science, 127(2):107–120, 2005.

33 Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

A A translation from GCQ to CCQ

To translate GCQ diagrams to CCQ formulas we need to introduce a minor syntactic variant
of CCQ, this time assuming two countable sets of variables V arl = {xi | i ∈ N} and
V arr = {yi | i ∈ N}. The idea is that a diagram c : (n, m) will translate to a formula that
has its free variables in {x0, . . . , xn−1} ∪ {y0, . . . , ym−1}, i.e. there are “left” free variables →x
and “right” free variables →y .

I Definition 43. We write n,m ` φ if fr(φ) ⊆ {x0, . . . , xn−1}∪{y0, . . . , ym−1} and n+m `
φ[x[n,n+m−1]/y[0,m−1]].

Next, for R ∈ Σn,m we assume a CCQ signature in which R is a relation symbol with arity
n+m. Then, given a GCQ modelM = (X, ρ) we can obtain a CCQ model Λ(M) = (X, ρ′)
in the obvious way. With this in place, we can give a recursive translation Λ from GCQ
terms to CCQ formulas. The details are given in Figure 9. and Λ preserves the semantics:

I Proposition 44. Fix a GCQ model M = (X, ρ) and suppose that c : (n, m) is a GCQ
formula. Then (→v ,→w) ∈ [[c : (n, m)]]M iff (→v ,→w) ∈ [[n+m ` Λ(c)]]Λ(M).

Proof. Induction on the derivation of c : (n, m). J

The following is immediate from the definition of the translations Θ and Λ.

I Lemma 45. Let n ` φ andM be a CCQ model. Then [[n ` φ]]M = [[ΛΘ(n ` φ)]]ΛΘ(M). J

I Example 46. An interesting case is . It is the translation, via Θ, of 2 ` x0 = x1.
Returning to CCQ via Λ, we obtain 2, 0 ` ∃z. (x0 = z) ∧ (x1 = z) ∧ >. The formulas are
quite different, but they are logically equivalent. The case of GCQ terms and is
also interesting. The first translates via Λ to 0, 0 ` >, the second to 0, 0 ` ∃z0.> ∧>.

CSL 2018

http://dx.doi.org/10.1145/2933575.2934525

13:18 Graphical Conjunctive Queries

Λ()=1,2`(x0=y0)∧(x0=y1), Λ()=1,0`>, Λ()=2,1`(x0=y0)∧(x1=y0), Λ()=0,1`>,

Λ()=0,0`>, Λ()=1,1`x0=y0, Λ()=2,2`(x0=y1)∧(x1=y0)

m1 n1c1 7−→ m1,n1`Λ(c1)
m2 n2c2 7−→ m2,n2`Λ(c2)

(⊕)
m1 n1

m2 n2

c1

c2

7−→ m1+m2,n1+n2`Λ(c1)∧(Λ(c2)[x[m1,m1+m2−1],y[n1,n1+n2−1]/x[0,m2−1],y[0,n2−1]])

k m
c1 7−→ k,m`Λ(c1) nm

c2 7−→ m,n`Λ(c2)

(;)
k m nc1 c2 7−→ k,n`∃

→
z . (Λ(c1)[

→
z /
→
y])∧(Λ(c2)[

→
z /
→
x])

Figure 9 Translation Λ from GCQ to CCQ.

B Proofs

B.1 Proofs of Sections 2, 3, 4, and 5
Proof of Proposition 2. The ‘only if’ direction is a straightforward induction on the deriva-
tion of a formula generated by (CCQ). The ‘if’ is a trivial induction on derivations obtained
from {(>), (R), (∃), (=), (∧), (Swn,k), (Idn), (Nun)}. J

Proof of Proposition 8. Easy induction on the derivation of n ` φ. J

Proof of Proposition 9 and 10. The translation is given in Figure 9. The rest follows easily
from Propositions 8 and 44 and Lemma 45. J

Proof of Lemma 12. Follows immediately from the definition of semantics and relational
composition / tensor in Figure 3. J

Proof of Proposition 13. For each fixed model the axioms of Figure 5 are satisfied because
the category of relations with monoidal product × is symmetric monoidal. J

Proof of Lemma 22. For every object n, the monoid and comonoid are given by n , n ,
n and n , standing for the “stacking” of n of these diagrams respectively in the usual

manner. An easy induction shows that these satisfy the required laws. The definition of CBΣ

asserts that for every R ∈ Σn,m, n m
R is a lax comonoid morphism in CBΣ, but cartesian

bicategories require this for all arrows. This follows by another induction. J

Proof of Lemma 23. In the easy direction, to extract a modelM = (X, ρ) from a morphism
of cartesian bicategories F : CBΣ → Rel, define X := F(1) and let ρ(R) := F(R) for R ∈ Σ.

Conversely, given a modelM = (X, ρ), we observe that the semantics map [[·]]M (Figure 3)
gives rise to a morphism of cartesian bicategories [[·]]M : CBΣ → Rel. To prove that it is well
defined and preserves the ordering, one can easily see that the axioms of =CBΣ and ≤CBΣ are
sound. By the inductive definition, [[·]]M preserves composition ; and tensor ⊕. Finally, we
observe that, by definition, [[·]]M maps the monoids and comonoids of CBΣ into those of Rel.

J

F. Bonchi, J. Seeber, and P. Sobociński 13:19

B.2 Proofs of Section 6
We first prove Proposition 28 and then we work towards a proof of Theorem 31.

Proof of Proposition 28. We endow every object with a monoid and comonoid structure,
prove these structures to be adjoint and satisfy the special Frobenius property.
1. Define the monoid/comonoid structure on every object: Considering C as a cocartesian

monoidal category via its coproduct, it is well known, that every object comes with
a natural monoid structure. There is a monoidal functor F : C → Cospan≤C sending
f : X → Y to the cospan X Y Y

f id and mapping the natural monoid structure on every
object through F yields the monoid structures in Cospan≤C. Furthermore, there is a
duality operation •op on Cospan≤C given by mapping X Z Y

f g to Y Z X
g f . Now

define the comonoid structure on every object as the dual of the monoid. It is easy to see
that every morphism in Cospan≤C is a lax comonoid homomorphism, which follows from
the fact that every morphism in C preserves the monoid structure.

2. The monoid and comonoid structures are adjoint: In general, for f : X → Y a morphism
in C, we have F (f) ; F (f)op ≤ idX and idY ≤ F (f)op ; F (f). This follows easily from
the definition and implies the adjointness of monoid and comonoid.

3. The monoid and comonoid enjoy the special Frobenius property: The Frobenius law is a
consequence of associativity of the natural monoid and its definition. The special law
follows from the multiplication being epi. J

We will prove in Theorem 31 that Csp≤FHypΣ
∼= CB≤Σ . It is convenient to begin with

Σ = ∅. Consider the category F: objects are finite ordinals n = {0, . . . , n− 1} and arrows all
functions. Then Cospan≤F is the free preordered cartesian bicategory on the empty signature.

I Theorem 47. Cospan≤F ∼= CB≤∅ as preordered cartesian bicategories.

Proof. The translation in Figure 8 defines an isomorphism bb·cc : CB≤∅ → Cospan≤F (first
three lines). The translation dd·ee : Cospan≤F→ CB≤∅ can be found in [5, Theorem 3.3], where
it is proved that it defines an isomorphism between categories, i.e. forgetting the ordering. It
thus suffices to prove, that both translations preserve the ordering. For c, d ∈ CB≤∅ , we have

c ≤ d implies bbccc ≤ bbdcc by Proposition 28. Consider a morphism of cospans
S

n m

T

α .

We want to prove ddn→ T ← mee ≤ ddn→ S ← mee. Since every function α : S → T can be
decomposed into sums and compositions of 2→ 1 and 0→ 1 as demonstrated for example
in [28, VII.5], we can consider only these cases. In the case α : 0→ 1, we have n = m = 0
and we have to prove ≤ which is axiom (UC). The case α : 2 → 1, can be

further reduced by the following observation: Given a diagram
2

n1 + n2 m1 +m2

1

, one

easily computes the composite of spans n1 + n2 2 2 2 2 2 m1 +m2
id id id id

to be

n1 + n2 → 2← m1 +m2 and the composite n1 + n2 2 2 1 2 2 m1 +m2
id id

to be n1 + n2 → 1← m1 +m2. By compositionality, it suffices to consider the case
2

2 2
1

CSL 2018

13:20 Graphical Conjunctive Queries

which corresponds to ≤ which is axiom (MC). J

A cospan of hypergraphs is said to be disconnected if it is of the form bbR0cc ⊕ bbR1cc ⊕
. . . bbRncc for R0, . . . Rn ∈ Σ.

I Lemma 48. Let n ι→ E
ω← m and n′ ι

′

→ E′
ω′← m′ be disconnected cospans. If there are

functions f : n→ n′, g : m→ m′ and h : E → E′ s.t. the following commutes

n
ι //

f ��

E
h ��

m
g��

ωoo

n′
ι′

// E′ m′
ω′

oo

(5)

then ddn f ;ι′−−→ E′
g;ω′←−− mee ≤ ddn ι−→ E

ω←− mee.

Proof. First note that in the case of disconnected cospans, h uniquely determines f and g. To
give a hypergraph homomorphism h : E → E′ is the same as giving a label-preserving function
between their sets of hyperedges, so we identify E and E′ with their sets of hyperedges. We
can now consider the labels separately, so assume to have only one label. Furthermore, we
can consider each fiber over elements of E′ separately, so assume E′ = 1. So n′ → E′ ← m′

consist of a single hyperedge with label R ∈ Σi,j , yielding

ddn′ ι
′

−→ E′
ω′←− m′ee = ji

R

and thus n′ = i and m′ = j. It now suffices to consider cases where the size of E is either 0 or

2, yielding diagrams
0 //

¡
��

0
¡
��

0oo

¡
��

i
ι′
// 1 j

ω′
oo

(6) and i+ i
ι′+ι′

//

∇ ��

2
! ��

j + j
ω′+ω′
oo

∇��
i

ι′
// 1 j

ω′
oo

. (7)

The result for |E| ≥ 2 can be obtained inductively from these base cases. For (6),

dd0→ 0← 0ee = , and dd0→ 1← 0ee = ji
R .

The following derivation thus suffices: ji
R

(L1)
≤ i

(UC)
≤ . For (7),

ddi+ i→ 1← j + jee = ji
R

i

i

j

j
, ddi+ i

ι′+ι′−−−→ 2 ω′+ω′←−−−− j + jee =
j

R

j
R

i

i . This de-

rivation thus completes the proof: ji
R

i

i

j

j

(L2)
≤ i

Ri

i R

j

j

(MC)
≤

j
R

j
R

i

i J

We have now all the ingredients to prove Theorem 31.

Proof of Theorem 31. The proof relies on a result appearing in the proof of Theorem 3.3
in [5]: every discrete cospan of hypergraphs n ι→ G

ω← m can be written as the composition

GV GV ⊕ Ẽ GV

n

ι ??

GV + ñ

[id,j]dd

id⊕i

77

GV + m̃
id⊕o

gg [id,p] 99

m

ω``

F. Bonchi, J. Seeber, and P. Sobociński 13:21

where ñ i→ Ẽ
o← m̃ is disconnected, GV is the set of vertices of G2, j : ñ → GV and

j : m̃→ GV maps the vertices of ñ→ Ẽ ← m̃ into those of G. We only need to prove the
right-to-left implication of (3). We will show that if n → G′ ← m ≤ n → G ← m then
ddn→ G′ ← mee ≤ ddn→ G← mee.

Assume now that n ι′→ G′
ω′← m ≤ n ι→ G

ω← m, i.e., there exists an f : G→ G′ such that
fι = ι′ and fω = ω′. The morphism f induces fV : GV → G′V , fE : Ẽ → Ẽ′, fñ : ñ→ ñ′ and
fm̃ : m̃→ m̃′ making the following commute.

GV

fV

��

GV ⊕ Ẽ

fV ⊕fE

��

GV

fV

��

n

ι′ ��

ι ??

GV + ñ

[id,j]ee

fV ⊕fñ

��

id⊕i 77

GV + m̃

id⊕ogg

fV ⊕fm̃

��

[id,p] 99

m

ω``

ω′��

G′V G′V ⊕ Ẽ′ G′V

G′V + ñ′
[id,j′]

dd

id⊕i′
88

G′V + m̃′
id⊕o′
gg

[id,p′]

::

From the commutativity of the above diagram, one has:

(γ1 :=) n→ G′V ← GV + ñ ≤ n→ GV ← GV + ñ (=: δ1)
(γ2 :=) GV + m̃→ G′V ← m ≤ GV + m̃→ GV ← m (=: δ2)
(γ3 :=) GV → G′V ← GV ≤ GV → GV ← GV (=: δ3)
(γ4 :=) ñ→ Ẽ′ ← m̃ ≤ ñ→ Ẽ ← m̃ (=: δ4)

Since the first three inequations only involve sets and functions, one can use the conclusion
of Theorem 47 and deduce that: ddγiee ≤ ddδiee for i ∈ {1, 2, 3}. From the fourth inequation,
via Lemma 48, one obtains furthermore ddγ4ee ≤ ddδ4ee and concludes as follows.

ddn→ G′ ← mee = ddγ1 ; (γ3 ⊕ γ4) ; γ2ee = ddγ1ee ; (ddγ3ee ⊕ ddγ4ee) ; ddγ2ee
≤ ddδ1ee ; (ddδ3ee ⊕ ddδ4ee) ; ddδ2ee = ddδ1 ; (δ3 ⊕ δ4) ; δ2ee = ddn→ G← mee J

B.3 Proofs of Section 7
Proof of Lemma 34. Immediate from Proposition 28 by duality. J

Proof of Proposition 35. As stated in the main text,M is uniquely determined by the set
M(1) and, for each R ∈ Σn,m, a span M(R) : M(1)n → M(1)m. This data is that of a
(possibly infinite) hypergraph (Definition 24). J

Proof of Proposition 36. By definition, UG(1) = GV and UG(bbRcc) = (GV)n sR← GR
tR→

(GV)m for each R ∈ Σn,m. Below, we also use the fact that (GV)n is HypΣ[n,G].
The conclusion of Theorem 31 allows us to argue by induction on n ι→ G′

ω← m. The
base cases are bb cc, bb cc, bb cc, bb cc, bb cc, bb cc and bbRcc. Let us consider
the last of these, where n ι→ G′

ω← m is

bbRcc =
0
1

0

n-1
R

1

m-1
.

2 Since cospans are taken up-to isomorphism and since G is finite one can always assume, without loss of
generality, that GV is a finite ordinal.

CSL 2018

13:22 Graphical Conjunctive Queries

Any homomorphism f : G′ → G maps its single hyperedge to an R-hyperedge of G, call it
ef , the n vertices in the image of ι to the source of ef (ι ; f = sR(ef)) and the m vertices in
the image of ω to the target of ef (ω ; f = tR(ef)). This means that the following commutes:

GR tR

((

sR

vv

(GV)n (GV)m

HypΣ[G′, G] ω;−

66

ι;−

gg
e−

OO

The function e− : HypΣ[G′, G]→ GR is clearly an isomorphism of spans. The other base
cases are simpler or, as stated in the main text, follow from the fact that HypΣ[_, G] maps
colimits to limits, which also immediately implies the inductive case. J

B.4 Proofs of Section 8
Observe that we have a canonical identity-on-objects-functor AC : C → C∼ that sends a
morphism in C to its ∼-equivalence class in C∼. We will omit the subscript on A whenever
possible. An immediate consequence of the definition is that A preserves and reflects the
ordering in the following sense:

I Lemma 49. For C a preorder-enriched category, and x, y morphisms in C, we have
A(x) ≤ A(y) if and only if x ≤ y. J

The functors A exhibit the following universal property:

I Lemma 50. For every preordered functor F : C → D between the preordered category C and
poset-enriched category D, there is a unique poset-enriched functor G : C∼ → D making the
left diagram commute. Hence, for every preordered functor H : C → C′, C′ preorder-enriched,
there is a unique functor H∼ : C∼ → C′∼ making the right diagram commute.

C D C C′

C∼ C∼ C′∼

F

AC

H

AC AC′
G H∼

Proof. For a morphism f ∈ C let [f] denote the equivalence class of f modulo ∼. Then
setting G([f]) = F (f) is well-defined, since D is a poset-enriched category. G defines a
functor since ∼ is a congruence, hence compatible with composition. Since AC is surjective
on objects and morphisms, there can be at most one such functor G, hence G is unique. J

In other words, we get a function, (·)∼, that turns functors between preorder-enriched
categories into functors between the associated poset-enriched ones.

Proof of Proposition 39. We recall a well-known construction of the ordinary category of
relations: a span X f←− A g−→ Y induces a relation RA ⊆ X × Y by factorising A [f,g]−−−→ X × Y
as a surjection followed by an injection; the injection, when composed with the projections,
yields a jointly-injective span. These, up-to span isomorphism, are the same thing as subsets
RA ⊆ X × Y . This procedure respects composition and monoidal product, yielding a
functorial mapping Span≤ Set→ Rel on objects and arrows. Given the above, it suffices to
show that there exists a span homomorphism (X ← A→ Y)→ (X ← B → Y) iff RA ⊆ RB

F. Bonchi, J. Seeber, and P. Sobociński 13:23

as relations. The ‘only if’ direction is implied by the dotted function below, which is an
injection since it is the first part of a factorisation of an injection.

A //

����

B // // RB_�

��

RA �� //

33

X × Y

For the ‘if’ part, since (by the axiom of choice) surjective functions split, we obtain RB → B.
Then A // // RA // RB // B is easily shown to be a homomorphism of spans. J

Proof of Proposition 40. We stated the axioms of preordered cartesian bicategories and
cartesian bicategories in a way that makes the first part obvious. Given a morphism
F : B1 → B2 of preorder-enriched cartesian bicategories, clearly F∼ is still an order-preserving
monoidal functor. It also preserves the monoid and comonoid structures. J

Proof of Lemma 42. The second item is trivial. For the first one, let x, y be morphisms
in C∼ such that G(x) ≤ G(y) for all G ∈ F∼. We want to prove x ≤ y. Now let F ∈ F be
arbitrary. Then F∼(x) ≤ F∼(y) by assumption on x, y. Since morphisms in C∼ are just
equivalence classes of morphisms in C, choose representatives, i.e. morphisms f, g in C such
that A(f) = x and A(g) = x. Since the diagram

C D

C∼ D∼

F

A A
F∼

commutes, we get A(F (f)) = F∼(A(f)) = F∼(x) ≤ F∼(y) = F∼(A(g)) = A(F (g)). Since
A reflects the ordering (Lemma 49), we get F (f) ≤ F (g). But F ∈ F was arbitrary, therefore
f ≤ g, since C is F-complete for D. But therefore x = A(f) ≤ A(g) = y. J

CSL 2018

	Introduction
	Calculus of Conjunctive Queries
	Graphical conjunctive queries
	Expressivity

	From terms to string diagrams
	Axiomatisation
	Cartesian bicategories

	Discrete cospans of hypergraphs
	Hypergraphs and Cospans
	Preordered cartesian bicategories

	Completeness for spans
	Completeness for relations
	Discussion, related and future work
	A translation from GCQ to CCQ
	Proofs
	Proofs of Sections 2, 3, 4, and 5
	Proofs of Section 6
	Proofs of Section 7
	Proofs of Section 8

