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Abstract
We examine some combinatorial properties of parallel cut elimination in multiplicative linear
logic (MLL) proof nets. We show that, provided we impose some constraint on switching paths,
we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant
net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into
another sum of nets, while keeping coefficients finite. We moreover show that our constraints are
stable under reduction.

Our approach is motivated by the quantitative semantics of linear logic: many models have
been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear
logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut
elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential
nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut
elimination is essentially multiplicative. We moreover show that the set of differential nets that
occur in the Taylor expansion of an MELL net automatically satisfy our constraints.

In the present work, we stick to the unit-free and weakening-free fragment of linear logic, which
is rich enough to showcase our techniques, while allowing for a very simple kind of constraint: a
bound on the number of cuts that are crossed by any switching path.
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1 Introduction

1.1 Context: quantitative semantics and Taylor expansion
Linear logic takes its roots in the denotational semantics of λ-calculus: it is often presented,
by Girard himself [15], as the result of a careful investigation of the model of coherence
spaces. Since its early days, linear logic has thus generated a rich ecosystem of denotational
models, among which we distinguish the family of quantitative semantics. Indeed, the first
ideas behind linear logic were exposed even before coherence spaces, in the model of normal
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15:2 Application of Parallel Cut Elim. in Unit-Free Mll to the Taylor Exp. of Proof Nets

functors [16], in which Girard proposed to consider analyticity, instead of mere continuity, as
the key property of the interpretation of λ-terms: in this setting, terms denote power series,
representing analytic maps between modules.

This quantitative interpretation reflects precise operational properties of programs: the
degree of a monomial in a power series is closely related to the number of times a function
uses its argument. Following this framework, various models were considered – among which
we shall include the multiset relational model as a degenerate, boolean-valued instance. These
models allowed to represent and characterize quantitative properties such as the execution
time [5], including best and worst case analysis for non-deterministic programs [18], or the
probability of reaching a value [2]. It is notable that this whole approach gained momentum
in the early 2000’s, after the introduction by Ehrhard of models [7, 8] in which the notion
of analytic maps interpreting λ-terms took its usual sense, while Girard’s original model
involved set-valued formal power series. Indeed, the keystone in the success of this line
of work is an analogue of the Taylor expansion formula, that can be established both for
λ-terms and for linear logic proofs.

Mimicking this denotational structure, Ehrhard and Regnier introduced the differential
λ-calculus [12] and differential linear logic [13], which allow to formulate a syntactic version
of Taylor expansion: to a λ-term (resp. to a linear logic proof), we associate an infinite linear
combination of approximants [14, 11]. In particular, the dynamics (i.e. β-reduction or cut
elimination) of those systems is dictated by the identities of quantitative semantics. In turn,
Taylor expansion has become a useful device to design and study new models of linear logic,
in which morphisms admit a matrix representation: the Taylor expansion formula allows to
describe the interpretation of promotion – the operation by which a linear resource becomes
freely duplicable – in an explicit, systematic manner. It is in fact possible to show that any
model of differential linear logic without promotion gives rise to a model of full linear logic
in this way [4]: in some sense, one can simulate cut elimination through Taylor expansion.

1.2 Motivation: reduction in Taylor expansion
There is a difficulty, however: Taylor expansion generates infinite sums and, a priori, there
is no guarantee that the coefficients in these sums will remain finite under reduction. In
previous works [4, 18], it was thus required for coefficients to be taken in a complete semiring:
all sums should converge. In order to illustrate this requirement, let us first consider the
case of λ-calculus.

The linear fragment of differential λ-calculus, called resource λ-calculus, is the target
of the syntactical Taylor expansion of λ-terms. In this calculus, the application of a
term to another is replaced with a multilinear variant: 〈s〉[t1, . . . , tn] denotes the n-linear
symmetric application of resource term s to the multiset of resource terms [t1, . . . , tn].
Then, if x1, . . . , xk denote the occurrences of x in s, the redex 〈λx.s〉[t1, . . . , tn] reduces
to the sum

∑
f :{1,...,k}∼→{1,...,n} s[tf(1)/x1, . . . , tf(k)/xk]: here f ranges over all bijections

{1, . . . , k} ∼→ {1, . . . , n} so this sum is zero if n 6= k. As sums are generated by reduction,
it should be noted that all the syntactic constructs are linear, both in the sense that they
commute to sums, and in the sense that, in the elimination of a redex, no subterm is copied
nor erased. The key case of Taylor expansion is that of application:

T (MN) =
∑
n∈N

1
n! 〈T (M)〉T (N)n (1)

where T (N)n is the multiset made of n copies of T (N) – by n-linearity, T (N)n is itself an
infinite linear combination of multisets of resource terms appearing in T (N). Admitting that
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Figure 1 Taylor expansion of a promotion box (thick wires denote an arbitrary number of wires).
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Figure 2 Example of a family of nets, all reducing to a single net.

〈M〉[N1, . . . , Nn] represents the n-th derivative of M , computed at 0, and n-linearly applied
to N1, . . . , Nn, one immediately recognizes the usual Taylor expansion formula.

From (1), it is immediately clear that, to simulate one reduction step occurring in N , it
is necessary to reduce in parallel in an unbounded number of subterms of each component of
the expansion. Unrestricted parallel reduction, however, is ill defined in this setting. Consider
the sum

∑
n∈N〈λxx〉[· · · 〈λxx〉[y] · · ·] where each summand consists of n successive linear

applications of the identity to the variable y: then by simultaneous reduction of all redexes
in each component, each summand yields y, so the result should be

∑
n∈N y which is not

defined unless the semiring of coefficients is complete in some sense.
Those considerations apply to linear logic as well as to λ-calculus. We will use proof nets

[15] as the syntax for proofs of multiplicative exponential linear logic (MELL). The target of
Taylor expansion is then in promotion-free differential nets [13], which we call resource nets
in the following, by analogy with resource λ-calculus: these form the multilinear fragment of
differential linear logic.

In linear logic, Taylor expansion consists in replacing duplicable subnets, embodied by
promotion boxes, with explicit copies, as in Fig. 1: if we take n copies of the box, the
main port of the box is replaced with an n-ary ! link, while the ? links at the border of
the box collect all copies of the corresponding auxiliary ports. Again, to follow a single
cut elimination step in P , it is necessary to reduce an arbitrary number of copies. And
unrestricted parallel cut elimination in an infinite sum of resource nets is broken, as one can
easily construct an infinite family of nets, all reducing to the same resource net p in a single
step of parallel cut elimination: see Fig. 2.

1.3 Our approach: taming the combinatorial explosion of antireduction
The problem of convergence of series of linear approximants under reduction was first tackled
by Ehrhard and Regnier, for the normalization of Taylor expansion of ordinary λ-terms [14].
Their argument relies on a uniformity property, specific to the pure λ-calculus: the support
of the Taylor expansion of a λ-term forms a clique in some fixed coherence space of resource
terms. This method cannot be adapted to proof nets: there is no coherence relation on
differential nets such that all supports of Taylor expansions are cliques [22, section V.4.1].

An alternative method to ensure convergence without any uniformity hypothesis was first
developed by Ehrhard for typed terms in a λ-calculus extended with linear combinations
of terms [9]: there, the presence of sums also forbade the existence of a suitable coherence
relation. This method can be generalized to strongly normalizable [20], or even weakly
normalizable [23] terms. One striking feature of this approach is that it concentrates on
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15:4 Application of Parallel Cut Elim. in Unit-Free Mll to the Taylor Exp. of Proof Nets

the support (i.e. the set of terms having non-zero coefficients) of the Taylor expansion. In
each case, one shows that, given a normal resource term t and a λ-term M , there are finitely
many terms s, such that:

the coefficient of s in T (M) is non zero; and
the coefficient of t in the normal form of s is non zero.

This allows to normalize the Taylor expansion: simply normalize in each component, then
compute the sum, which is component-wise finite.

The second author then remarked that the same could be done for β-reduction [23], even
without any uniformity, typing or normalizability requirement. Indeed, writing s ⇒ t if s
and t are resource terms such that t appears in the support of a parallel reduct of s, the size
of s is bounded by a function of the size of t and the height of s. So, given that if s appears
in T (M) then its height is bounded by that of M , it follows that, for a fixed resource term t

there are finitely many terms s in the support of T (M) such that s⇒ t: in short, parallel
reduction is always well-defined on the Taylor expansion of a λ-term.

Our purpose in the present paper is to develop a similar technique for MELL proof nets:
we show that one can bound the size of a resource net p by a function of the size of any of its
parallel reducts, and of an additional quantity on p, yet to be defined. The main challenge is
indeed to circumvent the lack of inductive structure in proof nets: in such a graphical syntax,
there is no structural notion of height.

We claim that a side condition on switching paths, i.e. paths in the sense of Danos–
Regnier’s correctness criterion [3], is an appropriate replacement. Backing this claim, there
are first some intuitions:

the culprits for the unbounded loss of size in reduction are the chains of consecutive cuts,
as in Fig. 2;
we want the validity of our side condition to be stable under reduction so, rather than
chains of cuts, we should consider cuts in switching paths;
indeed, if p reduces to q via cut elimination, then the switching paths of q are somehow
related with those of p;
and the switching paths of a resource net in T (P ) are somehow related with those of P .

In the following, we establish this claim up to some technical restrictions, which will allow us
to simplify the exposition:

we use generalized n-ary exponential links rather than separate (co)dereliction and
(co)contraction, as this allows to reduce the dynamics of resource nets to that of multi-
plicative linear logic (MLL) proof nets;1
we limit our study to a strict fragment of linear logic, i.e. we do not consider multiplicative
units, nor the 0-ary exponential links – weakening and coweakening – as dealing with
them would require us to introduce much more machinery.

1.4 Outline
In Section 2, we first introduce proof nets formally, in the term-based syntax of Ehrhard [10].
We define the parallel cut elimination relation ⇒ in this setting, that we decompose into
multiplicative reduction ⇒m and axiom-cut reduction ⇒ax. We also present the notion of
switching path for this syntax, and introduce the quantity that will be our main object of
study in the following: the maximum number cc(p) of cuts that are crossed by any switching
path in the net p. Let us mention that typing plays absolutely no role in our approach, so
we do not even consider formulas of linear logic: we will rely only on the acyclicity of nets.

1 In other words, we adhere to a version of linear logic proof nets and resource nets which is sometimes
called nouvelle syntaxe, although it dates back to Regnier’s PhD thesis [21]. See also the discussion in
our conclusion (Section 6).
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Section 3 is dedicated to the proof that we can bound cc(q) by a function of cc(p),
whenever p ⇒ q: the main case is the multiplicative reduction, as this may create new
switching paths in q that we must relate with those in p. In this task, we concentrate on the
notion of slipknot: a pair of residuals of a cut of p occurring in a path of q. Slipknots are
essential in understanding how switching paths are structured after cut elimination.

We show in Section 4 that, if p⇒ q then the size of p is bounded by a function of cc(p)
and the size of q. Although, as explained in our introduction, this result is motivated by the
study of quantitative semantics, it is essentially a theorem about MLL.

We establish the applicability of our approach to the Taylor expansion of MELL proof
nets in Section 5: we show that if p is a resource net of T (P ), then the length of switching
paths in p is bounded by a function of the size of P – hence so is cc(p).

Finally, we discuss further work in the concluding Section 6.

2 Definitions

We provide here the minimal definitions necessary for us to work with MLL proof nets. We
use a term-based syntax, following Ehrhard [10].

As stated before, let us stress the fact that the choice of MLL is not decisive for the
development of Sections 2 to 4. The reader can check that we rely on two ingredients only:

the definition of switching paths;
the fact that multiplicative reduction amounts to plug bijectively the premises of a ⊗
link with those of ` link.

The results of those sections are thus directly applicable to resource nets, thanks to our
choice of generalized exponential links: this will be done in Section 6.

2.1 Structures
Our nets are finite families of trees and cuts; trees are inductively defined as MLL connectives
connecting trees, where the leaves are elements of a countable set of variables V . The duality
of two conclusions of an axiom is given by an involution x 7→ x over this set.

Formally, the set T of raw trees (denoted by s, t, etc.) is generated as follows:

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn)

where x ranges over a fixed countable set of variables V , endowed with a fixpoint-free
involution x 7→ x.

We also define the subtrees of a given tree t, written T(t), in the natural way : if t ∈ V ,
then T(t) = {t}. If t = α(t1, . . . , tn), then T(t) = {t} ∪

⋃
i∈{1,...,n}T(ti), for α ∈ {⊗,`}. In

particular, we write V(t) for T(t)∩ V . A tree is a raw tree t such that if α(t1, . . . , tn) ∈ T(t)
(with α = ⊗ or `), then the sets V(ti) for 1 ≤ i ≤ n are pairwise disjoint: in other words,
each variable x occurs at most once in t. A tree t is strict if {⊗(),`()} ∩T(t) = ∅.

From now on, we will consider strict trees only, i.e. we rule out the multiplicative units.
This restriction will play a crucial rôle in expressing and establishing the bounds of Sections 3
and 4. It is possible to generalize our results in presence of units: we postpone the discussion
on this subject to Section 6.2

2 An additional consequence is the fact that, given a (strict) tree t, any other tree u occurs at most
once as a subtree of t: e.g., in `2(t1, t2), V(t1) and V(t2) are both non empty and disjoint, so that
t1 6= t2. In other words, we can identify T(t) with the positions of subtrees in t, that play the rôle of
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A cut is an unordered pair c = 〈t|s〉 of trees such that V(t) ∩V(s) = ∅, and then we set
T(c) = T(t) ∪T(s). A reducible cut is a cut 〈t|s〉 such that t is a variable and t 6∈ V(s), or
such that we can write t = ⊗(t1, . . . , tn) and s = `(s1, . . . , sn), or vice versa. Note that, in
the absence of typing, we do not require all cuts to be reducible, as this would not be stable
under cut elimination.

Given a set A, we denote by −→a any finite family of elements of A. In general, we
abusively identify −→a with any enumeration (a1, . . . , an) ∈ An of its elements, and write
−→a ,
−→
b for the union of disjoint families −→a and

−→
b . If −→γ is a family of trees or cuts, we write

V(−→γ ) =
⋃
γ∈−→γ V(γ) and T(−→γ ) =

⋃
γ∈−→γ T(γ). An MLL proof net is a pair p = (−→c ;−→t )

of a finite family −→c of cuts and a finite family −→t of trees, such that for all cuts or trees
γ, γ′ ∈ −→c ,−→t , V(γ) ∩V(γ′) = ∅, and such that for any x ∈ V(p) = V(−→c ) ∪V(−→t ), we have
x ∈ V(p) too. We then write C(p) = −→c .

2.2 Cut elimination
The substitution γ[t/x] of a tree t for a variable x in a tree (or cut, or net) γ is defined in
the usual way. By the definition of trees, we notice that this substitution is essentially linear,
since each variable x appears at most once in a tree.

There are two basic cut elimination steps, one for each kind of reducible cut:
the elimination of a connective cut yields a family of cuts: we write 〈⊗(t1, . . . , tn)| `
(s1, . . . , sn)〉 →m (〈ti|si〉)i∈{1,...,n} that we extend to nets by setting (c,−→c ;−→t ) →m

(−→c ′,−→c ;−→t ) whenever c→m
−→c ′;

the elimination of an axiom cut generates a substitution: we write (〈x|t〉,−→c ;−→t ) →ax

(−→c ;−→t )[t/x] whenever x 6∈ V(t).

We are in fact interested in the simultaneous elimination of any number of reducible cuts,
that we describe as follows: we write p⇒ p′ if p = (〈x1|t1〉, . . . , 〈xn|tn〉, c1, . . . , ck,−→c ;−→t ) and
p′ = (−→c ′1, . . . ,−→c ′k,

−→c ;−→t )[t1/x1] · · · [tn/xn], with ci →m
−→c ′i for 1 ≤ i ≤ k, and xi 6∈ V(tj)

for 1 ≤ i ≤ j ≤ n. We moreover write p⇒m p′ (resp. p⇒ax p) in case n = 0 (resp. k = 0).
It is a simple exercise to check that if p⇒ p′ then there exists q such that p⇒m q ⇒ax p

′:
the converse does not hold, though, as the elimination of connective cuts may generate new
axiom cuts.

2.3 Paths
In order to control the effect of parallel reduction on the size of proof nets, we rely on a side
condition involving the number of cuts crossed by switching paths, i.e. paths in the sense of
Danos–Regnier’s correctness criterion [3].

In our setting, a switching of a net p is a partial map I : T(p)→ T(p) such that, for each
t = `(t1, . . . tn) ∈ T(p), I(t) ∈ {t1, . . . , tn}. Given a net p and a switching I of p, we define
adjacency relations between the elements of T(p), written ∼t,s for t, s ∈ T(p) and ∼c for
c ∈ C(p), as the least symmetric relations such that:

for any x ∈ V(p), x ∼x,x x;
for any t = ⊗(t1, . . . , tn) ∈ T(p), t ∼t,ti ti for each i ∈ {1, . . . , n};
for any t = `(t1, . . . , tn) ∈ T(p), t ∼t,I(t) I(t);
for any c = 〈t|s〉 ∈ C(p), t ∼c s.

vertices when considering t as a graphical structure. This will allow us to keep notations concise in our
treatment of paths. This trick is of course inessential for our results.
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Whenever necessary, we may write, e.g., ∼pt,s or ∼
p,I
t,s for ∼t,s to make the underlying net and

switching explicit. Let l and m ∈ (T(p)×T(p)) ∪C(p) be two adjacency labels: we write
l ≡ m if l = m or m = (x, x) and l = (x, x) for some x ∈ V .

Given a switching I in p, an I-path is a sequence of trees t0, . . . , tn of T(p) such that there
exists a sequence of pairwise 6≡ labels l1, . . . , ln with, for each i ∈ {1, . . . , n}, ti−1 ∼p,Ili ti.3
For instance, if p = (;⊗(x, y),`(y, x)) and I(`(y, x)) = x, then the chain of adjacencies
`(x, y) ∼`(x,y),x x ∼x,x x ∼⊗(x,y),x ⊗(x, y) ∼⊗(x,y),y y ∼y,y y defines an I-path in p, which
can be depicted as the dashed line in the following graphical representation of p:

⊗ `
ax axx x y

|

y

.

We call path in p any I-path for I a switching of p, and we write P(p) for the set of
all paths in p. We write t  s or t  p s whenever there exists a path from t to s in p.
Given χ = t0, . . . , tn ∈ P(p), we call subpaths of χ the subsequences of χ: a subpath is
either the empty sequence ε or a path of p. We moreover write χ for the reverse path:
χ = tn, . . . , t0 ∈ P(p). We say a net p is acyclic if for all χ ∈ P(p) and t ∈ T(p), t occurs at
most once in χ: in other words, there is no cycle t, χ, t. From now on, we consider acyclic
nets only: it is well known that if p is acyclic and p⇒ q then q is acyclic too.

If c = 〈t|s〉 ∈ C(p), we may write χ1, c, χ2 for either χ1, s, t, χ2 or χ1, t, s, χ2: by acyclicity,
this notation is unambiguous, unless χ1 = χ2 = ε.

For all χ ∈ P(p), we write ccp(χ), or simply cc(χ), for the number of cuts crossed
by χ: ccp(χ) = #{〈t|s〉 ∈ C(p) | t ∈ χ} (recall that cuts are unordered). Observe that,
by acyclicity, a path χ crosses each cut c = 〈t|s〉 at most once: either χ = χ1, c, χ2, or
χ = χ1, t, χ2, or χ = χ1, s, χ2, with neither t nor s occurring in χ1, χ2. Finally, we write
cc(p) = max{cc(χ) | χ ∈ P(p)}: in the following, we show that the maximal number of cuts
crossed by any switching path is a good parameter to limit the decrease in size induced by
parallel reduction.

3 Variations of cc(p) under reduction

Here we establish that the possible increase of cc(p) under reduction is bounded. It should be
clear that if p⇒ax q then cc(q) ≤ cc(p): intuitively, the only effect of ⇒ax is to straighten
some paths, thus decreasing the number of crossed cuts. In the case of connective cuts
however, cuts are duplicated and new paths are created.

Consider for instance a net r, as in Fig. 3, obtained from three nets p1, p2 and q, by
forming the cut 〈⊗(t1, t2)|`(s1, s2)〉 where t1 ∈ T(p1), t2 ∈ T(p2) and s1, s2 ∈ T(q). Observe
that, in the reduct r′ obtained by forming two cuts 〈t1|s1〉 and 〈t2|s2〉, we may very well
form a path that travels from p1 to q then p2; while in p, this is forbidden by any switching
of `(s1, s2). For instance, if we consider I(`(s1, s2)) = s1, we may only form a path between
p1 and p2 through ⊗(t1, t2), or a path between q and one of the pi’s, through s1 and the cut.

In the remainder of this section, we fix a reduction step p⇒m q, and we show that the
previous example describes a general mechanism: if a new path is created in this step p⇒m q,
it must involve a path ξ between two premises of a ` involved in a cut c of p, unfolded into
a path between the residuals of this cut. We call such an intermediate path ξ a slipknot.

3 In standard terminology of graph theory, an I-path in p is a trail in the unoriented graph with vertices
in T(p) and edges given by the sum of adjacency relations defined by I (identifying ∼x,x with ∼x,x).
The only purpose of our choice of labels for adjacency relations and the definition of ≡ is indeed to
capture this notion of path in the unoriented graph of subtrees induced by a switching in a net.
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p1 p2

⊗

q

`
|

cut

p1 p2

cut
cut

q

Figure 3 A cut, the resulting slipknot, and examples of paths before and after reduction.

3.1 Residual cuts and slipknots
Notice that T(q) ⊆ T(p). Observe that, given a switching J of q, it is always possible to
extend J into a switching I of p, so that, for all t, s ∈ T(q):

if t ∼q,Jt,s s then t ∼p,It,s s, and
if c ∈ C(p) and t ∼q,Jc s then t ∼p,Ic s.

To determine I uniquely, is remains only to select a premise for each ` involved in an
eliminated cut. Consider c = 〈⊗(t1, . . . , tn)|`(s1, . . . , sn)〉 ∈ C(p) and assume c is eliminated
in the reduction p⇒m q. Then the residuals of c in q are the cuts 〈ti|si〉 ∈ C(q) for 1 ≤ i ≤ n.

If ξ ∈ P(q), a slipknot of ξ is any pair (d, d′) of (necessarily distinct) residuals in q of a cut
in p, such that we can write ξ = χ1, d, χ2, d

′, χ3. We now show that a path in q is necessarily
obtained by alternating paths in p and paths between slipknots, that recursively consist
of such alternations. This will allow us to bound cc(q) depending on cc(p), by reasoning
inductively on these paths. The main tool is the following lemma:

I Lemma 1. If ξ ∈ P(q) then there exists a path ξ− ∈ P(p) with the same endpoints as ξ.

Proof. Assuming ξ is a J-path of q, we construct an I-path ξ− in p with the same endpoints
as ξ for an extension I of J as above. The definition is by induction on the number of
residuals occurring as subpaths of ξ. In the process, we must ensure that the constraints
we impose on I in each induction step can be satisfied globally: the trick is that we fix the
value of I(`(−→s )) only in case exactly one residual of the cut involving `(−→s ) occurs in ξ.

First consider the case of ξ = χ1, d, χ2, d
′, χ3, for a slipknot (d, d′), where d and d′ are

residuals of c ∈ C(p). We can assume, w.l.o.g, that: (i) no other residual of c occurs in χ1,
nor in χ3; (ii) no residual of a cut c′ 6= c occurs in both χ1 and χ3. By the definition of
residuals, we can write c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p), d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t
and s, s′ ∈ −→s . It is then sufficient to prove that ξ = χ1, t, s, χ2, s

′, t′, χ3, in which case we can
set ξ− = χ−1 , t,⊗(−→t ), t′, χ−3 , where χ

−
1 and χ−3 are obtained from the induction hypothesis

(or by setting ε− = ε for empty subpaths): by condition (ii), the constraints we impose on I
by forming χ−1 and χ−3 are independent.

Let us rule out the other three orderings of d and d′: (a) ξ = χ1, s, t, χ2, t
′, s′, χ3, (b)

ξ = χ1, s, t, χ2, s
′, t′, χ3 or (c) ξ = χ1, t, s, χ2, t

′, s′, χ3. First observe that χ2 is not empty.
Indeed, if t ∼ql t′ (or t ∼

q
l s
′, or s ∼ql t′) then: l cannot be a cut of q because 〈t|s〉 and

〈t′|s′〉 ∈ C(q); l cannot be of the form (α(t1, · · · , tn), tn) because the trees t, t′, s, s′ are
pairwise disjoint; so l must be an axiom and we obtain a cycle in q.

Let u and v be the endpoints of χ2, and consider χ−2 ∈ P(p) with the same endpoints,
obtained by induction hypothesis. Necessarily, we have t ∼q,Jl u in cases (a) and (b), s ∼q,Jl u

in case (c), t′ ∼q,Jm v in cases (a) and (c), and s′ ∼q,Jm v in case (b), where l 6≡ m, and nor l nor
m is a cut: it follows that the same adjacencies hold in p for any extension I of J . Observe
that ⊗(−→t ) 6∈ χ−2 : otherwise, we would obtain a path t p ⊗(−→t ) (or ⊗(−→t ) p t

′) that we
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could extend into a cycle. Then in case (a), we obtain a cycle in p directly: t, χ−2 , t′,⊗(−→t ), t.
In cases (b) and (c), we deduce that `(−→s ) 6∈ χ−2 , and we obtain a cycle, e.g. in case (b):
t, χ−2 , s

′,`(−→s ),⊗(−→t ), t′, for any I such that I(`(−→s )) = s′.
We can now assume that each cut of p has at most one residual occurring as a subpath of

ξ. If no residual occurs in ξ, then we can set ξ− = ξ. Now fix c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p) and
assume, w.l.o.g (otherwise, consider ξ), that ξ = χ1, t, s, χ2 with t ∈ −→t and s ∈ −→s . Then we
set I(`(−→s )) = s and ξ− = χ−1 , t, c, s, χ

−
2 ∈ P(p): this is the only case in which we impose a

value for I to construct ξ−, so this choice, and the choices we make to form χ−1 and χ−2 are
all independent. J

I Lemma 2. If ξ ∈ P(q) and c = 〈⊗(−→t )| ` (−→s )〉 ∈ C(p), then at most two residuals of
c occur as subpaths of ξ, and then we can write ξ = χ1, t, s, χ2, s

′, t′, χ3 with t, t′ ∈ −→t and
s, s′ ∈ −→s .

Proof. Assume ξ = χ1, d, χ2, d
′, χ3 and d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t and s, s′ ∈ −→s .

Using Lemma 1, we establish that ξ = χ1, t, s, χ2, s
′, t′, χ3: we can exclude the other cases

exactly as in the proof of Lemma 1. Then, as soon as three residuals of c occur in ξ, a
contradiction follows. J

I Lemma 3. Slipknots are well-bracketed in the following sense: there is no path ξ =
d1, χ1, d2, χ2, d

′
1, χ3, d

′
2 ∈ P(q) such that both (d1, d

′
1) and (d2, d

′
2) are slipknots.

Proof. Assume c1 = 〈⊗(−→t 1)|`(−→s 1)〉, c2 = 〈⊗(−→t 2)|`(−→s 2)〉, and, for 1 ≤ i ≤ 2, di = (ti, si)
and d′i = (t′i, s′i), with ti, t′i ∈

−→
t i and si, s′i ∈

−→s i. By the previous lemma, we must have
ξ = t1, s1, χ1, t2, s2, χ2, s

′
1, t
′
1, χ3, s

′
2, t
′
2. Observe that nor χ−1 nor χ−3 can cross c1 or c2:

otherwise, we obtain a cycle in p. Then s1, χ
−
1 , t2, c1, s

′
2, χ
−
3 , t
′
1, c2, s1 is a cycle in p. J

I Corollary 4. Any path of q is of the form ζ1, c1, χ1, c
′
1, ζ2, . . . ζn, cn, χn, c

′
n, ζn+1 where each

subpath ζi is without slipknot, and each (ci, c′i) is a slipknot.

The previous result describes precisely how paths in q are related with those in p: it will
be crucial in the following.

3.2 Bounding the growth of cc
Now we show that we can bound cc(q) depending only on cc(p). For each ξ ∈ P(q), we
define the width wp(ξ) (or just w(ξ)): wp(ξ) = max{ccp(χ−)|χ subpath of ξ}. We have:

I Lemma 5. For any path ζ ∈ P(q), ccp(ζ−) ≤ wp(ζ) ≤ cc(p) and wp(ζ) ≤ ccq(ζ). If
moreover ζ has no slipknot, then wp(ζ) = ccq(ζ) = ccp(ζ−).

Defining ϕ : N→ N by ϕ(0) = 0 and ϕ(n+ 1) = 2(n+ 1) + (n+ 1)(ϕ(n)), we obtain:

I Lemma 6. If ξ ∈ P(q) then cc(ξ) ≤ ϕ(wp(ξ)).

Proof. The proof is by induction on w(ξ). If w(ξ) = 0, then we can easily check that cc(ξ) = 0.
Otherwise assume w(ξ) = n+ 1. Then we set ξ = ζ1, c1, χ1, c

′
1, ζ2, . . . ζk, ck, χk, c

′
n, ζk+1 as in

Corollary 4.
First observe that for all i ∈ {1, . . . , k}, w(χi) ≤ w(ξ) − 1. Indeed, ci, χi is a subpath

of ξ and w(ci, χi) = w(χi) + 1 by the definition of width. So, by induction hypothesis,
cc(χi) ≤ ϕ(n). We also have that

∑k+1
i=1 cc(ζi) ≤ w(ξ)− k. Observe indeed that cc(ξ−) =∑k+1

i=1 cc(ζi) + k, because of Lemma 5 applied to ζi, and because of the construction of ξ−
that contracts the slipknots ci, χi, c′i; also recall that cc(ξ−) ≤ w(ξ).
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We obtain:

cc(ξ) =
∑

1≤i≤k
cc(χi) +

∑
1≤j≤k+1

cc(ζj) + 2k ≤ kϕ(n) + w(ξ)− k + 2k

and, since k ≤ cc(ξ−) ≤ w(ξ) = n+1, we obtain cc(ξ) ≤ (n+1)ϕ(n)+2(n+1) = ϕ(n+1). J

Using Lemma 5 again, we obtain:

I Corollary 7. Let p⇒m q. Then, cc(q) ≤ ϕ(cc(p)).

I Remark. It is in fact possible to show that cc(q) ≤ 2n!cc(p), which is a better bound and
closer to the graphical intuition, but the proof is much longer, and we are only interested in
the existence of a bound.

4 Bounding the size of antireducts

For any tree, cut or net γ, we define the size of γ as #γ = card(T(γ)): graphically, #p is
nothing but the number of wires in p. In this section, we show that the loss of size during
parallel reduction is directly controlled by cc(p) and #q: more precisely, we show that the
ratio #p

#q is bounded by a function of cc(p).
First observe that the elimination of multiplicative cuts cannot decrease the size by more

than a half:

I Lemma 8. If p⇒m q then #p ≤ 2#q.

Proof. It is sufficient to observe that if c→m
−→c then #c = 2 + #−→c ≤ 2#−→c .4 J

4.1 Elimination of axiom cuts
Observe that:

if x ∈ V(γ) then #γ[t/x] = #γ + #t− 1;
if x 6∈ V(γ) then #γ[t/x] = #γ.

It follows that, in the elimination of a single axiom cut p→ax q, we have #p = #q + 1. But
we cannot reproduce the proof of Lemma 8 for ⇒ax: as stated in our introduction, chains of
axiom cuts reducing into a single wire are the source of the collapse of size. We can bound
the length of those chains by cc(p), however, and this allows us to bound the loss of size
during reduction.

I Lemma 9. If p⇒ax q then #p ≤ (2cc(p) + 1)#q.

Proof. Assume p = (〈x1|t1〉, . . . , 〈xn|tn〉,−→c ;−→s ) and q = (−→c ;−→s )[t1/x1] · · · [tn/xn] with xi 6∈
V(tj) for 1 ≤ i ≤ j ≤ n. In case cc(p) = 0, we have n = 0 and p = q so the result is
obvious. We thus assume cc(p) > 0: to establish the result in this case, we make the chains
of eliminated axiom cuts explicit.

Due to the condition on free variables, there exists a (necessarily unique) permutation of
〈x1|t1〉, . . . , 〈xn|tn〉 yielding a family of the form −→c 1, . . . ,

−→c k such that:

4 This is due to the fact that all the trees are strict, so −→c is not empty and #−→c ≥ 1. Without the
strictness condition, we would have to deal with annihilating reductions 〈⊗()|` ()〉 →m ε: this will be
discussed in the conclusion.
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for 1 ≤ i ≤ k, we can write −→c i = 〈xi0|xi1〉, . . . , 〈xini−1|xini
〉, 〈xini

|ti〉;
each −→c i is maximal with this shape, i.e. xi0 6∈ {x1, . . . , xn, t1, . . . , tn} and, in case ti is a
variable, ti 6∈ {x1, . . . , xn, t1, . . . , tn};
if i < j, then the cut 〈xini

|ti〉 occurs before 〈xjnj
|tj〉 in 〈x1|t1〉, . . . , 〈xn|tn〉.

It follows that if xi0 ∈ V(tj) then j < i, and then q = (−→c ;−→s )[t1/x1
0] · · · [tk/xk0 ], by applying

the same permutation to the substitutions as we did to cuts: we can do so because, by a
standard argument, if x 6= y, x 6∈ V(u) and y 6∈ V(u) then γ[u/x][v/y] = γ[v/y][u/x].

For 1 ≤ i ≤ k, since −→c i is a chain of ni + 1 cuts, it follows that ni ≤ cc(p) − 1. So
#p = #−→c + #−→s +

∑k
i=1(#ti + 2ni + 1) ≤ #−→c + #−→s +

∑k
i=1 #ti + k(2cc(p)− 1). Moreover

#q = #−→c + #−→s +
∑k
i=1 #ti − k. It follows that #p ≤ #q + 2kcc(p) and, to conclude, it

will be sufficient to prove that #q ≥ k.
For 1 ≤ i ≤ k, let Ai = {j > i | xj0 ∈ V(ti)}, and then let A0 = {i | xi0 ∈ V(−→c ,−→s )}. It fol-

lows from the construction that {A0, . . . , Ak−1} is a partition (possibly including empty sets)
of {1, . . . , k}. By construction, #ti > card(Ai). Now consider qi = (−→c ;−→s )[t1/x1

0] · · · [ti/xi0]
for 0 ≤ i ≤ k so that q = qk. For 1 ≤ i ≤ k, we obtain #qi = #qi−1 + #ti − 1 ≥
#qi−1 + card(Ai). Also observe that #q0 = #(−→c ;−→s ) ≥ card(Ai). We can then conclude:
#q = #qk ≥

∑k
i=0 card(Ai) = k. J

4.2 General case
Recall that any parallel cut elimination step p⇒ q can be decomposed into a multiplicative-
then-axiom pair of reductions: p⇒m q′ ⇒ax q. This allows us to bound the loss of size in
the reduction p⇒ q, using the previous results:

I Theorem 10. If p⇒ q then #p ≤ 4(ϕ(cc(p)) + 1)#q.

Proof. Consider first q′ such that p⇒m q′ and q′ ⇒ax q. By Lemma 8, #p ≤ 2#q′. Lemma
9 states that #q′ ≤ (2cc(q′) + 1)#q. Finally, Corollary 7, entails that cc(q′) ≤ ϕ(cc(p)), and
we can conclude: #p ≤ 2(ϕ(cc(p) + 1)#q) ≤ 4(ϕ(cc(p)) + 1)#q. J

I Corollary 11. If q is an MLL net and n ∈ N, then {p | p⇒ q and cc(p) ≤ n} is finite.

To be precise, due to our term syntax, the previous corollary holds only up to renaming
variables in axioms: we keep this precision implicit in the following.

It follows that, given an infinite linear combination of
∑
i∈I ai.pi, such that {cc(pi) | i ∈ I}

is finite, we can always consider an arbitrary family of reductions pi ⇒ qi for i ∈ I and form
the sum

∑
i∈I ai.qi: this is always well defined.

5 Taylor expansion

We now show how the previous results apply to Taylor expansion. For that purpose, we must
extend our syntax to MELL proof nets. Our presentation departs from Ehrhard’s [11] in our
treatment of promotion boxes: instead of introducing boxes as tree constructors labelled by
nets, with auxiliary ports as inputs, we consider box ports as 0-ary trees, that are related
with each other in a box context, associating each box with its contents. This is in accordance
with the usual presentation of promotion as a black box, and has two motivations:

In Ehrhard’s syntax, the promotion is not a net but an open tree, for which the trees
associated with auxiliary ports must be mentioned explicitly: this would complicate the
expression of Taylor expansion.
The nouvelle syntaxe imposes constraints on auxiliary ports, that are easier to express
when these ports are directly represented in the syntax.
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Then we show that if p is a resource net in the support of the Taylor expansion of an MELL
proof net P , then cc(p) (and in fact the length of any path in p) is bounded by a function
of P .

Observe that we need only consider the support of Taylor expansion, so we do not
formalize the expansion of MELL nets into infinite linear combinations of resource nets:
rather, we introduce T (P ) as a set of approximants. Also, as we limit our study to strict
nets, we will restrict T (P ) to those approximants that take at least one copy of each box of
P : this is enough to cover the case of weakening-free MELL.

5.1 MELL nets
In addition to the set of variables, we fix a denumerable set A of box ports: we assume given
an enumeration A = {abi | i, b ∈ N}. We call principal ports the ports ab0 and auxiliary ports
the other ports. In the so-called nouvelle syntaxe of MELL, contractions and derelictions are
merged together in a generalized contraction cell, and auxiliary ports must be premises of
such generalized contractions.

We introduce the corresponding term syntax, as follows. Raw pre-trees (S◦, T ◦, etc.)
and raw trees (S, T , etc.) are defined by mutual induction as follows:

T ::= x | ab0 | ⊗(T1, . . . , Tn) | `(T1, . . . , Tn) | ?(T ◦1 , . . . , T ◦n) and T ◦ ::= T | abi+1

requiring that each ⊗, ` and ? is of arity at least 1. We write V(S) (resp. B(S)) for the set
of variables (resp. of principal and auxiliary ports) occurring in S. A tree (resp. a pre-tree)
is a raw tree (resp. raw pre-tree) in which each variable and port occurs at most once. A cut
is an unordered pair of trees C = 〈T |S〉 with disjoints sets of variables and ports.

We now define box contexts and pre-nets by mutual induction as follows. A box context
Θ is the data of a finite set BΘ ⊂ N, and, for each b ∈ BΘ, a closed pre-net Θ(b), of the form
(Θb;
−→
C b;Tb,

−→
S ◦b). Then we write −→S ◦b = S◦b,1, . . . , S

◦
b,nb

. A pre-net is a triple P ◦ = (Θ;−→C ;−→S ◦)
where Θ is a box context, each variable and port occurs at most once in −→C ,−→S ◦, and moreover,
if abi ∈ B(−→C ;−→S ◦) then b ∈ BΘ and i ≤ nb. A closed pre-net is a pre-net P ◦ = (Θ;−→C ;−→S ◦)
such that x occurs iff x occurs, and moreover, if b ∈ BΘ then each abi with 0 ≤ i ≤ nb occurs.
Then a net is a closed pre-net of the form P = (Θ;−→C ;−→S ).

We write T(γ) for the set of sub-pre-trees of a pre-tree, or cut, or pre-net γ: the definition
extends that for subtrees in MLL nets, moreover setting T(a) = {a} for any a ∈ A (so we
do not look into the content of boxes). As for MLL, we set #γ = card(T(γ)). We write
depth(P ◦) for the maximum level of nesting of boxes in P ◦, i.e. the inductive depth in the
previous definition. Also, the size of MELL pre-nets includes that of their boxes: we set
size(P ◦) = #P ◦ +

∑
b∈BΘ

size(Θ(b)).
We extend the switching functions of MLL to ? links: for each T = ?(T1, . . . , Tn),

I(T ) ∈ {T1, . . . , Tn}, which induces a new adjacency relation T ∼T,I(T ) I(T ). We also
consider adjacency relations ∼b for b ∈ BΘ, setting abi ∼b abj whenever 0 ≤ i < j ≤ nb: w.r.t.
paths, a box be behaves like an (nb + 1)-ary axiom link and the contents is not considered.
We write P(P ◦) for the set of paths in P ◦. We say a pre-net P ◦ is acyclic if there is no cycle
in P(P ◦) and, inductively, each Θ(b) is acyclic. From now on, we consider acyclic pre-nets
only.

5.2 Resource nets and Taylor expansion
The Taylor expansion of a net P will be a set of resource nets: these are the same as the
multiplicative nets introduced before, except we have two new connectives ! and ?. Raw trees
are given as follows:

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn) | !(t1, . . . , tn) | ?(t1, . . . , tn).
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Again, we will consider strict trees only: each ⊗, `, ! and ? is of arity at least 1. In resource
nets, we extend switchings to ? links as in MELL nets, and for each t = ?(t1, . . . , tn), we set
t ∼t,I(t) I(t). Moreover, for each t = !(t1, . . . , tn), we set t ∼t,ti ti for 1 ≤ i ≤ n.

We are now ready to introduce the expansion of MELL nets. During the construction, we
need to track the conclusions of copies of boxes, in order to collect copies of auxiliary ports
in the external ? links: this is the rôle of the intermediate notion of pre-Taylor expansion.

I Definition 12. Taylor expansion is defined by induction on depth as follows. Given a
closed pre-net P ◦ = (Θ;−→C ;−→S ◦), a pre-Taylor expansion of P ◦ is any pair (p, f) of a resource
net p = (−→c ;−→t ), together with a function f : −→t → −→S ◦ such that f−1(T ) is a singleton
whenever T ∈ −→S ◦ is a tree, obtained as follows:

for each b ∈ BΘ, fix a number kb > 0 of copies;
for 1 ≤ j ≤ kb, fix a pre-Taylor expansion (pbj , f bj ) of Θ(b), and write pbj = (−→c bj ; tbj ,

−→s bj) so
that f bj (tbj) = Tb;
up to renaming the variables of the pbj ’s, ensure that the sets V(pbj) are pairwise disjoint,
and also disjoint from V(−→C ) ∪V(−→S ◦);
(−→c ;−→t ) is obtained from (−→C ;−→S ◦) by replacing each ab0 with !(tb1, . . . , tbkb

) and each abi+1

with an enumeration of
⋃kb

j=1(f bj )−1(S◦b,i+1) – thus increasing the arity of the ?-connective
having abi+1 as a premise, or increasing the number of trees in −→t if abi+1 ∈

−→
S ◦ – and then

concatenating −→c bj for b ∈ BΘ and 1 ≤ j ≤ kb;
for t ∈ −→t , set f(t) = abi+1 if f bj (t) = S◦b,i+1 for some j, otherwise let f(t) be the only
pre-tree of −→S ◦ such that t is obtained from f(t) by the previous substitution.

The Taylor expansion5 of a net P is then T (P ) = {p | (p, f) is a pre-Taylor expansion of P}.

5.3 Paths in Taylor expansion
In the following, we fix a pre-Taylor expansion (p, f) of P ◦ = (Θ;−→C ;−→S ◦), and we describe
the structure of paths in p. Observe that if t ∈ T(p) then:

either t is at top level, i.e. t is obtained from some T ∈ T(P ◦) \ A by substituting box
ports with trees from resource nets, and then we say t is outer and write t∗ = T ;
or t is in a copy of a box, i.e. t ∈ T(pbj) for some b ∈ BΘ and 1 ≤ j ≤ kb, and then we say
t is inner and write β(t) = b and ι(t) = (b, j);
or t is a cocontraction, i.e t = !(tb1, . . . , tbkb

) for some b ∈ BΘ, and then we write β(t) = b

and t = !b.
We moreover distinguish the boundaries, i.e. the cocontractions of p, together with all the
elements of the families −→s bj of Definition 12: we write b!bc = ab0 and bsc = f(s) if s ∈ −→s bj .

We say a subpath ξ = t1, . . . , tn of χ ∈ P(p) is an inner subpath (resp. an outer subpath)
if each ti is inner (resp. outer), and ξ is a box subpath if each ti is inner or a cocontraction.

I Lemma 13. If ξ = t0, . . . , tn is an inner path of p then ι(ti) = ι(tj) for all i and j. We
then write β(ξ) = b and ι(ξ) = (b, j).

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u). J

5 More extensive presentations of Taylor expansion of MELL nets exist in the literature, in various styles
[19, 17, 6]. Our only purpose here is to introduce sufficient notations to present our analysis of the
length of paths in T (P ) by a function of the size of P .
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I Lemma 14. If ξ is a box path of p then ξ is an inner path or there is b ∈ BΘ such that
ξ = χ1, !b, χ2 with χ1 and χ2 inner subpaths. In the latter case: if χ1 6= ε then β(χ1) = b; if
χ2 6= ε then β(χ2) = b; and ι(χ1) 6= ι(χ2) in case both subpaths are non empty.

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u); if t ∼ !b and t is inner then
β(t) = b; and no other adjacency relation can hold between the elements of a box path. J

I Lemma 15. If ξ = t0, . . . , tn is outer then ξ∗ = t∗0, . . . , t
∗
n ∈ P(P ◦).

Proof. If t and s are outer, then t ∼p,Il s iff t∗ ∼P
◦,I∗

l∗ s∗, where I∗ is obtained by restricting
I to outer trees and then composing with −∗. Moreover, −∗ is injective. J

I Lemma 16. Assume ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each
ξi is outer. Then we can write χi = ui, χ

′
i, vi where ui and vi are boundaries. Moreover,

β(χi) 6= β(χj) when i 6= j, and we obtain ξ∗ = ξ∗0 , bu1c, bv1c, ξ∗1 , . . . , bunc, bvnc, ξ∗n ∈ P(P ◦).

Proof. The proof is by induction on n. If n = 0, i.e. ξ is outer, then we conclude by the
previous lemma. We can thus assume n > 0.

The endpoints of χi are boundaries, because χi is a box path and the endpoints of ξi−1
and ξi are outer. Since each boundary is adjacent to at most one outer tree, of which it is an
immediate subtree or against which it is cut, χi is not reduced to a single boundary. For
1 ≤ i ≤ n, write χi = (ui, χ′i, vi).

Write bi = β(χi). Observe that, up to −∗, the only new adjacency relations in ξ∗ are the
buic ∼bi

bvic for 1 ≤ i ≤ n. Hence, to conclude that ξ∗ is indeed a path, it will be sufficient
to prove that bi 6= bj when i 6= j. If i < j then, by applying the induction hypothesis, we
obtain ζ = ξ∗i , . . . , buj−1c, bvj−1c, ξ∗j−1 ∈ P(P ◦). Then, if we had bi = bj , we would obtain a
cycle bvic, ζ, bujc, bvic in P ◦, which is a contradiction. J

From Lemma 16, we can derive that p is acyclic as soon as P ◦ is. Indeed, if ξ is a cycle
in p:

either there is a tree at top level in ξ and we can apply Lemma 16 to obtain a cycle in P ◦;
or ξ is an inner path, and we proceed inductively in Θ(β(ξ)).

Our final result is a quantitative version of this corollary: not only there is no cycle in
p but the length of paths in p is bounded by a function of P ◦. If ξ = t1, . . . , tn, we write
|ξ| = n for the length of ξ.

I Theorem 17. If p ∈ T (P ◦) and ξ ∈ P(p) then |ξ| ≤ 2depth(P◦)size(P ◦).

Proof. Write ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each ξi is an
outer path.

Write bi = β(χi). By Lemma 14, χi is either an inner path or of the form ζi, !bi , ζ
′
i with

ζi and ζ ′i inner subpaths in bi. By induction hypothesis applied to those inner subpaths, we
obtain |χi| ≤ 1 + 2× 2depth(Θ(bi))size(Θ(bi)).

Let ξ∗ be as in Lemma 16: we have |ξ∗| = 2n +
∑n
i=0|ξ∗i | ≤ #(P ◦). It follows that∑n

i=0|ξi| ≤ #(P ◦)− 2n.
We obtain: |ξ| =

∑n
i=0|ξi|+

∑n
i=1|χi| ≤ #(P ◦)−2n+

∑n
i=1(1+2depth(Θ(bi)+1)size(Θ(bi)))

hence |ξ| ≤ #(P ◦) +
∑n
i=1 2depth(Θ(bi)+1)size(Θ(bi)) and, since depth(Θ(bi)) < depth(P ◦),

|ξ| ≤ 2depth(P◦)(#(P ◦)+
∑n
i=1 size(Θ(bi))

)
. We conclude recalling that size(P ◦) = #(P ◦)+∑

b∈BΘ
size(Θ(b)). J

In particular, we obtain cc(p) ≤ 2depth(P◦)size(P ◦).
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5.4 Cut elimination in Taylor expansion
In resource nets, the elimination of the cut 〈?(t1, . . . , tn)|!(s1, . . . , sm)〉 yields the finite sum∑
σ:{1,...,n}∼→{1,...,m}〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉. It turns out that the results of Sections 3 and 4

apply directly to resource nets: setting 〈?(t1, . . . , tn)|!(s1, . . . , sn)〉 → 〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉
for each permutation σ, we obtain an instance of multiplicative reduction, as the order of
premises is irrelevant from a combinatorial point of view – this is all the more obvious because
no typing constraint was involved in our argument. In other words, Corollary 11 also applies
to the parallel reduction of resource nets. With Theorem 17, we obtain:

I Corollary 18. If q is a resource net and P is an MELL net, {p ∈ T (P ); p⇒ q} is finite.

6 Conclusion

Recall that our original motivation was the definition of a reduction relation on infinite linear
combinations of resource nets, simulating cut elimination in MELL through Taylor expansion.
We claim that a suitable notion is as follows:

I Definition 19. Write
∑
i∈I aipi ⇒

∑
i∈I aiqi as soon as:

for each i ∈ I, the resource net pi reduces to qi (which may be a finite sum);
for any resource net q, there are finitely many i ∈ I such that q is a summand of qi.

In particular, if
∑
i∈I aipi is a Taylor expansion, then Theorem 18 ensures that the second

condition of the definition of ⇒ is automatically valid. The details of the simulation in a
quantitative setting remain to be worked out, but the main stumbling block is now over: the
necessary equations on coefficients are well established, as they have been extensively studied
in the various denotational models; it only remained to be able to form the associated sums
directly in the syntax.

Let us mention that another important incentive to publish our results is the normalization-
by-evaluation programme that we develop with Guerrieri, Pellissier and Tortora de Falco [1] –
which is limited to strict nets for independent reasons. Indeed, if P is cut-free, the elements
of the semantics of P are in one-to-one correspondence with T (P ). Then, given a sequence
P1, . . . , Pn of MELL nets such that Pi reduces to Pi+1 by cut elimination and Pn is normal,
from pn ∈ T (Pn) we can construct a sequence p1, . . . , pn−1 of resource nets, such that each
pi ∈ T (Pi) and pi ⇒ pi+1. Then our results ensure that #p1 is bounded by a function of n,
size(P1) and #pn, which is a crucial step of our construction.

We finish the paper by reviewing the restrictions that we imposed on our framework.
Strictness is not an essential condition for the main results to hold. It is possible to deal with
units and weakenings (0-ary `, ⊗ and ? nodes), and then with complete Taylor expansion,
including 0-ary developments of boxes (generating weakenings and coweakenings). In this
case, we need to introduce additional structure – jumps from weakenings, that can be part
of switching paths – and some other constraint – a bound on the number of weakenings that
can jump to a given tree. The proof is naturally longer, and the bounds much greater, but
the finiteness property still holds. We leave a formal treatment of this extension for further
work.

The other notable constraint is the use of the nouvelle syntaxe, with generalized expo-
nential links. It is also possible to deal with a standard representation, including separate
derelictions and coderelictions, with a finer grained cut elimination procedure. This introduces
additional complexity in the formalism but, by contrast with lifting the strictness condition,
it essentially requires no new concept or technique: the difficulty in parallel reduction is to
control the chains of cuts to be simultaneously eliminated, and decomposing cut elimination
into finer reduction steps can only decrease the length of such chains.

CSL 2018
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