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Abstract
We compare three models of the probabilistic λ-calculus: the probabilistic Böhm trees of Leventis,
the probabilistic concurrent games of Winskel et al., and the weighted relational model of Ehrhard
et al. Probabilistic Böhm trees and probabilistic strategies are shown to be related by a precise
correspondence theorem, in the spirit of existing work for the pure λ-calculus. Using Leventis’
theorem (probabilistic Böhm trees characterise observational equivalence), we derive a full ab-
straction result for the games model. Then, we relate probabilistic strategies to the weighted
relational model, using an interpretation-preserving functor from the former to the latter. We
obtain that the relational model is also fully abstract.
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1 Introduction

The interest in probabilistic programs in recent years, driven in particular by applications in
machine learning and statistical modelling, has triggered the need for theoretical foundations,
going beyond the pioneering work of Kozen [14] and Saheb-Djahromi [21]. Although a variety
of approaches exist, we focus on the probabilistic λ-calculus Λ+, which extends the pure
(untyped) λ-calculus with a probabilistic choice operator. The extension is natural and
applications are quick to arise – see for instance [3]. But in order for Λ+ to become a useful
formal model for probabilistic computation, the extensive classical theory of the λ-calculus
must be readapted.

Among the existing research in this direction, we are especially interested in the work
of Ehrhard, Pagani and Tasson [11], and of Leventis [16, 17]. In [11], the authors define an
operational semantics for Λ+ and study a model in the category of probabilistic coherence
spaces, an existing model [9] of Probabilistic PCF. They prove an adequacy theorem for Λ+,
and this result also applies to the weighted relational model, of which probabilistic coherence
spaces are a refinement.
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16:2 Fully Abstract Models of the Probabilistic λ-calculus

More recently, the PhD thesis of Leventis [16] offers a thorough exploration of the
syntactical aspects of the calculus. In particular the author defines a notion of probabilistic
Böhm tree, and redevelops the Böhm theory of the λ-calculus in a probabilistic setting. This
includes Böhm ’s separation theorem: probabilistic Böhm trees, in their infinitely extensional
form, precisely characterise observational equivalence in Λ+.

In this paper, we propose an alternative model in the framework of concurrent games,
integrating ideas from our earlier work on a concurrent games model of probabilistic PCF [5]
and from Ker, Ong and Nickau’s fully abstract semantics of the pure untyped λ-calculus [13].

In [13], an exact correspondence is proved between strategies and infinitely extensional
Böhm trees. Drawing inspiration from that work, we relate probabilistic strategies and
probabilistic Böhm trees, but unlike [13], the correspondence is not bijective, because of the
additional branching information contained in probabilistic strategies. By quotienting out
this information, we derive from Leventis’ theorem a full abstraction result for the games
model.

Finally, we study a functor from the probabilistic games model to the weighted relational
model. This functor is a time-forgetting operation on strategies, in the spirit of [1]. Note that
proving the functoriality of such operations is usually challenging even without probabilities,
see for example Melliès’ work [19] – here, we address this by leveraging a “deadlock-free
lemma” proved for concurrent strategies in [5]. We show that this functor preserves the
interpretation of Λ+, with significant consequences: Ehrhard et al.’s adequacy result can be
lifted to strategies, and the full abstraction result obtained for games via probabilistic Böhm
trees can be shown to hold also for the weighted relational model, so far only known to be
adequate1.

In Section 2, we present Λ+ and its operational semantics; we also recall Leventis’ work
on probabilistic Böhm trees and define concurrent probabilistic strategies, hinting at the
correspondence between the two. In Section 3, we outline the construction of a category of
concurrent games and probabilistic strategies, and the reflexive object that it contains. We
then study, in Section 4, the correspondence between probabilistic strategies and probabilistic
Böhm trees, and prove full abstraction for the games model. Finally, in Section 5, we collapse
probabilistic strategies down to weighted relations, thus showing full abstraction for the
relational model.

2 The Probabilistic λ-calculus

2.1 Syntax
The set Λ+ of terms of the probabilistic λ-calculus is defined by the following grammar,
where p ranges over the interval [0, 1] and x over an infinite set Var:

M,N ::= x | λx.M |MN |M +p N.

Write Λ+
0 for the set of closed terms, i.e. those with no free variables.

The operator +p represents probabilistic choice, so that a term of the form M +p N

has two possible reduction steps: to M , with probability p, and to N , with probability
1− p. Accordingly, the reduction relation we consider is a Markov process over the set Λ+,
and corresponds to a probabilistic variant of the standard head-reduction. It is defined
inductively:

1 Independently and using a different method, Leventis and Pagani have obtained an alternative proof of
full abstraction, but this work is so far unpublished.
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(λx.M)N 1−→M [N/x] M +p N
p−→M M +p N

1−p−−→ N

M
p−→M ′

λx.M
p−→ λx.M ′

M
p−→M ′ M 6= λx.P

MN
p−→M ′N

For M,N ∈ Λ+, there may be many reduction paths from M to N . The weight of a
path π : M p1−→ . . .

pn−→ N is the product of the transition probabilities: w(π) =
∏n
i=1 pi. The

probability of M reducing to N is then defined as Pr(M → N) =
∑
π:M→∗N w(π).

The normal forms for this reduction are terms of the form λx0 . . . xn−1. y M0 . . .Mk−1,

where n, k ∈ N and Mi ∈ Λ+ for all i. Such terms are called head-normal forms (hnfs). A
pure λ-term has at most one hnf called – if it exists – its hnf, though of course, this does not
hold in the presence of probabilities.

Given a set H of hnfs, we set Pr(M → H) =
∑
H∈H Pr(M → H). The probability

of convergence of a term M , denoted Pr⇓(M), is the probability of M reducing to some
hnf: Pr⇓(M) = Pr(M → {H ∈ Λ+ | H hnf}). Finally we say that two terms M and N

are observationally equivalent, written M =obs N , if for all contexts C[ ], Pr⇓(C[M ]) =
Pr⇓(C[N ]).

2.2 Probabilistic Böhm trees
Infinitely extensional Böhm trees for pure λ-terms

There are several notions of infinite normal forms for pure λ-terms, including e.g. the Böhm
trees [2] and the Lévy-Longo trees, among others. The normal forms for the probabilistic
λ-terms considered in this paper build on the infinitely extensional Böhm trees (also
called Nakajima trees), which provide a notion of infinitely η-expanded normal form.

The infinitely extensional Böhm tree of M is in general an infinite tree, which can be
defined as the limit of a sequence of finite-depth approximants. In fact those approximants
will suffice for the purposes of this paper: given a λ-term M and d ∈ N, the tree BTd(M) is
⊥ if d = 0 or if M has no head-normal form, and

λz0 . . . zn−1x0x1 . . . • y

BTd−1(P0) . . . BTd−1(Pk−1) BTd−1(x0) BTd−1(x1) . . .

if d > 0 and M has hnf λz0 . . . zn−1.y P0 . . . Pk−1.
In order to deal with issues of α-renaming, we adopt the same convention as Leventis [16],

whereby the infinite sequence of abstracted variables at the root of a tree of depth d > 0 is
labelled xd0, xd1, . . . so that any tree is determined by the pair (y, (Tn)n∈N) of its head variable
and sequence of subtrees.

Leventis’ probabilistic trees

Infinitely extensional Böhm trees for the λ-calculus have striking properties: they characterise
observational equivalence of terms, and as a model they yield the maximal consistent
sensible λ-theory (see [2] for details). In his PhD thesis, Leventis [16] proposes a notion of
probabilistic Böhm tree which plays the same role for Λ+. Intuitively, because a term of

CSL 2018



16:4 Fully Abstract Models of the Probabilistic λ-calculus

the form λx0 . . . xn−1.z P0 . . . Pk−1 +p λy0 . . . ym−1.w Q0 . . . Ql−1 has two hnfs, it may be
represented by a probability distribution over trees of the form of that above. Accordingly,
two different kinds of trees are considered: value trees, representing head-normal forms
(without probability distribution at top-level), and probabilistic Böhm trees, representing
general terms:

I Definition 1. For each d ∈ N, the sets PT d of probabilistic Böhm trees of depth d
and VT d of value trees of depth d are defined as:

VT 0 = ∅,

VT d+1 =
{

(y, (Tn)n∈N) | y ∈ Var and ∀n ∈ N, Tn ∈ PT d
}

and

PT d =
{
T : VT d → [0, 1] |

∑
t∈VT d T (t) ≤ 1

}
.

We can then assign trees to individual terms:

I Definition 2. Given M ∈ Λ+ and d ∈ N, its probabilistic Böhm tree of depth d is
the tree PTd(M) ∈ PT d defined as follows:

PTd(M) : VT d −→ [0, 1]
t 7−→ Pr(M → {H hnf | VTd(H) = t})

where for any hnf H = λz0 . . . zn−1.y P0 . . . Pk−1, the value tree of depth d of H is
defined as

VTd(H) =
(
y,
(
PTd−1 (P0) , . . . ,PTd−1 (Pk−1) ,PT d−1 (xdn) , . . .)) .

Consider for example the term M1 = λxy.x (y+ 1
3

(λz.z)), a head-normal form. Figure 1a
outlines the first steps in the construction of its value tree of depth d, for some fixed d ≥ 2;
note that we use the symbol δt to denote the distribution in which t has probability 1, and
all other trees 0.

Infinitely extensional probabilistic Böhm trees precisely characterise observational equi-
valence in Λ+; writing M =PT N if for every d ∈ N, PTd(M) = PTd(N), we have:

I Theorem 3 (Leventis [16]). For any M,N ∈ Λ+, M =obs N if and only if M =PT N .

So infinitely extensional probabilistic Böhm trees provide a fully abstract interpretation of
the probabilistic λ-calculus. We will see now that similar trees arise as probabilistic strategies
when interpreting λ-terms in a denotational games model.

2.3 Strategies and event structures
Moving towards our game semantics of Λ+, we will first introduce our probabilistic strategies
as a more economical, syntax-free presentation of probabilistic Böhm trees. The usual
correspondence between Böhm trees and innocent strategies [12, 13] is thus naturally extended
to the probabilistic and nondeterministic case.

First, we notice that the precise name given to variables in e.g. Figure 1a does not matter.
Techniques like De Bruijn levels or indices do not apply here since we abstract infinitely many
variables at each level – however, a variable occurrence is uniquely identified by a pointer
to the node where it was abstracted, along with a number n, expressing that the variable
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λxd0x
d
1x
d
2 . . . • xd0

1
3δVTd−1(xd

1) + 2
3δVTd−1(λz.z)δVTd−1(xd

2)δVTd−1(xd
3) . . .

where VTd−1(xdl ) (for l ∈ N) and VTd−1(λz.z) are
λxd−1

0 xd−1
1 xd−1

2 . . . • xdl

δVTd−2(xd−1
0 )δVTd−2(xd−1

1 ) . . .

λxd−1
0 xd−1

1 xd−1
2 . . . • xd−1

0

δVTd−2(xd−1
1 )δVTd−2(xd−1

2 ) . . .

and so on.
(a) As a value tree of depth d ≥ 2.

	

⊕0

	0 	i

⊕1 ⊕0 ⊕i+1

	j 	k ...

⊕j ⊕k+1

...
...

1
3

2
3

(b) As a probabilistic strategy.

Figure 1 Two interpretations of the term M1 = λxy.x (y + 1
3

(λz.z)).

was the (n+ 1)-th introduced at this node. For example, the variable xd0 is expressed with a
pointed to the initial node, along with number 0. As a consequence of this representation,
we can omit the abstractions: at each node, there are always countably many variables being
introduced, and their name does not matter as they will be referred to differently.

Next, we split each node of the Böhm tree into two: first a node intuitively carrying the
abstractions (the target of pointers – we refer to these nodes as negative), and one carrying
the variable occurrence (the source of pointers – we refer to those as positive). Besides
bringing us closer to games, this allows us to easily distinguish the two kinds of branching
of probabilistic Böhm trees. The different arguments of a variable node form a negative
branching: each comes with its own (implicit) distinct set of fresh variables, and a subtree
(by convention, we annotate by n the negative node corresponding to the nth argument). In
contrast, for a probabilistic choice such as 1

3δVTd−1(xd
1) + 2

3δVTd−1(λz.z) in Figure 1a, the two
subtrees start by defining the same variables – so instead we represent this using a positive
branching, where we further annotate the first node of each branch with its probability.

Altogether, and ignoring the wiggly line for now, the reader may check that
the diagram of Figure 1b matches the Böhm tree of Figure 1a according to these conventions
(the correspondence will be made formal in Section 4). Read from top to bottom, these
diagrams have an interactive flavour: they describe the actions of a player ⊕ depending on
those of its opponent 	. Our formalisation in terms of strategies will follow this intuition.

Probabilistic Böhm trees as probabilistic event structures

Now, we formalise the representation introduced above as a probabilistic strategy in the
sense of [24], i.e. a form of probabilistic event structure. In this section we only provide
this as a static representation, and leave the mechanism to compose strategies for Section
3. Our strategies (such as the one of Figure 1b) involve a partial order: the dependency
relation (going from top to bottom); a relation indicating conflict and generated
by probabilistic choice; and an annotation for probabilities. These are naturally formalised
as probabilistic concurrent strategies [24] (though for the purposes of this paper we will only
make use of sequential such strategies). We first recall the definition of event structures.

CSL 2018



16:6 Fully Abstract Models of the Probabilistic λ-calculus

I Definition 4. An event structure [22] is a tuple (E,≤,Con) where E is a set of events,
≤ a partial order indicating causal dependency, and Con a non-empty set of consistent
finite subsets of E, such that

[e] = {e′ | e′ ≤ e} is finite for all e ∈ E
{e} ∈ Con for all e ∈ E
Y ⊆ X ∈ Con =⇒ Y ∈ Con
X ∈ Con and e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The event structures we consider additionally have a polarity function pol : E → {+,−}
indicating for each event whether it is a move of Player (+) or Opponent (−). We call them
event structures with polarity (esps).

We fix some notation. Write e _ e′ for immediate causality, i.e. e < e′ with no events
in between. Write C(E) for the set of finite configurations of E, i.e. those finite x ⊆ E such
that x ∈ Con and x is down-closed: if e ≤ e′ ∈ x then e ∈ x. If E has polarity, we sometimes
annotate an event e to specify its polarity, as in e+, e−. If x, y ∈ C(E), write x ⊆+ y (resp.
x ⊆− y) if x ⊆ y and every event in y \ x has positive (resp. negative) polarity.

Ignoring probabilities and pointers, the diagram of Figure 1b is an esp: ≤ is the transitive
reflexive closure of _, and consistent sets are those finite sets whose down-closure do not
contain two events related by the immediate conflict . We now equip esps with
probabilities, which comes in the form of a [0, 1]-valued function called a valuation.

For the forest-like event structures required to represent probabilistic λ-terms, it suffices to
fix, for each Opponent event, a probability distribution on the Player events that immediately
follow, as in Figure 1b. But to compose them we apply the more general machinery of [24],
where valuations assign a coefficient to each configuration and not simply to each event. For
x ∈ C(E), the coefficient v(x) is the probability that the configuration x will be reached in
an execution, provided the Opponent moves in x occur. The following definition is from [24]:

I Definition 5. A probabilistic event structure with polarity consists of an esp (E,≤
,Con, pol) and a valuation, that is, a map v : C(E)→ [0, 1] satisfying

v(∅) = 1;
if x ⊆− y, then v(x) = v(y); and
if y ⊆+ x1, . . . , xn, then

v(y) ≥
∑
I

(−1)|I|+1 v

(⋃
i∈I

xi

)

where I ranges over non-empty subsets of {1, . . . , n} such that
⋃
i∈I xi is a configuration.

Leaving aside pointers the diagram of Figure 1b represents a probabilistic esp, setting
the valuation of a configuration x to be 1

3 (resp. 2
3 ) if it contains the event annotated with 1

3
(resp. 2

3 ), and 1 otherwise – a configuration cannot contain both labelled events.
Probabilistic strategies are certain probabilistic esps, equipped with a labelling map into

the game they play on. Games are themselves esps, with the following particular shape:

I Definition 6. An arena is an esp A which is
forest-shaped: if a, b, c ∈ A with a ≤ b and c ≤ b then a ≤ c or c ≤ a; and
alternating: if a _ b then pol(a) 6= pol(b).
race-free: if x ∈ C(A) has x ⊆− y ∈ C(A) and x ⊆+ z ∈ C(A), then y ∪ z ∈ C(A).
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Usually in game semantics, arenas represent types. For our untyped language, strategies
representing terms all play on a universal arena U , introduced soon. For now though, we
define a probabilistic strategy playing on arbitrary arena A as an esp, labelled by A.

I Definition 7. A probabilistic strategy on A consists of a probabilistic esp S, and a
labelling function σ : S → A on events, preserving polarity, and such that:
(1) σ preserves configurations: for every x ∈ C(S), σx ∈ C(A);
(2) σ is locally injective: if s, s′ ∈ x ∈ C(S) and σs = σs′, then s = s′;
(3) σ is receptive: for x ∈ C(S), if σx ⊆− y ∈ C(A), there is a unique x ⊆ x′ ∈ C(S) such

that σx′ = y;
(4) σ is courteous: for s, s′ ∈ S, if s _S s′ and if pol(s) = + or pol(s′) = −, then

σs _A σs
′.

Conditions (1) and (2) express that σ is amap of event structures from S to A. Conditions
(3) and (4) are there to restrict the behaviour of Player: they prevent any further constraints
from being put on Opponent events than those already specified by the game.

The diagram of Figure 1b presents a probabilistic strategy σ : S → A – or more precisely
the diagram presents S, with the pointers being representations of the immediate dependency
in A of positive moves (though we do not display A for lack of space).

Winskel [24], building on previous work [20], showed how to compose probabilistic
strategies and organise them into a category. But his games are affine, and cannot deal with
the replication of resources. In recent work [5], we have extended probabilistic strategies
with symmetry, that augments the expressivity of esps by allowing interchangeable copies of
the same event. In the next section we introduce probabilistic strategies with symmetry, and
give the interpretation of Λ+. Because of this replication of resources the interpretation of
the term M1 of Figure 1 will be an expansion of Figure 1b, taking into account Opponent’s
replications – and in general, our correspondence theorem will associate a probabilistic Böhm
tree with its expansion in that sense, formulated as a probabilistic strategy.

3 Game semantics for Λ+

In this section we construct our game semantics for Λ+. The category of games we use is
close to our earlier concurrent games model of probabilistic PCF [5], in which we introduce a
universal arena inspired from [13].

3.1 Games and strategies with symmetry
Symmetry in event structures [23] can be presented via isomorphism families:

I Definition 8. An isomorphism family on an event structure E is a set Ẽ of bijections
between configurations of E, such that:

Ẽ contains all identity bijections, and is closed under composition and inverse of bijections.
For every θ : x ∼= y ∈ Ẽ and x′ ∈ C(E) such that x′ ⊆ x, then θ|x′ ∈ Ẽ.
For every θ : x ∼= y ∈ Ẽ and every extension x ⊆ x′ ∈ C(E), there exists a (non-necessarily
unique) y ⊆ y′ ∈ C(E) and an extension θ ⊆ θ′ such that θ′ : x′ ∼= y′ ∈ Ẽ.

As usual [23], it follows from these axioms that any θ ∈ Ẽ is an order-isomorphism, i.e.
preserves and reflects the order. An event structure with symmetry is a pair (E, Ẽ),
with Ẽ an isomorphism family on E. If E has polarity, then we ask that every θ ∈ Ẽ

preserves it, and call (E, Ẽ) an event structure with symmetry and polarity (essp).

CSL 2018
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We illustrate this definition by presenting as an essp the universal arena – the game
that Λ+ strategies will play on. It is an infinitely deep tree, with at every level, ω available
moves, corresponding to calls from one of the players to a variable in context. There are ω
‘symmetric’ copies of each move. Formally:

I Definition 9. The esp (U,≤,Con, pol) is defined as having:
events: U = (N× N)∗, finite sequences of ordered pairs;
causality: s ≤ t if s is a prefix of t;
consistency: no conflicts, Con = Pfin(U);
polarity: pol(s) = − if |s| is even, + if it is odd.

In a pair (m,n) ∈ N× N, m represents the variable address (the subscript in Figure 1b) and
n is the copy index of the move (not displayed in Figure 1b).

We now add symmetry to U , following the intuition that different copies of the same
move should be interchangeable. The isomorphism family Ũ is generated by an equivalence
relation ∼ on events, defined as the smallest equivalence relation satisfying s ∼ s′ =⇒
s · (m,n) ∼ s′ · (m,n′) for any s, s′ ∈ U and m,n, n′ ∈ N. Then, a bijection θ : x ∼= y between
configurations of U is in Ũ whenever for all e ∈ x, e ∼ θ(e).

The elements of Ũ are reindexing bijections, which may update the copy indices of moves
in a configuration. In the sequel, we will identify strategies differing only by the choice of
positive copy indices, hence we need to formally identify the bijections in Ũ which do not
affect Opponent’s copy indices. Because of the dual nature of games we must do the same for
Player; thus we define ∼+ and ∼− to be the smallest equivalence relations on U satisfying:

s ∼p s′ =⇒ s · (m,n) ∼p s′ · (m,n) (for p ∈ {+,−})
s ∼+ s′ and |s| is even =⇒ s · (m,n) ∼+ s′ · (m,n′)
s ∼− s′ and |s| is odd =⇒ s · (m,n) ∼− s′ · (m,n′)

for any s, s′,m, n, n′. Just like ∼ generates Ũ , the relations ∼+ and ∼− generate isomorphism
families Ũ+ and Ũ−, respectively.

In general, the compositional mechanism will require all arenas to come with similar data:

I Definition 10. A ∼-arena is a tuple A = (A, Ã, Ã−, Ã+) with A an arena, and Ã, Ã−,
and Ã+ isomorphism families on A, such that

Ã− and Ã+ are subsets of Ã;
if θ ∈ Ã− ∩ Ã+ then θ is an identity bijection;
if θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã− (where the notation ⊆− makes sense since
bijections preserve polarity);
if θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.

In particular, ∼-arenas are certain thin concurrent games, in the terminology of [7, 8].

I Lemma 11. U = (U, Ũ , Ũ−, Ũ+) is a ∼-arena.

Strategies are in turn equipped with symmetry:

I Definition 12. A probabilistic essp is an essp S with a valuation v : C(S)→ [0, 1], such
that for every θ : x ∼= y in S̃, v(x) = v(y). A probabilistic ∼-strategy on a ∼-arena A
consists of a probabilistic essp S, and a labelling σ : S → A, such that:
(1) the underlying map σ : S → A is a strategy;
(2) σ preserves symmetry: if θ : x ∼= y ∈ S̃ then σθ : σx ∼= σy defined as {(σ s, σ s′) | (s, s′) ∈

θ}, is in Ã (that is, it is a map of essps (S, S̃)→ (A, Ã));
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(3) σ is ∼-receptive: if θ ∈ S̃ and σθ ⊆− ψ ∈ Ã, there is a unique θ ⊆ θ′ ∈ S̃ s.t. σθ′ = ψ.
(4) S is thin: for θ : x ∼= y in S̃ with x ⊆+ x∪{s}, there is a unique t ∈ S s.t. θ∪{(s, t)} ∈ S̃.
Finally, before we define our category of games and strategies with symmetry, let us say
what it means for strategies to be the same up to Player copy indices:

I Definition 13. Probabilistic ∼-strategies σ : S → A and τ : T → A are weakly
isomorphic if there is an isomorphism of essps ϕ : S → T , such that for any x ∈ C(S),
vS(x) = vT (ϕx), and moreover the diagram

S
σ ��

ϕ // T
τ}}

A

commutes up to positive symmetry, in the sense that for any x ∈ C(S), the set {(σe, τ(ϕe)) |
e ∈ x} is (the graph of) a bijection in Ã+.

3.2 The category PG
We now define a category with objects the ∼-arenas, and morphisms probabilistic ∼-strategies.

Let us first define some constructions on games: if A is a ∼-arena, its dual A⊥ is
the ∼-arena obtained by reversing the polarity of events in A, and swapping the positive
and negative isomorphism families. If A and B are ∼-arenas, their parallel composition
A ‖ B is the tuple (A ‖ B, Ã ‖ B̃, Ã− ‖ B̃−, Ã+ ‖ B̃+), where A ‖ B is the esp with events
A + B (the tagged disjoint union), componentwise causal dependency and polarity, and
consistent sets those of the form XA ‖ XB for XA ∈ ConA and XB ∈ ConB ; and where the
parallel composition Ã ‖ B̃ of isomorphism families Ã and B̃ comprises bijections of the
form θ : xA ‖ xB ∼= yA ‖ yB , defined as θ(1, a) = (1, θA(a)) and θ(2, b) = (2, θB(b)) for some
θA : xA ∼= yA and θB : xB ∼= yB in the component iso families. Note that we will often make
use of the parallel composition ‖i∈I Ai of a family of ∼-arenas; it is defined analogously.

With that in place, a probabilistic ∼-strategy from A to B is a probabilistic ∼-
strategy on the ∼-arena A⊥ ‖ B. Given σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we can form
their interaction as the pullback

T ~ SΠ1
uu

Π2
))

S ‖ C
σ‖C

((
A ‖ T

A‖τ
uu

A ‖ B ‖ C

in the category of event structures with symmetry (and without polarity). The interaction is
probabilistic: for any configuration x ∈ C(T ~S), we set vT~S(x) = vS((Π1x)S)×vT ((Π2x)T ),
where (Π1x)S is the S-component of Π1x ∈ C(S ‖ C), and likewise for (Π2x)T . The resulting
map τ ~ σ : T ~ S → A ‖ B ‖ C is not quite a probabilistic ∼-strategy, because σ and τ play
on dual versions of B, making ambiguous the polarity of some events.

So as in [20, 6], the composition of S and T is obtained after hiding those moves
of the interaction which act as synchronisation events – the moves e ∈ T ~ S such that
(τ ~ σ)e = (2, b) for some b ∈ B. The remaining set of events (so-called visible) induces
an event structure T � S with all structure inherited from T ~ S, and polarity induced
from A⊥ ‖ C. Any configuration x ∈ C(T � S) has a unique witness [x] ∈ C(T ~ S). The
isomorphism family T̃ � S comprises bijections θ : x ∼= y such that there is θ′ : [x] ∼= [y] in
T̃ ~ S with θ ⊆ θ′. We get a map τ � σ : T � S → A⊥ ‖ C which satisfies all the conditions
for a probabilistic ∼-strategy, with vT�S(x) = vT~S([x]) for every x ∈ C(T � S).
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Copycat

As usual in game semantics, the identity morphism on a ∼-arena A will be a probabilistic
∼-strategy ccA : CCA → A⊥ ‖ A called copycat, in which Player deterministically copies
the behaviour of Opponent – so any Opponent move immediately triggers the corresponding
Player move in the dual game, with probability 1. Formally, CCA has the same events,
polarity, and consistent subsets as A⊥ ‖ A and the extra immediate causal dependencies
{((1, a), (2, a)) | a ∈ A, polA⊥(a) = −} and {((2, a), (1, a)) | a ∈ A, polA(a) = −} (from this
≤CCA

is obtained by transitive closure). Copycat has an isomorphism family CC
Ã
which we

do not define here for lack of space (it can be found e.g. in [8]). Together with the valuation
vCCA

(x) = 1 for all x ∈ C(CCA), this turns copycat into a probabilistic ∼-strategy.
Recall that strategies are considered up to weak isomorphism (Definition 13). Doing so

crucially relies on the thinness axiom on strategies, which implies [8] that weak isomorphism
is stable under composition, so that we may perform a quotient and retain a well-defined
notion of composition. Though identity and associativity laws for strategies only hold up to
isomorphism, the quotient will turn them into strict equalities. So as in [5], we have:

I Lemma 14. There is a category PG having
objects: ∼-arenas
morphisms A +→ B: weak isomorphism classes of probabilistic ∼-strategies on A⊥ ‖ B.

Categorical structure

PG itself is a compact closed category, but we are interested in the subcategory PG−, where
∼-arenas and strategies are negative (that is, all initial moves are negative), and strategies
are moreover well-threaded (meaning that events in S depend on a unique initial move).

Let A and B be objects of PG−. Their tensor product A ⊗ B is simply defined as
A ‖ B. The tensorial unit is the empty ∼-arena, and moreover the tensor is closed: the
function space A ( B has events those of (‖min(B) A

⊥) ‖ B with same polarity. The
causal dependency is induced, with extra causal links {((2, b), (1, (b, a))) | b ∈ min(B), a ∈ A}.
The function χ : (A( B)→ A⊥ ‖ B defined as (1, (b, a)) 7→ (1, a) and (2, b) 7→ (2, b) allows
us to characterise consistent sets and iso families concisely: ConA(B is defined as the largest
set making χ a map of esps, and an order-isomorphism θ between configurations of A( B

is in Ã( B iff χθ ∈ Ã⊥ ‖ B. PG− also has cartesian products, with A& B defined as
A ‖ B, only with consistent sets restricted to those of A ‖ ∅ and ∅ ‖ B. The rest of the
structure, including symmetry, is induced from A ‖ B by restriction.

Finally there is a linear exponential comonad [18] ! on PG−. Given A ∈ PG−,
the ∼-arena !A is an expanded version of A with countably many copies of every move.
Accordingly, the esp !A is simply ‖i∈ω A, and the bijections in !̃A are those θ : ‖i∈Ixi ∼= ‖j∈Jyj
such that there exists a permutation π : I ∼= J and bijections θi ∈ Ã with θ((i, a)) = (πi, θia)
for all (i, a) ∈‖i∈I xi. Recall that A is negative, so the set !̃A+ of positive bijections (those
in which only Player moves are reindexed) comprises those θ ∈ !̃A for which I = J and
π : I → J is the identity function, and such that each θi ∈ Ã+. On the other hand, bijections
in !̃A− can consist of any π : I ∼= J , so long as θi ∈ Ã− for all i.

We leave out all further details of the categorical structure of PG−, including the various
constructions on morphisms. It can be shown that PG−, together with the data above, is a
model of Intuitionistic Linear Logic. From here it is standard that the Kleisli category for !
is a ccc:
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I Lemma 15. There is a cartesian closed category PG−! having
objects: negative ∼-arenas
morphisms A +→ B: (weak isomorphism classes of) negative and well-threaded probabilistic
∼-strategies on !A⊥ ‖ B.

With a slight abuse of notation, we shall keep using � for composition in the Kleisli category
PG−! . We use the following notations for the cartesian closed structure: A ⇒ B is the
function space !A ( B, cur is the bijection PG−! (A & B, C) ∼= PG−! (A,B ⇒ C), and
evA,B : (A ⇒ B) &A +→ B is the evaluation morphism.

3.3 Interpretation of Λ+

We finally come to our interpretation of Λ+ terms as probabilistic strategies. We start by
imposing one key new condition on strategies: sequential innocence. The cut-down model
will be closer to the language, allowing us to prove a correspondence result in Section 4. We
assume from now on that all strategies are negative and well-threaded:

I Definition 16. A probabilistic ∼-strategy σ : S → A is sequential innocent if
a subset X ⊆ S is a configuration if and only if it is an Opponent-branching tree (that is,
causality is tree-shaped and if a _ b and a _ c in X then pol(a) = +) and σX ∈ C(A);
for every x, y, z ∈ C(S) such that x = y ∩ z and y ∪ z ∈ C(S), either v(x) = 0 or

v(y ∪ z)
v(x) = v(y)

v(x)
v(z)
v(x) .

Less formally, innocence forces the independence (causal and probabilistic) of Opponent-
forking branches of the strategy. Sequential innocent probabilistic ∼-strategies are closed
under composition, stable under weak isomorphism, and copycat verifies all conditions, so we
can consider the subcategory PGsi

! of PG! consisting of those strategies. It is easy to check
that PGsi

! is still a ccc; it is the category we will use to interpret Λ+, and in what follows we
refer to PGsi

! -strategies simply as Λ+-strategies.

A reflexive object

Recall the ∼-arena U defined in 3.1. It is a reflexive object, meaning that there are maps
λ ∈ PGsi

! (U ⇒ U ,U) and app ∈ PGsi
! (U ,U ⇒ U) such that app� λ = idU⇒U . It is easy to

see that there is an isomorphism of essps ρ : U ∼= U ⇒ U . To turn this into a isomorphism
is PGsi

! , we can lift it to a copycat-like strategy which “plays following ρ”. Details of this
lifting are omitted but can be found in [8].

Closed terms of the probabilistic λ-calculus are interpreted as probabilistic strategies on
U . Open terms M with free variables in Γ are interpreted as Λ+-strategies JMKΓ : UΓ +→ U ,
where UΓ =

˘
x∈Γ U . The interpretation of the λ-calculus constructions is standard, using

that U is a reflexive object in a ccc:

JxKΓ = πx, the xth projection
Jλx.MKΓ = λ� cur(JMKΓ,x)
JMNKΓ = evU,U � 〈app� JMKΓ, JNKΓ〉

In order to give an interpretation to the probabilistic choice operator, we must define the
sum of two strategies. Let σ : S → (UΓ)⊥ ‖ U and τ : T → (UΓ)⊥ ‖ U be Λ+-strategies, and
let p ∈ [0, 1]. The essp S +p T has a unique initial Opponent move (as do S and T – wlog
call this move ε), and continues as either S or T non-deterministically. That is, it has events
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{ε} ] (S \ {ε}) ] (T \ {ε}), and all structure induced from S and T , with X ∈ ConS+pT iff
X ∈ ConS or X ∈ ConT . We define vS+pT (x) to be 1 if x = ∅, {ε}, pvS(x) if x ∈ C(S), and
(1− p)vT (x) if x ∈ C(T ). The obvious map σ +p τ : S +p T → (UΓ)⊥ ‖ U is a Λ+-strategy,
and the interpretation of the syntactic +p is simply JM +p NKΓ = JMKΓ +p JNKΓ. We have:

I Theorem 17 (Adequacy). For any M ∈ Λ+
0 , writing σ : S → U for JMK, we have

Pr⇓(M) =
∑

x∈C(S)
|x+|=1

vS(x),

where x+ is the set of positive events of x.

We only state the result at this point; it will follow directly from the interpretation-preserving
functor of Section 5 and the adequacy of the weighted relational model for Λ+. A direct
corollary of Theorem 17 is the following soundness result:

I Lemma 18 (Soundness). For any M,N ∈ Λ+ with free variables in Γ, if JMKΓ = JNKΓ

then M =obs N .

In fact we will prove in Section 5 that the converse, full abstraction, also holds modulo
a mild (effective) quotient. It will also follow that the weighted relational model itself is
also fully abstract, which was open. These facts rely on Leventis’ result [16] along with the
formal correspondence between strategies and Böhm trees, to which we now move on.

4 The Correspondence Theorem

In [13], the authors prove an exact correspondence theorem for the pure λ-calculus: infinitely
extensional Böhm trees precisely correspond to deterministic innocent strategies on a universal
arena. They work in a different games framework, but the analogous phenomenon occurs
in ours (the main technical difference, if we were to conduct the proof in the deterministic
case, would be the explicit duplication of moves: our strategies are expanded, in order to
accommodate Opponent’s choice of copy index for every move).

For Λ+ however, the correspondence is not so exact: although terms M and M +pM

have the same probabilistic Böhm tree, they have different interpretations in PGsi
! , where

each probabilistic choice is recorded as an explicit branching point.2 In what follows, we
identify a class of Böhm tree-like probabilistic strategies for which the exact correspondence
does hold, and we show that any strategy can be reduced to a Böhm tree-like one. Two
strategies can then be considered equivalent if they reduce to the same.

First, given a Λ+-strategy σ : S → U , define a relation ≈ on the events of S as the smallest
equivalence relation such that if s1 ≈ s′1, s1 _ s2, s′1 _ s′2 and there is an order-isomorphism
ϕ : {s ∈ S | s2 ≤ s} ∼= {s′ ∈ S | s′2 ≤ s′} such that σ s ∼+ (σ ◦ ϕ) s for all s ≥ s2, then
s2 ≈ s′2. Informally, ≈ identifies events coming from the same syntactic construct in two
copies of a term in an idempotent probabilistic sum, as in M +pM (where Opponent has
played the same copy indices).

I Definition 19. We say σ is Böhm tree-like if it satisfies
(1) for every x ∈ C(S), vS(x) > 0; and
(2) for every s, s′ ∈ S, if s ≈ s′ then s = s′.

2 In particular, PGsi
! does not yield a probabilistic λ-theory in the sense of Leventis [16].
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In other words, a Böhm tree-like strategy is one with no redundant branches. Many
Λ+-strategies do not satisfy this property, but all can be reduced to one that does:

I Definition 20. Given a Λ+-strategy σ : S → U , let Sbt be the set of ≈-equivalence classes
containing at least one event s such that vS([s]) > 0 (where [s] is the down-closure of s).

It is direct to turn Sbt into an essp Sbt with structure induced by S. The (partial) quotient
map f : S → Sbt is then used to push-forward the valuation, i.e.

vSbt(x) =
∑

y∈C(S)
fy=x

vS(y).

Then, σbt : Sbt → U is a Böhm tree-like Λ+-strategy. Write σ =bt τ when σbt = τbt.
We can now make formal the connection between Λ+-strategies and probabilistic Böhm

trees. To do so we define a bijective map from the set of Böhm tree-like Λ+-strategies of
depth d on (UΓ)⊥ ‖ U , to the set PT Γ

d of probabilistic Böhm trees of depth d with free
variables in Γ. Let us say first what we mean by the depth of a strategy:

I Definition 21. The depth of a Λ+-strategy σ : S → U , depth(σ), is the maximum number
of Player moves in a chain s0 _ · · ·_ sn in S, and ∞ if such chains have unbounded length.

We can show by induction on d:

I Lemma 22. For every d ∈ N and every Γ ⊆fin Var there is a bijection

Ψd
Γ : {σbt | σ ∈ PGsi

! (UΓ,U) and depth σ ≤ d}
∼=−→ PT dΓ.

Proof (sketch). In Section 2.3, we motivated the definition of probabilistic strategies via
a geometric correspondence with probabilistic Böhm trees, to be expected in the light of
standard definability results in game semantics.

However, probabilistic strategies differ from the picture of Section 2.3 due to the necessity
for Player to acknowledge Opponent’s replications, spawning countably many symmetric
copies of branches starting with an Opponent move. It follows however from the axioms of
symmetry that events differing only by Opponent’s choice of copy indices have isomorphic
futures. One can, with no loss of information, focus on a sub-strategy where Opponent
performs no duplication, and apply the correspondence explained in Section 2.3. J

We now show that this bijection preserves the interpretation of Λ+.

I Theorem 23 (Correspondence theorem). For any M ∈ Λ+ and d ∈ N, Ψd
Γ((JMKd)bt) =

PTd(M), where JMKd is the maximal sub-strategy of JMK with depth ≤ d.

Proof (sketch). The proof is by induction on d, and follows a similar argument as in the
non-probabilistic case [13], with the additional difficulty of dealing with infinite width: a
probabilistic Böhm tree may be a probability distribution with infinite support, and the first
level of Player moves in a probabilistic strategy may be infinite. One must therefore consider
finite-width approximations.

Probabilistic strategies are traditionally ordered using a probabilistic version of the prefix
order: given σ : S → A and τ : T → A we say σ v τ if S ⊆ T (i.e. S ⊆ T and all data
is inherited), and for all x ∈ C(S), vS(x) ≤ vT (x). However the naive restriction of this
order to the set of Böhm tree-like strategies is not sensible, because σ v τ does not imply
σbt v τbt. An alternative is given by Leventis [16, p. 111], who defines an order 4 on the set
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PT dΓ, characterised in this setting as follows: t 4 t′ iff there exists a strategy σ such that(
Ψd

Γ
)−1 (t) =bt σ and σ v

(
Ψd

Γ
)−1 (t′). Intuitively, the branches of σ are those of

(
Ψd

Γ
)−1 (t),

duplicated and assigned probability in such a way that they can be extended to those of(
Ψd

Γ
)−1 (t′) using the prefix order v.
Under 4 the set PT dΓ is a cpo, and we also call 4 the corresponding order on the set of

Böhm tree-like strategies (this automatically makes Ψd
Γ a continuous bijection).

Leventis proves the crucial property that for every term M there is a chain t0, t1, . . .

of finite-width trees satisfying PTd(M) =
∨
ti. Replaying his argument in our game

semantics, we show that the chain
(
Ψd

Γ
)−1 (ti), i ∈ N has lub (JMKd)bt. We conclude, because(

Ψd
Γ
)−1

(
PTdΓ(M)

)
=
(
Ψd

Γ
)−1 (∨

i∈N ti
)

=
∨
i∈I
(
Ψd

Γ
)−1 (ti) = (JMKd)bt. J

Using the correspondence it follows easily that:

I Lemma 24. For any M,N ∈ Λ+, M =PT N if and only if JMK =bt JNK.

I Theorem 25 (Full abstraction). The model PGsi
! / =bt is fully abstract, i.e. M =obs N if

and only if JMK =bt JNK.

5 Weighted Relational Semantics

In this final section, we consider the weighted relational model of Λ+. It lives in the
category PRel! whose objects are sets and whose morphisms are certain matrices with
coefficients in the set R+ = R+ ∪ {∞}. This interpretation of probabilistic λ-terms was first
suggested in [11], where authors consider the category PCoh! of probabilistic coherence
spaces, a refinement (using biorthogonality) of the model PRel! presented here. PCoh!
has desirable properties (notably, all coefficients are finite) but because there is a faithful
functor PCoh! → PRel! preserving the interpretation of Λ+, all the results of [11] hold for
the simpler model PRel!, which we focus on in this paper and proceed to define.

5.1 The weighted relational model of Λ+

We use the notation PRel! to indicate that the model is obtained as the Kleisli category
for a comonad !, much like PG!. The underlying category PRel is a well-known model
of intuitionistic linear logic (see e.g. [15]), but we skip its construction and give a direct
presentation of PRel!:

I Definition 26. The category PRel! is defined as follows:
objects: sets;
morphisms from X to Y : maps ϕ : Mf (X) × Y → R+, where Mf (X) is the set of
finite multisets of elements of X;
composition: for ϕ ∈ PRel!(X,Y ), ψ ∈ PRel!(Y, Z), define ψ ◦ϕ :Mf (X)×Z → R+ as

(ψ ◦ ϕ)(m, c) =
∑

p∈Mf(Y )

ψp,c
∑

(mb)b∈p

s.t. m=]mb

∏
b∈p

ϕ(mb,b)

for every m ∈Mf (X) and c ∈ Z.
identity: for any set X, and for any m ∈Mf (X) and a ∈ X, define

idX(m, a) =
{

1 if m = [a]
0 otherwise.
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PRel! is cartesian closed, with X & Y = X ] Y and X ⇒ Y = Mf (X) × Y . There is a
reflexive object D in PRel!, supporting the interpretation of Λ+, and defined as the least
fixed point of the operation mapping X to the setMf (X)(ω) of quasi-finite sequences of
finite multisets over X, i.e. with all but finitely many elements equal to [ ]. Concretely, D
is the lub of the chain D0, D1, . . . where D0 = ∅ and Di+1 =Mf (Di)(ω) for all i. It is the
case that D ∼= D ⇒ D; the set-theoretical bijection and its lifting to a PRel! isomorphism
can be found in [11].

Terms of Λ+ are interpreted in the standard way, with JM+pNKΓ
PRel!

(d) = pJMKΓ
PRel!

(d)+
(1− p)JNKΓ

PRel!
(d) for every d ∈ D. We have:

I Theorem 27 (Adequacy [11]). For any M ∈ Λ+
0 , the map JMKPRel! : D → R+ satisfies

Pr⇓(M) =
∑
d∈D2

JMKPRel!(d).

5.2 Relational collapse
We now connect the two models via a functor ↓ : PGsi

! → PRel!, which intuitively forgets the
causal information in a strategy, only remembering the states reached during the execution.

If (E, Ẽ) is an event structure with symmetry, write ∼= for the equivalence relation on
C(E) defined as x ∼= y if and only if there is θ : x ∼= y in Ẽ. For A an arbitrary negative
∼-arena, the set ↓A is then defined as the quotient {x ∈ C(A) | x non-empty}/ ∼=.

For any A,B, there is a bijection ↓(A ⇒ B) 'Mf (↓A)×↓B, enabling morphisms of PGsi
!

to be mapped to those of PRel!: if σ : S → !A ⇒ B is a Λ+-strategy and x ∈ ↓(A ⇒ B)
(so x is an equivalence class of configurations), the set of witnesses of x is defined as
witS(x) = {z ∈ C(S) | σz ∈ x and the maximal moves of z have polarity +}/ ∼= . Because
vS is invariant under symmetry, we can transport σ to ↓σ : ↓(A ⇒ B)→ R+ via

↓σ(x) =
∑

z∈witS(x)

vS(z)

for each x ∈ ↓(A ⇒ B). One can then easily deduce from the deadlock-free lemma of [5]:

I Lemma 28. ↓ is a functor PGsi
! → PRel!.

Furthermore, ↓ preserves the interpretation of Λ+ terms and is well-defined on the quotiented
model PGsi

! / =bt:

I Lemma 29. ↓U ∼= D and up to this iso, for any M ∈ Λ+ we have ↓JMKPGsi
!

= JMKPRel! .

I Lemma 30. If σ =bt τ then ↓σ = ↓ τ .

Combining the previous two lemmas and the soundness theorem, we finally get:

I Theorem 31 (Full abstraction). For any M,N ∈ Λ+ with free variables in Γ , M =obs N

if and only if JMKPRel! = JNKPRel! .

6 Conclusion

An immediate corollary of Theorem 31 is that the probabilistic coherence space model of [11]
is fully abstract, since PCoh! and PRel! induce the same equational theory on Λ+ terms.

Interestingly, the results of this paper should further entail that the interpretation of
Λ+ in the simpler model of Danos and Harmer [10] is also fully abstract, since one can in
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principle map our strategies functorially to theirs. Note however that since it is not known
how to state a notion of probabilistic innocence in Danos and Harmer’s model, definability
fails and the present work could not have been carried out there.

So using probabilistic concurrent games, we obtain probabilistic analogues of well-
established results from the theory of the pure λ-calculus: the correspondence between
Böhm trees and innocent strategies [13], and the full abstraction property of the relational
model [4].
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