
Uniform Inductive Reasoning in Transitive Closure
Logic via Infinite Descent
Liron Cohen1

Dept. of Computer Science, Cornell University, NY, USA
lironcohen@cornell.edu

Reuben N. S. Rowe2

School of Computing, University of Kent, Canterbury, UK
r.n.s.rowe@kent.ac.uk

https://orcid.org/0000-0002-4271-9078

Abstract
Transitive closure logic is a known extension of first-order logic obtained by introducing a
transitive closure operator. While other extensions of first-order logic with inductive definitions
are a priori parametrized by a set of inductive definitions, the addition of the transitive closure
operator uniformly captures all finitary inductive definitions. In this paper we present an
infinitary proof system for transitive closure logic which is an infinite descent-style counterpart
to the existing (explicit induction) proof system for the logic. We show that, as for similar
systems for first-order logic with inductive definitions, our infinitary system is complete for the
standard semantics and subsumes the explicit system. Moreover, the uniformity of the transitive
closure operator allows semantically meaningful complete restrictions to be defined using simple
syntactic criteria. Consequently, the restriction to regular infinitary (i.e. cyclic) proofs provides
the basis for an effective system for automating inductive reasoning.

2012 ACM Subject Classification Theory of computation→ Proof theory,Theory of computation
→ Automated reasoning

Keywords and phrases Induction, Transitive Closure, Infinitary Proof Systems, Cyclic Proof
Systems, Soundness, Completeness, Standard Semantics, Henkin Semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.17

Related Version An extended version of the paper is available at [12], https://arxiv.org/abs/
1802.00756.

1 Introduction

A core technique in mathematical reasoning is that of induction. This is especially true
in computer science, where it plays a central role in reasoning about recursive data and
computations. Formal systems for mathematical reasoning usually capture the notion of
inductive reasoning via one or more inference rules that express the general induction schemes,
or principles, that hold for the elements being reasoned over.

Increasingly, we are concerned with not only being able to formalise as much mathematical
reasoning as possible, but also with doing so in an effective way. In other words, we seek to
be able to automate such reasoning. Transitive closure (TC) logic has been identified as a

1 Supported by Fulbright Post-doctoral Scholar program, Weizmann Institute of Science National
Postdoctoral Award program for Advancing Women in Science, and Eric andWendy Schmidt Postdoctoral
Award program for Women in Mathematical and Computing Sciences.

2 Supported by EPSRC Grant No. EP/N028759/1.

© Liron Cohen and Reuben N. S. Rowe;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lironcohen@cornell.edu
mailto:r.n.s.rowe@kent.ac.uk
https://orcid.org/0000-0002-4271-9078
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.17
https://arxiv.org/abs/1802.00756
https://arxiv.org/abs/1802.00756
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

potential candidate for a minimal, “most general” system for inductive reasoning, which is
also very suitable for automation [1, 10, 11]. TC adds to first-order logic a single operator
for forming binary relations: specifically, the transitive closures of arbitrary formulas (more
precisely, the transitive closure of the binary relation induced by a formula with respect to
two distinct variables). In this work, for simplicity, we use a reflexive form of the operator;
however the two forms are equivalent in the presence of equality. This modest addition
affords enormous expressive power: namely it provides a uniform way of capturing inductive
principles. If an induction scheme is expressed by a formula ϕ, then the elements of the
inductive collection it defines are those “reachable” from the base elements x via the iteration
of the induction scheme. That is, those y’s for which (x, y) is in the transitive closure of ϕ.
Thus, bespoke induction principles do not need to be added to, or embedded within, the
logic; instead, all induction schemes are available within a single, unified language. In this
respect, the transitive closure operator resembles the W-type [22], which also provides a
single type constructor from which one can uniformly define a variety of inductive types.

TC logic is intermediate between first- and second-order logic. Furthermore, since the TC
operator is a particular instance of a least fixed point operator, TC logic is also subsumed
by fixed-point logics such as the µ-calculus [19]. However, despite its minimality TC logic
retains enough expressivity to capture inductive reasoning, as well as to subsume arithmetics
(see Section 4.2.1). Moreover, from a proof theoretical perspective the conciseness of the
logic makes it of particular interest. The use of only one constructor of course comes with a
price: namely, formalizations (mostly of non-linear induction schemes) may be somewhat
complex. However, they generally do not require as complex an encoding as in arithmetics,
since the TC operator can be applied on any formula and thus (depending on the underlying
signature) more naturally encode induction on sets more complex than the natural numbers.

Since its expressiveness entails that TC logic subsumes arithmetics, by Gödel’s result,
any effective proof system for it must necessarily be incomplete for the standard semantics.
Notwithstanding, a natural, effective proof system which is sound for TC logic was shown
to be complete with respect to a generalized form of Henkin semantics [9]. In this paper,
following similar developments in other formalizations for fixed point logics and inductive
reasoning (see e.g. [4, 5, 6, 24, 27]), we present an infinitary proof theory for TC logic which,
as far as we know, is the first system that is (cut-free) complete with respect to the standard
semantics. More specifically, our system employs infinite-height, rather than infinite-width
proofs (see Section 3.2). The soundness of such infinitary proof theories is underpinned
by the principle of infinite descent: proofs are permitted to be infinite, non-well-founded
trees, but subject to the restriction that every infinite path in the proof admits some infinite
descent. The descent is witnessed by tracing terms or formulas for which we can give a
correspondence with elements of a well-founded set. In particular, we can trace terms that
denote elements of an inductively defined (well-founded) set. For this reason, such theories
are considered systems of implicit induction, as opposed to those which employ explicit rules
for applying induction principles. While a full infinitary proof theory is clearly not effective,
in the aforementioned sense, such a system can be obtained by restricting consideration
to only the regular infinite proofs. These are precisely those proofs that can be finitely
represented as (possibly cyclic) graphs.

These infinitary proof theories generally subsume systems of explicit induction in expressive
power, but also offer a number of advantages. Most notably, they can ameliorate the primary
challenge for inductive reasoning: finding an induction invariant. In explicit induction
systems, this must be provided a priori, and is often much stronger than the goal one is
ultimately interested in proving. However, in implicit systems the inductive arguments and

L. Cohen and R.N. S. Rowe 17:3

hypotheses may be encoded in the cycles of a proof, so cyclic proof systems seem better for
automation. The cyclic approach has also been used to provide an optimal cut-free complete
proof system for Kleene algebra [15], providing further evidence of its utility for automation.

In the setting of TC logic, we observe some further benefits over more traditional formal
systems of inductive definitions and their infinitary proof theories (cf. LKID [6, 21]). TC (with
a pairing function) has all first-order definable finitary inductive definitions immediately
“available” within the language of the logic: as with inductive hypotheses, one does not need
to “know” in advance which induction schemes will be required. Moreover, the use of a single
transitive closure operator provides a uniform treatment of all induction schemes. That is,
instead of having a proof system parameterized by a set of inductive predicates and rules
for them (as is the case in LKID), TC offers a single proof system with a single rule scheme
for induction. This has immediate advantages for developing the metatheory: the proofs of
completeness for standard semantics and adequacy (i.e. subsumption of explicit induction) for
the infinitary system presented in this paper are simpler and more straightforward. Moreover,
it permits a cyclic subsystem, which also subsumes explicit induction, to be defined via a
simple syntactic criterion that we call normality. The smaller search space of possible proofs
further enhances the potential for automation. TC logic seems more expressive in other ways,
too. For instance, the transitive closure operator may be applied to arbitrarily complex
formulas, not only to collections of atomic formulas (cf. Horn clauses), as in e.g. [4, 6].

We show that the explicit and cyclic TC systems are equivalent under arithmetic, as is
the case for LKID [3, 26]. However, there are cases in which the cyclic system for LKID is
strictly more expressive than the explicit induction system [2]. To obtain a similar result for
TC, the fact that all induction schemes are available poses a serious challenge. For one, the
counter-example used in [2] does not serve to show this result holds for TC. If this strong
inequivalence indeed holds also for TC, it must be witnessed by a more subtle and complex
counter-example. Conversely, it may be that the explicit and cyclic systems do coincide for
TC. In either case, this points towards fundamental aspects that require further investigation.

The rest of the paper is organised as follows. In Section 2 we reprise the definition of
transitive closure logic and both its standard and Henkin-style semantics. Section 3 presents
the existing explicit induction proof system for TC logic, and also our new infinitary proof
system. We prove the latter sound and complete for the standard semantics, and also derive
cut-admissibility. In Section 4 we compare the expressive power of the infinitary system
(and its cyclic subsystem) with the explicit system. Section 5 concludes and examines the
remaining open questions for our system as well as future work. Due to lack of space, proofs
are omitted but can be found in an extended version [12].

2 Transitive Closure Logic and its Semantics

In this section we review the language of transitive closure logic, and two possible semantics
for it: a standard one, and a Henkin-style one. For simplicity of presentation we assume
(as is standard practice) a designated equality symbol in the language. We denote by
v[x1 := an, . . . , xn := an] the variant of the assignment v which assigns ai to xi for each
i, and by ϕ

{
t1
x1
, . . . , tnxn

}
the result of simultaneously substituting each ti for the free

occurrences of xi in ϕ.

I Definition 1 (The language LRTC). Let σ be a first-order signature with equality, whose
terms are ranged over by s and t and predicates by P , and let x, y, z, etc. range over
a countable set of variables. The language LRTC consists of the formulas defined by the
grammar:

ϕ,ψ ::= s = t | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ | (RTCx,y ϕ)(s, t)

CSL 2018

17:4 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

As usual, ∀x and ∃x bind free occurrences of the variable x and we identify formulas up to
renaming of bound variables, so that capturing of free variables during substitution does not
occur. Note that in the formula (RTCx,y ϕ)(s, t) free occurrences of x and y in ϕ are also
bound (but not those in s and t).

I Definition 2 (Standard Semantics). Let M = 〈D, I〉 be a first-order structure (i.e. D is a
non-empty domain and I an interpretation function), and v an assignment in M which we
extend to terms in the obvious way. The satisfaction relation |= between model-valuation
pairs 〈M,v〉 and formulas is defined inductively on the structure of formulas by:

M, v |= s = t if v(s) = v(t);
M, v |= P (t1, . . . , tn) if (v(t1), . . . , v(tn)) ∈ I(P);
M, v |= ¬ϕ if M, v 6|= ϕ;
M, v |= ϕ1 ∧ ϕ2 if both M,v |= ϕ1 and M, v |= ϕ2;
M, v |= ϕ1 ∨ ϕ2 if either M,v |= ϕ1 or M, v |= ϕ2;
M, v |= ϕ1 → ϕ2 if M, v |= ϕ1 implies M,v |= ϕ2;
M, v |= ∃x.ϕ and M,v |= ∀x.ϕ if M, v[x := a] |= ϕ for some (respectively all) a ∈ D;
M, v |= (RTCx,y ϕ)(s, t) if v(s) = v(t), or there exist a0, . . . , an ∈ D (n > 0) s.t. v(s) = a0,
v(t) = an, and M,v[x := ai, y := ai+1] |= ϕ for 0 ≤ i < n.

We say that a formula ϕ is valid with respect to the standard semantics when M,v |= ϕ

holds for all models M and valuations v.

We next recall the concepts of frames and Henkin structures (see, e.g., [18]). A frame is
a first-order structure together with some subset of the powerset of its domain (called its set
of admissible subsets).

I Definition 3 (Frames). A frame M is a triple 〈D, I,D〉, where 〈D, I〉 is a first-order
structure, and D ⊆ ℘(D).

Note that if D = ℘(D), the frame is identified with a standard first-order structure.

I Definition 4 (Frame Semantics). LRTC formulas are interpreted in frames as in Definition 2
above, except for:

M, v |= (RTCx,y ϕ)(s, t) if for every A ∈ D, if v(s) ∈ A and for every a, b ∈ D: a ∈ A
and M,v[x := a, y := b] |= ϕ implies b ∈ A, then v(t) ∈ A.

We now consider Henkin structures, which are frames whose set of admissible subsets is
closed under parametric definability.

I Definition 5 (Henkin structures). A Henkin structure is a frame M = 〈D, I,D〉 such that
{a ∈ D | M,v[x := a] |= ϕ} ∈ D for every ϕ, and v in M .

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures
as the Henkin semantics.

It is worth noting that the inclusion of equality in the basic language is merely for
notational convenience. This is because the RTC operator allows us, under both the standard
and Henkin semantics, to actually define equality s = t on terms as (RTCx,y ⊥)(s, t).

3 Proof Systems for LRTC

In this section, we define two proof systems for LRTC. The first is a finitary proof system
with an explicit induction rule for RTC formulas. The second is an infinitary proof system,
in which RTC formulas are simply unfolded, and inductive arguments are represented via

L. Cohen and R.N. S. Rowe 17:5

(Axiom):
ϕ⇒ ϕ

(WL):
Γ⇒ ∆

Γ, ϕ⇒ ∆
(WR):

Γ⇒ ∆

Γ⇒ ∆, ϕ

(=L1):
Γ⇒ ϕ

{
s
x

}
,∆

Γ, s = t⇒ ϕ
{

t
x

}
,∆

(=L2):
Γ⇒ ϕ

{
t
x

}
,∆

Γ, s = t⇒ ϕ
{

s
x

}
,∆

(=R):
⇒ t = t

(∨L):
Γ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(∧L):

Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(→L):

Γ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ→ ψ ⇒ ∆
(¬L):

Γ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆

(∨R):
Γ⇒ ϕ,ψ,∆

Γ⇒ ϕ ∨ ψ,∆
(∧R):

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∧ ψ,∆
(→R):

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
(¬R):

Γ, ϕ⇒ ∆

Γ⇒ ¬ϕ,∆

(∃L):
Γ, ϕ⇒ ∆

x 6∈ fv(Γ,∆)
Γ,∃x.ϕ⇒ ∆

(∀L):
Γ, ϕ

{
t
x

}
⇒ ∆

Γ,∀x.ϕ⇒ ∆
(Cut):

Γ⇒ ϕ,∆ Σ, ϕ⇒ Π

Γ,Σ⇒ ∆,Π

(∃R):
Γ⇒ ϕ

{
t
x

}
,∆

Γ⇒ ∃x.ϕ,∆
(∀R):

Γ⇒ ϕ,∆
x 6∈ fv(Γ,∆)

Γ⇒ ∀x.ϕ,∆
(Subst):

Γ⇒ ∆

Γ
{

t1
x1
, . . . , tn

xn

}
⇒ ∆

{
t1
x1
, . . . , tn

xn

}
Figure 1 Proof rules for the sequent calculus LK= with substitution.

infinite descent-style constructions. We show the soundness and completeness of these proof
systems, and also compare their provability relations.

Our systems for LRTC are extensions of LK=, the sequent calculus for classical first-order
logic with equality [16, 28] whose proof rules we show in Fig. 1.3 Sequents are expressions of
the form Γ⇒ ∆, for finite sets of formulas Γ and ∆. We write Γ,∆ and Γ, ϕ as a shorthand
for Γ ∪∆ and Γ ∪ {ϕ} respectively, and fv(Γ) for the set of free variables of the formulas in
the set Γ. A sequent Γ⇒ ∆ is valid if and only if the formula

∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ is.

3.1 The Finitary Proof System
We briefly summarise the finitary proof system for LRTC. For more details see [10, 11]. We
write ϕ(x1, . . . , xn) to emphasise that the formula ϕ may contain x1, . . . , xn as free variables.

I Definition 6. The proof system RTCG for LRTC is defined by adding to LK= the following
inference rules:

Γ⇒ ∆, (RTCx,y ϕ)(s, s) (1)

Γ⇒ ∆, (RTCx,y ϕ)(s, r) Γ⇒ ∆, ϕ
{
r
x ,

t
y

}
Γ⇒ ∆, (RTCx,y ϕ)(s, t)

(2)

Γ, ψ(x), ϕ(x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,y ϕ)(s, t)⇒ ∆, ψ

{
t
x

} x 6∈ fv(Γ,∆) and y 6∈ fv(Γ,∆, ψ) (3)

Rule (3) is a generalized induction principle. It states that if an extension of formula ψ is
closed under the relation induced by ϕ, then it is also closed under the reflexive transitive
closure of that relation. In the case of arithmetic this rule captures the induction rule of
Peano’s Arithmetics PA [11].

3 Here we take LK= to include the substitution rule, which was not a part of the original systems.

CSL 2018

17:6 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

3.2 Infinitary Proof Systems
We now present our infinitary proof systems for LRTC which are based on the principle of
infinite descent. This is in contrast to infinite-width proof systems based on a variant of the
infinite branching ω-rule [25, 17]. Such systems have been widely investigated and known to
be useful for attaining completeness (e.g. for arithmetics). Nonetheless, the infinite ω-rule
renders them practically useless for automated reasoning. Since our motivation here is that
of effectiveness and automation we opt for a finite system in which we allow infinite-height,
non-well-founded proofs.

I Definition 7. The infinitary proof system RTCωG for LRTC is defined like RTCG, but
replacing Rule (3) by:

Γ, s = t⇒ ∆ Γ, (RTCx,y ϕ)(s, z), ϕ
{
z
x ,

t
y

}
⇒ ∆

Γ, (RTCx,y ϕ)(s, t)⇒ ∆
(4)

where z is fresh, i.e. z does not occur free in Γ, ∆, or (RTCx,y ϕ)(s, t). The formula
(RTCx,y ϕ)(s, z) in the right-hand premise is called the immediate ancestor (cf. [7, §1.2.3])
of the principal formula, (RTCx,y ϕ)(s, t), in the conclusion.

There is an asymmetry between Rule (2), in which the intermediary is an arbitrary term
r, and Rule (4), where we use a variable z. This is necessary to obtain the soundness of the
cyclic proof system. It is used to show that when there is a counter-model for the conclusion
of a rule, then there is also a counter-model for one of its premises that is, in a sense that
we make precise below, “smaller”. In the case that s 6= t, using a fresh z allows us to pick
from all possible counter-models of the conclusion, from which we may then construct the
required counter-model for the right-hand premise. If we allowed an arbitrary term r instead,
this might restrict the counter-models we can choose from, only leaving ones “larger” than
the one we had for the conclusion. See Lemma 15 below for more details.

Proofs in this system are possibly infinite derivation trees. However, not all infinite
derivations are proofs: only those that admit an infinite descent argument. Thus we use the
terminology “pre-proof” for derivations.

I Definition 8 (Pre-proofs). An RTCωG pre-proof is a possibly infinite (i.e. non-well-founded)
derivation tree formed using the inference rules. A path in a pre-proof is a possibly infinite
sequence of sequents s0, s1, . . . (, sn) such that s0 is the root sequent of the proof, and si+1 is
a premise of si for each i < n.

The following definitions tell us how to track RTC formulas through a pre-proof, and
allow us to formalize inductive arguments via infinite descent.

I Definition 9 (Trace Pairs). Let τ and τ ′ be RTC formulas occurring in the left-hand side
of the conclusion s and a premise s′, respectively, of (an instance of) an inference rule. (τ, τ ′)
is said to be a trace pair for (s, s′) if the rule is:

the (Subst) rule, and τ = τ ′θ where θ is the substitution associated with the rule instance;
Rule (4), and either:

(a) τ is the principal formula of the rule instance and τ ′ is the immediate ancestor of τ , in
which case we say that the trace pair is progressing;

(b) otherwise, τ = τ ′.
any other rule, and τ = τ ′.

L. Cohen and R.N. S. Rowe 17:7

I Definition 10 (Traces). A trace is a (possibly infinite) sequence of RTC formulas. We say
that a trace τ1, τ2, . . . (, τn) follows a path s1, s2, . . . (, sm) in a pre-proof P if, for some k ≥ 0,
each consecutive pair of formulas (τi, τi+1) is a trace pair for (si+k, si+k+1). If (τi, τi+1) is
a progressing pair then we say that the trace progresses at i, and we say that the trace is
infinitely progressing if it progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

I Definition 11 (Infinite Proofs). A RTCωG proof is a pre-proof in which every infinite path
is followed by some infinitely progressing trace.

Clearly, we cannot reason effectively about such infinite proofs in general. In order to
do so we need to restrict our attention to those proof trees which are finitely representable.
These are the regular infinite proof trees, which contain only finitely many distinct subtrees.
They can be specified as systems of recursive equations or, alternatively, as cyclic graphs
[14]. Note that a given regular infinite proof may have many different graph representations.
One possible way of formalizing such proof graphs is as standard proof trees containing open
nodes (called buds), to each of which is assigned a syntactically equal internal node of the
proof (called a companion). Due to space limitation, we elide a formal definition of cyclic
proof graphs (see, e.g., Sect. 7 in [6]) and rely on the reader’s basic intuitions.

I Definition 12 (Cyclic Proofs). The cyclic proof system CRTCωG for LRTC is the subsystem
of RTCωG comprising of all and only the finite and regular infinite proofs (i.e. those proofs
that can be represented as finite, possibly cyclic, graphs).

Note that it is decidable whether a cyclic pre-proof satisfies the global trace condition,
using a construction involving an inclusion between Büchi automata (see, e.g., [4, 26]).
However since this requires complementing Büchi automata (a PSPACE procedure), our
system cannot be considered a proof system in the Cook-Reckhow sense [13]. Notwithstanding,
checking the trace condition for cyclic proofs found in practice is not prohibitive [23, 29].

3.3 Soundness and Completeness
The rich expressiveness of TC logic entails that the effective system RTCG which is sound
w.r.t. the standard semantics, cannot be complete (much like the case for LKID). It is
however both sound and complete w.r.t. Henkin semantics.

I Theorem 13 (Soundness and Completeness of RTCG [9]). RTCG is sound for standard
semantics, and also sound and complete for Henkin semantics.

Note that the system RTCG as presented here does not admit cut elimination. The culprit
is the induction rule (3), which does not permute with cut. We may obtain admissibility
of cut by using the following alternative formulation of the induction rule which, like the
induction rule for LKID, incorporates a cut with the induction formula ψ.

Γ⇒ ψ
{
s
x

}
Γ, ψ(x), ϕ(x, y)⇒ ψ

{
y
x

}
Γ, ψ

{
t
x

}
⇒ ∆

Γ, (RTCx,y ϕ)(s, t)⇒ ∆
x 6∈ fv(Γ,∆), y 6∈ fv(Γ,∆, ψ)

For the system with this rule, a simple adaptation of the completeness proof in [9], in the
spirit of the corresponding proof for LKID in [6], suffices to obtain cut-free completeness.
However, the tradeoff is that the resulting cut-free system no longer has the sub-formula
property. In contrast, cut-free proofs in RTCG do satisfy the sub-formula property, for a
generalized notion of a subformula that incorporates substitution instances (as in LK=).

CSL 2018

17:8 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

We remark that the soundness proof of LKID is rather complex since it must handle
different types of mutual dependencies between the inductive predicates. For RTCG the proof
is much simpler due to the uniformity of the rules for the RTC operator.

The infinitary system RTCωG, in contrast to the finitary system RTCG, is both sound and
complete w.r.t. the standard semantics. To prove soundness, we make use of the following
notion of measure for RTC formulas.

I Definition 14 (Degree of RTC Formulas). For φ ≡ (RTCx,y ϕ)(s, t), define δφ(M,v) = 0 if
v(s) = v(t), and δφ(M,v) = n if v(s) 6= v(t) and a0, . . . , an is a minimal-length sequence of
elements in the domain ofM such that v(s) = a0, v(t) = an, andM,v[x := ai, y := ai+1] |= ϕ

for 0 ≤ i < n. We call δφ(M,v) the degree of φ with respect to the model M and valuation v.

Soundness then follows from the following fundamental lemma.

I Lemma 15 (Descending Counter-models). If there exists a standard model M and valuation
v that invalidates the conclusion s of (an instance of) an inference rule, then
1) there exists a standard model M ′ and valuation v′ that invalidates some premise s′ of the

rule; and
2) if (τ, τ ′) is a trace pair for (s, s′) then δτ ′(M ′, v′) ≤ δτ (M,v). Moreover, if (τ, τ ′) is a

progressing trace pair then δτ ′(M ′, v′) < δτ (M, v).

As is standard for infinite descent inference systems [4, 5, 6, 15, 23, 29], the above result
entails the local soundness of the inference rules (in our case, for standard first-order models).
The presence of infinitely progressing traces for each infinite path in a RTCωG proof ensures
soundness via a standard infinite descent-style construction.

I Theorem 16 (Soundness of RTCωG). If there is a RTCωG proof of Γ⇒ ∆, then Γ⇒ ∆ is
valid (w.r.t. the standard semantics)

The soundness of the cyclic system is an immediate corollary, since each CRTCωG proof is
also a RTCωG proof.

I Corollary 17 (Soundness of CRTCωG). If there is a CRTCωG proof of Γ⇒ ∆, then Γ⇒ ∆ is
valid (w.r.t. the standard semantics)

Following a standard technique (as used in e.g. [6]), we can show cut-free completeness of
RTCωG with respect to the standard semantics.

I Definition 18 (Schedule). A schedule element E is defined as any of the following:
a formula of the form ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ;
a pair of the form 〈∀xϕ, t〉 or 〈∃xϕ, t〉 where ∀xϕ and ∃xϕ are formulas and t is a term;
a tuple of the form 〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 where (RTCx,y ϕ)(s, t) is a formula, r is
a term, Γ and ∆ are finite sequences of formulas, and z is a variable not occurring free in
Γ, ∆, or (RTCx,y ϕ)(s, t); or
a tuple of the form 〈s = t, x, ϕ, n,Γ,∆〉 where s and t are terms, x is a variable, ϕ is a
formula, n ∈ {1, 2}, and Γ and ∆ are finite sequences of formulas.

A schedule is a recursive enumeration of schedule elements in which every schedule element
appears infinitely often (these exist since our language is countable).

Each schedule corresponds to an exhaustive search strategy for a cut-free proof for each
sequent Γ⇒ ∆, via the following notion of a “search tree”.

L. Cohen and R.N. S. Rowe 17:9

I Definition 19 (Search Tree). Given a schedule {Ei}i>0, for each sequent Γ ⇒ ∆ we
inductively define an infinite sequence of (possibly open) derivation trees, {Ti}i>0, such that
T1 consists of the single open node Γ⇒ ∆, and each Ti+1 is obtained by replacing all suitable
open nodes in Ti with applications of first axioms and then the left and right inference rules
for the formula in the ith schedule element.

We give the definition of Ti+1 when Ei is an RTC schedule element, i.e. of the form
〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 (the other cases are similar). Ti+1 is then obtained by:
1. first closing as such any open node that is an instance of an axiom (after left and right

weakening, if necessary);
2. next, replacing every open node Γ′, (RTCx,y ϕ)(s, t)⇒ ∆′ of the resulting tree for which

Γ′ ⊆ Γ and ∆′ ⊆ ∆ with the derivation:

Γ′, (RTC x,y ϕ)(s, t), s = t⇒ ∆′ Γ′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, z), ϕ
{

z
x
, t

y

}
⇒ ∆′

Γ′, (RTC x,y ϕ)(s, t)⇒ ∆′ (4)

3. finally, replacing every open node Γ′ ⇒ ∆′, (RTCx,y ϕ)(s, t) of the resulting tree with the
derivation:

Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, r) Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), ϕ
{

r
x
, t

y

}
Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t) (2)

The limit of the sequence {Ti}i>0 is a possibly infinite (and possibly open) derivation tree
called the search tree for Γ⇒ ∆ with respect to the schedule {Ei}i>0, and denoted by Tω.

Search trees are, by construction, recursive and cut-free. We construct special “sequents”
out of search trees, called limit sequents, as follows.

I Definition 20 (Limit Sequents). When a search tree Tω is not an RTCωG proof, either:
(1) it is not even a pre-proof, i.e. it contains an open node; or
(2) it is a pre-proof but contains an infinite branch that fails to satisfy the global trace

condition.
In case 1 it contains an open node to which, necessarily, no schedule element applies (e.g. a
sequent containing only atomic formulas), for which we write Γω ⇒ ∆ω. In case 2 the global
trace condition fails, so there exists an infinite path {Γi ⇒ ∆i}i>0 in Tω which is followed
by no infinitely progressing traces; we call this path the untraceable branch of Tω. We then
define Γω =

⋃
i>0 Γi and ∆ω =

⋃
i>0 ∆i, and call Γω ⇒ ∆ω the limit sequent.4

Note that use of the word “sequent” here is an abuse of nomenclature, since limit sequents
may be infinite and thus technically not sequents. However their purpose is not to play a
role in syntactic proofs, but to induce counter-models as follows.

I Definition 21 (Counter-interpretations). Assume a search tree Tω which is not a RTCωG
proof with limit sequent Γω ⇒ ∆ω. Let ∼ be the smallest congruence relation on terms such
that s ∼ t whenever s = t ∈ Γω. Define a structure Mω = 〈D, I〉 as follows (where [t] stands
for the ∼-equivalence class of t):

D = {[t] | t is a term} (i.e. the set of terms quotiented by the relation ∼).
For every k-ary function symbol f : I(f)([t1], . . . , [tk]) = [f(t1, . . . , tk)]
For every k-ary relation symbol q: I(q) = {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω}

We also define a valuation vω for Mω by vω(x) = [x] for all variables x.

4 To be rigorous, we may pick e.g. the left-most open node or untraceable branch.

CSL 2018

17:10 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

Counter-interpretations 〈Mω, vω〉 have the following property, meaning that Mω is a
counter-model for the corresponding sequent Γ⇒ ∆ if its search tree Tω is not a proof.

I Lemma 22. If ψ ∈ Γω then Mω, vω |= ψ; and if ψ ∈ ∆ω then Mω, vω 6|= ψ.

The completeness result therefore follows since, by construction, a sequent S is contained
within its corresponding limit sequents. Thus, for any sequent S, if some search tree Tω
contracted for S is not an RTCωG proof then it follows from Lemma 22 that S is not valid
(Mω is a counter model for it). Hence if S is valid, then Tω is a recursive RTCωG proof for it.

I Theorem 23 (Completeness). RTCωG is complete for standard semantics.

We obtain admissibility of cut as the search tree Tω is cut-free.

I Corollary 24 (Cut admissibility). Cut is admissible in RTCωG.

3.4 LRTC with Pairs
To obtain the full inductive expressivity we must allow the formation of the transitive closure
of not only binary relations, but any 2n-ary relation. In [1] it was shown that taking such
a RTCn operator for every n (instead of just for n = 1) results in a more expressive logic,
namely one that captures all finitary first-order definable inductive definitions and relations.
Nonetheless, from a proof theoretical point of view having infinitely many such operators
is suboptimal. Thus, we here instead incorporate the notion of ordered pairs and use it to
encode such operators. For example, writing 〈x, y〉 for the application of the pairing function
〈〉(x, y), the formula (RTC2

x1,x2,y1,y2
ϕ)(s1, s2, t1, t2) can be encoded by:

(RTCx,y ∃x1, x2, y1, y2 . x = 〈x1, x2〉 ∧ y = 〈y1, y2〉 ∧ ϕ)(〈s1, s2〉, 〈t1, t2〉)

Accordingly, we may assume languages that explicitly contain a pairing function, providing
that we (axiomatically) restrict to structures that interpret it as such (i.e. the admissible
structures). For such languages we can consider two induced semantics: admissible standard
semantics and admissible Henkin semantics, obtained by restricting the (first-order part of
the) structures to be admissible.

The above proof systems are extended to capture ordered pairs as follows.

I Definition 25. For a signature containing at least one constant c, and a binary function
symbol denoted by 〈〉, the proof systems 〈RTC〉G, 〈RTC〉ωG, and 〈CRTC〉ωG are obtained from
RTCG, RTCωG, CRTCωG (respectively) by the addition of the following rules:

Γ⇒ 〈x, y〉 = 〈u, v〉,∆
Γ⇒ x = u ∧ y = v,∆ Γ, 〈x, y〉 = c⇒ ∆

The proofs of Theorems 13 and 23 can easily be extended to obtain the following results
for languages with a pairing function. For completeness, the key observation is that the
model of the counter-interpretation is one in which every binary function is a pairing function.
That is, the interpretation of any binary function is such that satisfies the standard pairing
axioms. Therefore, the model of the counter-interpretation is an admissible structure.

I Theorem 26 (Soundness and Completeness of 〈RTC〉G and 〈RTC〉ωG). The proof systems
〈RTC〉G and 〈RTC〉ωG are both sound and complete for the admissible forms of Henkin and
standard semantics, respectively.

L. Cohen and R.N. S. Rowe 17:11

(WL,WR,Ax)
Γ, ψ

{
v
x

}
⇒ ∆, ψ

{
v
x

}
(=L1)

Γ, ψ
{
v
x

}
, v = w ⇒ ∆, ψ

{
w
x

}
..
..
..
..

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, w)⇒ ∆, ψ

{
w
x

}
(Subst)

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, z)⇒ ∆, ψ

{
z
x

} Γ, ψ, ϕ⇒ ∆, ψ
{
y
x

}
(Subst)

Γ, ψ
{
z
x

}
, ϕ
{
z
x ,

w
y

}
⇒ ∆, ψ

{
w
x

}
(Cut)

Γ, ψ
{
v
x

}
, (RTCx,y ϕ)(v, z), ϕ

{
z
x ,

w
y

}
⇒ ∆, ψ

{
w
x

}

(4)
Γ, ψ

{
v
x

}
, (RTCx,y ϕ)(v, w)⇒ ∆, ψ

{
w
x

}
(Subst)

Γ, ψ
{
s
x

}
, (RTCx,y ϕ)(s, t)⇒ ∆, ψ

{
t
x

}
Figure 2 CRTCω

G derivation simulating Rule (3). The variables v and w are fresh (i.e. do not
occur free in Γ, ∆, ϕ, or ψ).

4 Relating the Finitary and Infinitary Proof Systems

This section discusses the relation between the explicit and the cyclic system for TC. In
Section 4.1 we show that the former is contained in the latter. The converse direction, which
is much more subtle, is discussed in Section 4.2.

4.1 Inclusion of RTCG in CRTCω
G

Provability in the explicit induction system implies provability in the cyclic system. The key
property is that we can derive the explicit induction rule in the cyclic system, as shown in
Figure 2.

I Lemma 27. Rule (3) is derivable in CRTCωG.

This leads to the following result (an analogue to [6, Thm. 7.6]).

I Theorem 28. CRTCωG ⊇ RTCG, and is thus complete w.r.t. Henkin semantics.

Lemma 27 is the TC counterpart of [6, Lemma 7.5]. It is interesting to note that the
simulation of the explicit LKID induction rule in the cyclic LKID system is rather complex
since each predicate has a slightly different explicit induction rule, which depends on the
particular productions defining it. Thus, the construction for the cyclic LKID system must
take into account the possible forms of arbitrary productions. In contrast, CRTCωG provides
a single, uniform way to unfold an RTC formula: the construction given in Fig. 2 is the
cyclic representation of the RTC operator semantics, with the variables v and w implicitly
standing for arbitrary terms (that we subsequently substitute for).

This uniform syntactic translation of the explicit RTCG induction rule into CRTCωG allows
us to syntactically identify a proper subset of cyclic proofs which is also complete w.r.t.
Henkin semantics.5 The criterion we use is based on the notion of overlapping cycles. Recall
the definition of a basic cycle, which is a path in a (proof) graph starting and ending at
the same point, but containing no other repeated nodes. We say that two distinct (i.e. not
identical up to permutation) basic cycles overlap if they share any nodes in common, i.e. at

5 Note it is not clear that a similar complete structural restriction is possible for LKID.

CSL 2018

17:12 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

some point they both traverse the same path in the graph. We say that a cyclic proof is
non-overlapping whenever no two distinct basic cycles it contains overlap. The restriction to
non-overlapping proofs has an advantage for automation, since one has only to search for
cycles in one single branch.

I Definition 29 (Normal Cyclic Proofs). The normal cyclic proof system NCRTCωG is the
subsystem of RTCωG comprising of all and only the non-overlapping cyclic proofs.

The following theorem is immediate due to the fact that the translation of an RTCG proof
into CRTCωG, using the construction shown in Figure 2, results in a proof with no overlapping
cycles.

I Theorem 30. NCRTCωG ⊇ RTCG.

Henkin-completeness of the normal cyclic system then follows from Theorem 30 and
Theorem 13.

4.2 Inclusions of CRTCω
G in RTCG

This section addresses the question of whether the cyclic system is equivalent to the explicit
one, or strictly stronger. In [6] it was conjectured that for the system with inductive
definitions, LKID and CLKIDω are equivalent. Later, it was shown that they are indeed
equivalent when containing arithmetics [3, 26]. We obtain a corresponding theorem in
Section 4.2.1 for the TC systems. However, it was also shown in [2] that in the general case
the cyclic system is stronger than the explicit one. We discuss the general case for TC and
its subtleties in Section 4.2.2.

4.2.1 The Case of Arithmetics
Let LRTC be a language based on the signature {0, s,+}. Let RTCG+A and CRTCωG+A be
the systems for LRTC obtained by adding to RTCG and CRTCωG, respectively, the standard
axioms of PA together with the RTC -characterization of the natural numbers, i.e.:
(i) sx = 0⇒
(ii) sx = s y ⇒ x = y

(iii) ⇒ x+ 0 = x

(iv) ⇒ x+ s y = s (x+ y)
(v) ⇒ (RTCw,u sw = u)(0, x)
Note that we do not need to assume multiplication explicitly in the signature, nor do we
need to add axioms for it, since multiplication is definable in LRTC and its standard axioms
are derivable [1, 11].

Recall that we can express facts about sequences of numbers in PA by using a β-function
such that for any finite sequence k0, k1, ..., kn there is some c such that for all i ≤ n,
β(c, i) = ki. Accordingly, let B be a well-formed formula of the language of PA with three
free variables which captures in PA a β-function. For each formula ϕ of the language of PA
define ϕβ := ϕ, and define ((RTCx,y ϕ)(s, t))β to be:

s = t ∨ (∃z, c . B(c, 0, s) ∧B(c, s z, t) ∧
(∀u ≤ z . ∃v, w . B(c, u, v) ∧ B(c, su,w) ∧ ϕβ

{
v
x ,

w
y

}
))

The following result, which was proven in [8, 11], establishes an equivalence between
RTCG+A and PAG (a Gentzen-style system for PA). It is mainly based on the fact that in
RTCG+A all instances of PAG induction rule are derivable.

L. Cohen and R.N. S. Rowe 17:13

I Theorem 31 (cf. [11]). The following hold:
1. `RTCG+A ϕ⇔ ϕβ.
2. `RTCG+A Γ⇒ ∆ iff `PAG

Γβ ⇒ ∆β.

We show a similar equivalence holds between the cyclic system CRTCωG and CAG, a cyclic
system for arithmetic shown to be equivalent to PAG [26].

I Theorem 32. `CRTCω
G

+A Γ⇒ ∆ iff `CAG
Γβ ⇒ ∆β.

These results allow us to show an equivalence between the finitary and cyclic systems for
TC with arithmetic.

I Theorem 33. RTCG+A and CRTCωG+A are equivalent.

Note that the result above can easily be extended to show that adding the same set of
additional axioms to both RTCG+A and CRTCωG+A results in equivalent systems. Also note
that in the systems with pairs, to embed arithmetics there is no need to explicitly include
addition and its axioms. Thus, by only including the signature {0, s} and the corresponding
axioms for it we can obtain that 〈RTC〉G+A and 〈CRTC〉ωG+A are equivalent.

In [3], the equivalence result of [26] was improved to show it holds for any set of inductive
predicates containing the natural number predicate N. On the one hand, our result goes
beyond that of [3] as it shows the equivalence for systems with a richer notion of inductive
definition, due to the expressiveness of TC. On the other hand, TC does not support
restricting the set of inductive predicates, i.e. the RTC operator may operate on any formula
in the language. To obtain a finer result which corresponds to that of [3] we need to further
explore the transformations between proofs in the two systems. This is left for future work.

4.2.2 The General Case
As mentioned, the general equivalence conjecture between LKID and CLKIDω was refuted in
[2], by providing a concrete example of a statement which is provable in the cyclic system but
not in the explicit one. The statement (called 2-Hydra) involves a predicate encoding a binary
version of the “hydra” induction scheme for natural numbers given in [20], and expresses that
every pair of natural numbers is related by the predicate.6 However, a careful examination of
this counter-example reveals that it only refutes a strong form of the conjecture, according
to which both systems are based on the same set of productions. In fact, already in [2] it is
shown that if the explicit system is extended by another inductive predicate, namely one
expressing the ≤ relation, then the 2-Hydra counter-example becomes provable. Therefore,
the less strict formulation of the question, namely whether for any proof in CLKIDωφ there is a
proof in LKIDφ′ for some φ′ ⊇ φ, has not yet been resolved. Notice that in TC the equivalence
question is of this weaker variety, since the RTC operator “generates” all inductive definitions
at once. That is, there is no a priori restriction on the inductive predicates one is allowed to
use. Indeed, the 2-Hydra counter-example from [2] can be expressed in LRTC and proved in
CRTCωG. However, this does not produce a counter-example for TC since it is also provable in
RTCG, due to the fact that s ≤ t is definable via the RTC formula (RTCw,u sw = u)(s, t).

Despite our best efforts, we have not yet managed to settle this question, which appears to
be harder to resolve in the TC setting. One possible approach to solving it is the semantical
one, i.e. exploiting the fact that the explicit system is known to be sound w.r.t. Henkin

6 In fact, the falsifying Henkin model constructed in [2] also satisfies the “0-axiom” (∀x.0 6= s x), and the
“s -axiom” (∀x, y. s x = s y → x = y) stipulating injectivity of the successor function, and so the actual
counter-example to equivalence is the sequent: (0, s)-axioms⇒ 2-Hydra.

CSL 2018

17:14 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

standard validityadmissible
standard validity

Henkin validityadmissible
Henkin validity

(cut-free)
RTCωG

(cut-free)
〈RTC〉ωG

〈CRTC〉ωG CRTCωG

〈NCRTC〉ωG NCRTCωG

RTCG〈RTC〉G

〈CRTC〉ωG+A CRTCωG+A

〈RTC〉G+A RTCG+A

Thm. 16

Thm. 23

Thm. 13

Thm. 26

Thm. 26

⊆

⊆

⊆

⊆

Cor. 24Cor. 24

⊆⊆

Thm. 30Thm. 30

? ?

? ?

Thm. 33Thm. 33 (ext)

⊆ ⊆

⊆⊆

Figure 3 Diagrammatic Summary of our Results.

semantics. This is what was done in [2]. Thus, to show strict inclusion one could construct an
alternative statement that is provable in CRTCωG whilst also demonstrating a Henkin model
for TC that is not a model of the statement. However, constructing a TC Henkin model
appears to be non-trivial, due to its rich inductive power. In particular, it is not at all clear
whether the structure that underpins the LKID counter-model for 2-Hydra admits a Henkin
model for TC. Alternatively, to prove equivalence, one could show that CRTCωG is also sound
w.r.t. Henkin semantics. Here, again, proving this does not seem to be straightforward.

In our setting, there is also the question of the inclusion of CRTCωG in NCRTCωG, which
amounts to the question of whether overlapping cycles can be eliminated. Moreover, we can
ask if NCRTCωG is included in RTCG, independently of whether this also holds for CRTCωG.
Again, the semantic approach described above may prove fruitful in answering these questions.

5 Conclusions and Future Work

We developed a natural infinitary proof system for transitive closure logic which is cut-free
complete for the standard semantics and subsumes the explicit system. We further explored
its restriction to cyclic proofs which provides the basis for an effective system for automating
inductive reasoning. In particular, we syntactically identified a subset of cyclic proofs that
is Henkin-complete. A summary of the proof systems we have studied in this paper, and
their interrelationships, is shown in Figure 3. Where an edge between systems is labelled
with an inclusion ⊆, this signifies that a proof in the source system is already a proof in the
destination system.

As mentioned in the introduction, as well as throughout the paper, this research was
motivated by other work on systems of inductive definitions, particularly the LKID framework
of [6], its infinitary counterpart LKIDω, and its cyclic subsystem CLKIDω. In terms of
the expressive power of the underlying logic, TC (assuming pairs) subsumes the inductive
machinery underlying LKID. This is because for any inductive predicate P of LKID, there

L. Cohen and R.N. S. Rowe 17:15

is an LRTC formula ψ such that for every standard admissible structure M for LRTC, P has
the same interpretation as ψ under M . This is due to Thm. 3 in [1] and the fact that the
interpretation of P must necessarily be a recursively enumerable set. As for the converse
inclusion, for any positive LRTC formula there is a production of a corresponding LKID
inductive definition. However, the RTC operator can also be applied on complex formulas
(whereas LKID productions only consider atomic predicates). This indicates that TC might
be more expressive. It was noted in [6, p. 1180] that complex formulas may be handled by
stratifying the theory of LKID, similar to [21], but the issue of relative expressiveness of the
resulting theory is not addressed. While we strongly believe it is the case that TC is strictly
more expressive than the logic of LKID, proving so is left for future work. Also left for future
research is establishing the comparative status of the corresponding formal proof systems.

In addition to the open question of the (in)equivalence of RTCG and CRTCωG in the
general case, discussed in Section 4.2, several other questions and directions for further study
naturally arise from the work of this paper. An obvious one would be to implement our
cyclic proof system in order to investigate the practicalities of using TC logic to support
automated inductive reasoning. More theoretically it is already clear that TC logic, as a
framework, diverges from existing systems for inductive reasoning (e.g. LKID) in interesting,
non-trivial ways. The uniformity provided by the transitive closure operator may offer a way
to better study the relationship between implicit and explicit induction, e.g. in the form of
cuts required in each system, or the relative complexity of proofs that each system admits.
Moreover, it seems likely that coinductive reasoning can also be incorporated into the formal
system. Determining whether, and to what extent, these are indeed the case is left for future
work.

References
1 Arnon Avron. Transitive Closure and the Mechanization of Mathematics. In F. D.

Kamareddine, editor, Thirty Five Years of Automating Mathematics, volume 28 of
Applied Logic Series, pages 149–171. Springer, Netherlands, 2003. doi:10.1007/
978-94-017-0253-9_7.

2 Stefano Berardi and Makoto Tatsuta. Classical System of Martin-Löf’s Inductive Definitions
Is Not Equivalent to Cyclic Proof System. In Proceedings of FOSSACS, Uppsala, Sweden,
April 22–29, 2017, pages 301–317, Berlin, Heidelberg, 2017. Springer. doi:10.1007/
978-3-662-54458-7_18.

3 Stefano Berardi and Makoto Tatsuta. Equivalence of Inductive Definitions and Cyclic
Proofs Under Arithmetic. In Proceedings of LICS, Reykjavik, Iceland, June 20–23, 2017,
pages 1–12, 2017. doi:10.1109/LICS.2017.8005114.

4 James Brotherston. Formalised Inductive Reasoning in the Logic of Bunched Implications.
In Proceedings of SAS, Kongens Lyngby, Denmark, August 22–24, 2007, pages 87–103,
2007. doi:10.1007/978-3-540-74061-2_6.

5 James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of Program
Termination in Separation Logic. In Proceedings of POPL, San Francisco, California, USA,
January 7–12, 2008, pages 101–112, 2008. doi:10.1145/1328438.1328453.

6 James Brotherston and Alex Simpson. Sequent Calculi for Induction and Infinite Descent.
Journal of Logic and Computation, 21(6):1177–1216, 2010.

7 Samuel R. Buss. Handbook of Proof Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, 1998.

8 Liron Cohen. Ancestral Logic and Equivalent Systems. Master’s thesis, Tel-Aviv University,
Israel, 2010.

9 Liron Cohen. Completeness for Ancestral Logic via a Computationally-Meaningful
Semantics. In Proceedings of TABLEAUX, Brasília, Brazil, September 25–28, 2017, pages
247–260, 2017. doi:10.1007/978-3-319-66902-1_15.

CSL 2018

http://dx.doi.org/10.1007/978-94-017-0253-9_7
http://dx.doi.org/10.1007/978-94-017-0253-9_7
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1109/LICS.2017.8005114
http://dx.doi.org/10.1007/978-3-540-74061-2_6
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1007/978-3-319-66902-1_15

17:16 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

10 Liron Cohen and Arnon Avron. Ancestral Logic: A Proof Theoretical Study. In
U. Kohlenbach, editor, Logic, Language, Information, and Computation, volume 8652 of
Lecture Notes in Computer Science, pages 137–151. Springer, 2014.

11 Liron Cohen and Arnon Avron. The Middle Ground–Ancestral Logic. Synthese, pages 1–23,
2015.

12 Liron Cohen and Reuben N. S. Rowe. Infinitary and Cyclic Proof Systems for Transitive
Closure Logic. CoRR, abs/1802.00756, 2018. arXiv:1802.00756.

13 Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof
Systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

14 Bruno Courcelle. Fundamental Properties of Infinite Trees. Theor. Comput. Sci., 25:95–169,
1983. doi:10.1016/0304-3975(83)90059-2.

15 Anupam Das and Damien Pous. A Cut-Free Cyclic Proof System for Kleene Algebra. In
Proceedings of TABLEAUX, Brasília, Brazil, September 25–28, 2017, pages 261–277, 2017.
doi:10.1007/978-3-319-66902-1_16.

16 Gerhard Gentzen. Untersuchungen über das Logische Schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935. doi:10.1007/BF01201353.

17 Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1. Humanities Press,
1987.

18 Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic, 15(2):81–91,
1950.

19 Ryo Kashima and Keishi Okamoto. General Models and Completeness of First-order Modal
µ-calculus. Journal of Logic and Computation, 18(4):497–507, 2008.

20 Laurie Kirby and Jeff Paris. Accessible Independence Results for Peano Arithmetic.
Bulletin of the London Mathematical Society, 14(4):285–293, 1982. doi:10.1112/blms/
14.4.285.

21 Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions. In
J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, volume 63
of Studies in Logic and the Foundations of Mathematics, pages 179–216. Elsevier, 1971.
doi:10.1016/S0049-237X(08)70847-4.

22 Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory, volume 9. Bibliopolis
Napoli, 1984.

23 Reuben N. S. Rowe and James Brotherston. Automatic Cyclic Termination Proofs for
Recursive Procedures in Separation Logic. In Proceedings of CPP, Paris, France, January
16–17, 2017, pages 53–65, 2017. doi:10.1145/3018610.3018623.

24 Luigi Santocanale. A Calculus of Circular Proofs and Its Categorical Semantics. In
Proceedings of FOSSACS, Grenoble, France, April 8–12, 2002, pages 357–371. Springer
Berlin Heidelberg, 2002. doi:10.1007/3-540-45931-6_25.

25 Kurt Schütte. Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie.
Mathematische Annalen, 122:369–389, 1950/51.

26 Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Proceedings of
FOSSACS, Uppsala, Sweden, April 22–29, 2017, pages 283–300, 2017. doi:10.1007/
978-3-662-54458-7_17.

27 Christoph Sprenger and Mads Dam. On the Structure of Inductive Reasoning: Circular
and Tree-Shaped Proofs in the µ-Calculus. In Proceedings of FOSSACS, Warsaw, Poland,
April 7–11, 2003, pages 425–440. Springer Berlin Heidelberg, 2003. doi:10.1007/
3-540-36576-1_27.

28 Gaisi Takeuti. Proof Theory. Courier Dover Publications, 1987.
29 Gadi Tellez and James Brotherston. Automatically Verifying Temporal Properties of

Pointer Programs with Cyclic Proof. In Proceedings of CADE, Gothenburg, Sweden, August
6–11, 2017, pages 491–508, 2017. doi:10.1007/978-3-319-63046-5_30.

http://arxiv.org/abs/1802.00756
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://dx.doi.org/10.1007/978-3-319-66902-1_16
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1112/blms/14.4.285
http://dx.doi.org/10.1112/blms/14.4.285
http://dx.doi.org/10.1016/S0049-237X(08)70847-4
http://dx.doi.org/10.1145/3018610.3018623
http://dx.doi.org/10.1007/3-540-45931-6_25
http://dx.doi.org/10.1007/978-3-662-54458-7_17
http://dx.doi.org/10.1007/978-3-662-54458-7_17
http://dx.doi.org/10.1007/3-540-36576-1_27
http://dx.doi.org/10.1007/3-540-36576-1_27
http://dx.doi.org/10.1007/978-3-319-63046-5_30

	Introduction
	Transitive Closure Logic and its Semantics
	Proof Systems for L_{RTC}
	The Finitary Proof System
	Infinitary Proof Systems
	Soundness and Completeness
	L_{RTC} with Pairs

	Relating the Finitary and Infinitary Proof Systems
	Inclusion of RTC_G in CRTC^{omega}_G
	Inclusions of CRTC^{omega}_G in RTC_G
	The Case of Arithmetics
	The General Case

	Conclusions and Future Work

