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Abstract
Modern logics of dependence and independence are based on different variants of atomic de-
pendency statements (such as dependence, exclusion, inclusion, or independence) and on team
semantics: A formula is evaluated not with a single assignment of values to the free variables,
but with a set of such assignments, called a team.

In this paper we explore logics of dependence and independence where the atomic depend-
ency statements cannot distinguish elements up to equality, but only up to a given equivalence
relation (which may model observational indistinguishabilities, for instance between states of a
computational process or between values obtained in an experiment).

Our main goal is to analyse the power of such logics, by identifying equally expressive frag-
ments of existential second-order logic or greatest fixed-point logic, with relations that are closed
under the given equivalence. Using an adaptation of the Ehrenfeucht-Fraïssé method we fur-
ther study conditions on the given equivalences under which these logics collapse to first-order
logic, are equivalent to full existential second-order logic, or are strictly between first-order and
existential second-order logic.
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1 Introduction

Logics of dependence and independence (sometimes called logics of imperfect information)
originally go back to the work of Henkin [9], Enderton [2], Walkoe [16], Blass and Gurevich
[1], and others on Henkin quantifiers, whose semantics can be naturally described in terms of
games of imperfect information. A next step in this direction have been the independence-
friendly (IF) logics by Hintikka and Sandu [10] that incorporate explicit dependencies of
quantifiers on each other and where again, the semantics is usually given in game-theoretic
terms. For a detailed account on independence-friendly logics we refer to [13].

An important achievement towards the modern framework for logics of dependence
and independence has been the model-theoretic semantics for IF-logics, due to Hodges
[11], in terms of what he called trumps. This semantics is today called team semantics,
where a team is understood as a set of assignments s : V → A, mapping a common finite
domain of variables into the universe of a structure. The next step towards modern logics of
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25:2 Dependency Concepts up to Equivalence

dependence and independence was the proposal by Väänänen [15] to consider dependencies
as atomic properties of teams rather than stating them via annotations of quantifiers. He first
introduced dependence logic, which is first-order logic on teams together with dependence
atoms dep(x1, . . . , xm, y), saying that, in the given team, the variable y is functionally
dependent on (i.e. completely determined by) the variables x1, . . . , xm. But there are
many other atomic dependence properties that give rise to interesting logics based on team
semantics. In [8] we have discussed the notion of independence (which is a much more
delicate but also more powerful notion than dependence) and introduced independence logics,
and Galliani [5] and Engström [3] have studied several logics with team properties based on
notions originating in database dependency theory. The most important ones are inclusion
logic FO(⊆), which extends first-order logic by atomic inclusion dependencies (x̄ ⊆ ȳ), which
are true in a team X if every value for x̄ in X also occurs as a value for ȳ in X, and exclusion
logic, based on exclusion statements (x̄ | ȳ), saying that x̄ and ȳ have disjoint sets of values
in the team X. Exclusion logic has turned out to be equivalent to dependence logic [5].

Altogether this modern framework has lead to a genuinely new area in logic, with an
interdisciplinary motivation of providing logical systems for reasoning about the fundamental
notions of dependence and independence that permeate many scientific disciplines. Methods
from several areas of computer science, including finite model theory, database theory, and
the algorithmic analysis of games have turned out as highly relevant for this area. For more
information, we refer to the volume [4] and the references there.

In this paper we explore logics that are based on weaker variants of dependencies. We
consider atomic dependence statements that do not distinguish elements up to equality, but
only up to coarser equivalencies. This is motivated by the quite familiar situation in many
applications that elements, such as for instance states in a computation or values obtained
in experiments, are subject to observational indistinguishabilities, which we model here via
an equivalence relation ≈ on the set of possible values. For dependence atoms dep≈(x̄, y)
this means that we can say that whenever the values of x̄ are indistinguishable for certain
assignments in a team, then so are the values of y. Similarly an exclusion statement between
x and y, up to an equivalence relation ≈, says that no value for x in the team is equivalent
to a value of y, and an inclusion statement x ⊆≈ y means that every value for x is equivalent
to some value for y. Finally, the most powerful of such notions, independence of x and y up
to equivalence, means that additional information about the equivalence class of the value
of one variable does not help to learn anything new about the value of the other, or to put
it differently, whenever a value a for x and a value b for y occur in the team, then there
is an assignment in the team whose value for x is equivalent to a and whose value for y is
equivalent to b.

Formal definitions of these dependencies, extended to tuples of variables, will be given in
the next section.

The main goal of this paper is to understand the expressive power of the logics with
dependencies up to equivalence. In general, logical operations on teams have a second-order
nature, and indeed, dependencies and team semantics may take the power of first-order logic
FO up to existential second-order logic Σ1

1. To make this precise we recall the standard
translation, due to [15, 12], from formulae with team semantics into sentences of existential
second-order logic.

First of all, we have to keep in mind the different nature of team semantics and classical
Tarski semantics. For a formula with team semantics, we write A |=X ϕ to denote that ϕ is
true in the structure A for the team X, and for classical Tarski semantics we write A |=s ϕ

to denote that ϕ is true in A for the assignment s.
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For formulae with free variables the translation from a logic with team semantics into one
with Tarski semantics requires that we represent the team in some way. The standard way
to do this is by identifying a team X of assignments s : {x1, . . . xk} → A with the relation
{s(x1, . . . , xk) ∈ Ak : s ∈ X} ⊆ Ak which, by slight abuse of notation, we also denote by X.
One then translates formulae ϕ(x1, . . . , xk) of vocabulary τ of a logic L with team semantics
into sentences ϕ∗ in Σ1

1 of the expanded vocabulary τ ∪ {X} such that for every structure A

and every team X we have that

A |=X ϕ(x1, . . . , xk) ⇐⇒ (A, X) |= ϕ∗.

To illustrate this second-order nature we recall the meaning of disjunctions and existential
quantifications in team semantics, and their standard translation into Σ1

1. Disjunctions split
the team, i.e..

A |=X ψ ∨ ϕ :⇐⇒ X = Y ∪ Z such that A |=Y ψ and A |=Z ϕ

which leads to the translation (ψ∨ϕ)∗(X) := ∃Y ∃Z(X = Y ∪Z∧ψ∗(Y )∧ϕ∗(Z)). Existential
quantification requires the extension of the given team by providing for each of its assignments
a non-empty set of witnesses for quantified variables, i.e.,

A |=X ∃yψ :⇐⇒ there exists a function F : X → P+(A) such that A |=X[y 7→F ] ψ

where X[y 7→ F ] is the set of all assignments s[y 7→ a] that update an assignment s ∈ X by
mapping y to some value a ∈ F (s). This leads to the translation (∃yψ)∗(X) := ∃Y ∀x̄((Xx̄↔
∃yY x̄y) ∧ ψ∗(Y )).

Some remarks are in order: One may wonder why it is appropriate to provide a non-empty
set of witnesses for an existentially quantified variable rather than just a single witness as
in standard Tarski semantics for first-order logic. Indeed there are many cases where a
single witness, i.e. a function F : X → A rather than F : X → P+(A) suffices, in fact in
all cases where the logic is downwards closed, i.e. when A |=X ψ implies that also A |=Y ψ

for all subteams Y ⊆ X. Examples of downwards closed logics are dependence logic and
exclusion logic. However, for logics that are not downwards closed, such as inclusion logic and
independence logic, the so-called strict semantics requiring single witnesses of existentially
quantified variables leads to pathologies such as non-locality: the meaning of a formula might
depend on the values of variables that do not even occur in it. A second relevant remark is
that all the logics considered here have the empty team property: For all sentences ϕ and all
structures A, we have that A |=∅ ϕ. To evaluate sentences (formulae without free variables)
we therefore have to consider not the empty team, but the team {∅} consisting just of the
empty assignment. For a sentence ψ we write A |= ψ if A |={∅} ψ.

On the basis of the standard translation in Σ1
1 we can say that we understand the expressive

power of a first-order logic with dependencies, when we have identified the fragment F of
existential second-order logic which is equivalent in the sense just described. The following is
known in this context:
(1) Dependence logic and exclusion logic are equivalent to the fragment of all Σ1

1-sentences
ψ(X) in which the predicate X describing the team appears only negatively [12].

(2) Independence logic and inclusion-exclusion logic are equivalent with full Σ1
1 (and thus

can describe all NP-properties of teams) [5].
(3) The extension of FO by inclusion and exclusion atoms of single variables only (not tuples

of variables) is equivalent to monadic Σ1
1 [14].

CSL 2018



25:4 Dependency Concepts up to Equivalence

(4) First-order logic without any dependence atoms has the so-called flatness property:
A |=X ϕ ⇐⇒ A |=s ϕ for all s ∈ X. It thus corresponds to a very small fragment of Σ1

1,
namely FO-sentences of form ∀x̄(Xx̄→ ϕ(x̄)) where ϕ(x̄) does not contain X.

(5) Inclusion logic FO(⊆) corresponds to GFP+, the fragment of fixed-point logic that
uses only (non-negated) greatest fixed-points. Since a greatest fixed-point formula
[gfpRx̄ . ψ(R, x̄)](ȳ) readily translates into (∃R)((∀x̄(Rx̄→ ψ(R, x̄)) ∧Rȳ)), GFP+ can
be viewed as a fragment of Σ1

1. Galliani and Hella [6] established that inclusion logic is
equivalent to the set of sentences of form ∀x̄(Xx̄→ ψ(X, x̄)), where ψ(X, x̄) is a formula
in GFP+ in which X occurs only positively. A different proof for this result, based on
safety games and game interpretations, has been presented in [7].

Hence the question arises how these fragments change when the standard dependency
notions are replaced by dependencies up to equivalence. There is a natural conjecture: One
has to restrict existential second-order quantification to relations that are closed under the
given equivalence relation, i.e. to relations that can be written as unions of equivalence classes
(where equivalence is extended to tuples component-wise). We denote the resulting variant
of existential second-order logic by Σ1

1(≈).
Notice however, that to decide this conjecture is far from being trivial and, in fact, the

restriction of the standard translation to quantification over ≈-closed relations fails. Even
for simple disjunctions, the existential second-order expression given above describing the
split of the team will not work anymore once we restrict quantification to ≈-closed relations
because we cannot assume that the relevant subteams are ≈-closed. Here is a simple example,
not even involving any dependencies: Consider the formula x = y ∨ x 6= y which is trivially
true in any team X, by the split X = Y ∪ Z where Y contains the assignments s which
s(x) = s(y) and Z = X \ Y (and this is the only split that works). However if there are
elements a 6= b with a ≈ b then in general neither Y nor Z are ≈-closed, even if X is.

Nevertheless we shall prove that the conjecture is true, and that we can characterize the
expressive power of dependence logics up to equivalence by appropriate fragments of Σ1

1(≈).
This is based on a much more sophisticated translation from logics with team semantics into
existential second-order logic that adapts ideas from [14]. We shall also present a fragment
of GFP+ that has the same expressive power as inclusion logic up to equivalence.

Our next question is then how the expressive power of Σ1
1(≈), and hence logics of

dependence up to equivalence, compare to first-order logic and to full Σ1
1. Of course this

depends on the properties of the underlying equivalence relation, notably on the number and
sizes of its equivalence classes.

(1) On any class of structures on which ≈ has only a bounded number of equivalence classes,
Σ1

1(≈), and hence all logics with dependencies up to equivalence as well, collapse to FO.

(2) On any class of structures in which all equivalence classes have bounded size, and only a
bounded number of classes have more than one element, Σ1

1(≈) ≡ Σ1
1.

(3) In general, and in particular on the classes of structures where all equivalence classes have
size at most k (for k > 1), or that have only a bounded number of equivalence classes of
size >1, the expressive power of Σ1

1(≈), and all the considered logics of dependence up
to equivalence, are strictly between FO and Σ1

1.
To prove this we shall use appropriate variants of Ehrenfeucht-Fraïssé games for these logics.
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2 The Logics FO(Ω≈) and Σ1
1(≈)

Let τ be a signature containing a binary relation symbol ≈ and let (τ,≈) denote the class of
τ -structures A in which ≈ is interpreted by an equivalence relation on the universe A of A.
For every A ∈ (τ,≈) and every a, b ∈ An we write a ≈ b, if ai ≈ bi for every i ∈ {1, . . . , n}.
Given two relations R,S ⊆ Ak of the same arity we write R ⊆≈ S if for every a ∈ R, there
exists some b ∈ S with a ≈ b. We further write R ≈ S if R ⊆≈ S and S ⊆≈ R. Furthermore,
we define the ≈-closure of R as R≈ := {a : a ≈ b for some b ∈ R} and say that R is ≈-closed
if, and only if, R = R≈.

A team over A is a set X of assignments s : dom(X) → A mapping a common finite
domain of variables into the universe A of A. Given a tuple ȳ of variables from dom(X),
we denote by X(ȳ) := {s(ȳ) : s ∈ X} the set of values that ȳ takes in X. The semantics of
(in)dependence, inclusion and exclusion atoms up to ≈ is given as follows:

I Definition 1. Let X be a team over A. Then we define

A |=X dep≈(x, y) :⇐⇒ for all s, s′ ∈ X, if s(x) ≈ s′(x) then also s(y) ≈ s′(y),
A |=X x⊥≈y :⇐⇒ for all s, s′ ∈ X there exists some s′′ ∈ X such that

s′′(x) ≈ s(x) and s′′(y) ≈ s′(y),
A |=X x ⊆≈ y :⇐⇒ X(x) := {s(x) : s ∈ X} ⊆≈ X(y),
A |=X x |≈ y :⇐⇒ s(x) 6≈ s′(y) for all s, s′ ∈ X.

For Ω≈ ⊆ {dep≈,⊥≈,⊆≈, |≈} we denote by FO(Ω≈) the set of all first-order formulas in
negation normal form where we additionally allow positive occurrences of Ω≈-atoms. The
semantics of first-order literals and of the logical operators are the usual ones in (lax) team
semantics:

I Definition 2. Let ϕ1, ϕ2, ψ ∈ FO(Ω≈), ϑ be some first-order literal and X a team over A.

A |=X ϑ :⇐⇒ A |=s ϑ for every s ∈ X,
A |=X ϕ1 ∧ ϕ2 :⇐⇒ A |=X ϕ1 and A |=X ϕ2

A |=X ϕ1 ∨ ϕ2 :⇐⇒ X can be represented as X = X1 ∪X2 such that
A |=X1 ϕ1 and A |=X2 ϕ2

A |=X ∀xψ :⇐⇒ A |=X[x 7→A] ψ

A |=X ∃xψ :⇐⇒ A |=X[x 7→F ] ψ for some F : X → P(A) \ {∅}.

Here we have X[x 7→ A] := {s[x 7→ a] : s ∈ X, a ∈ A} and X[x 7→ F ] := {s[x 7→ a] : s ∈
X, a ∈ F (s)}. Sometimes we shall call a team Y an {x}-extension of X, if Y = X[x 7→ F ]
for some function F : X → P(A) \ {∅}.

Many standard results concerning the closure properties and relationships between
different logics of dependence and independence (see e.g. [5]) carry over to this new setting
with equivalences, by easy and straightforward adaptations of proofs (which are therefore
omitted here). In particular, this includes the following observations:

For all formulae in these logics the locality principle holds: A |=X ϕ if, and only if,
A |=X�free(ϕ) ϕ (where X � free(ϕ) := {s � free(ϕ) : s ∈ X} is the restriction of X to the
free variables of ϕ).
The logics FO(dep≈) and FO(|≈) are equivalent and downwards closed.
The logic FO(⊆≈) is closed under unions of teams, and incomparable with FO(dep≈)
and FO(|≈).
Independence logic with equivalences, FO(⊥≈), is equivalent to inclusion-exclusion logic
with equivalences, FO(⊆≈, |≈).

CSL 2018



25:6 Dependency Concepts up to Equivalence

A much more difficult problem is to understand the expressive power of these logics
in connection with existential second-order logic Σ1

1. As mentioned above, formulae of
independence logic or, equivalently, inclusion-exclusion logic (without equivalences) have
the same expressive power as existential second-order sentences, and weaker logics such
as dependence logic, exclusion logic, or inclusion logic correspond to fragments of Σ1

1. To
describe the expressive power of dependence logics with equivalences we introduce the
≈-closed fragment Σ1

1(≈) of Σ1
1 and show that it captures the expressiveness of FO(⊆≈, |≈).

I Definition 3. The logic Σ1
1(≈) consists of sentences of the form

ψ := ∃≈R1 . . . ∃≈Rkϕ(R1, . . . , Rk)

where ϕ ∈ FO(τ ∪ {R1, . . . , Rk}). The semantics of ψ is given in terms of ≈-closed relations:

A |= ψ :⇐⇒ there are ≈-closed relations R1, . . . , Rk such that (A, R1, . . . , Rk) |= ϕ.

3 The Expressive Power of FO(⊆≈, |≈)

In this section we establish that FO(⊆≈, |≈) has exactly the expressive power of Σ1
1(≈). This

means that every formula ϕ(x) ∈ FO(⊆≈, |≈) can be translated into an equivalent sentence
ϕ′ ∈ Σ1

1(≈) using an additional predicate for the team such that

A |=X ϕ(x)⇐⇒ (A, X) |= ϕ′(X).

Conversely, we are also going to show how a given sentence ψ ∈ Σ1
1(≈) can be translated

into an equivalent sentence ψ+ ∈ FO(⊆≈, |≈).

3.1 From Σ1
1(≈) to FO(⊆≈, |≈)

To capture the semantics of a sentence ∃≈R1 . . . ∃≈Rkϕ ∈ Σ1
1(≈) in FO(⊆≈, |≈) we adapt

ideas by Rönnholm [14] and use tuples of variables v1, . . . , vk of length |vi| = ar(Ri) in order
to simulate the (≈-closed) relations R1, . . . , Rk. The reason why this is possible lies in the
fact that we are using team semantics: In a given team X with {v1, . . . , vk} ⊆ dom(X) we
naturally have that X(vi) corresponds to a (not necessarily ≈-closed) relation. The most
important step is to find a formula ϕ?(v1, . . . , vk) ∈ FO(⊆≈, |≈) such that

(A, R) |= ϕ⇐⇒ A |=X ϕ?(v1, . . . , vk)

where X = {s : s(vi) ∈ Ri for every i ∈ {1, . . . , k}}. Towards this end, ϕ? is constructed
(inductively) while using inclusion/exclusion atoms to express (non)membership in R1, . . . , Rk.
For example, x ⊆≈ vi means that s(x) ∈ X(vi)≈ = Ri for every s ∈ X, while x |≈ vi expresses
that s(x) /∈ X(vi)≈ = Ri for every s ∈ X. Therefore, the semantics of Rix resp. ¬Rix is
captured by x ⊆≈ vi resp. x |≈ vi. But of course, it could be the case that ϕ is a much more
complicated formula made up of quantifiers, conjunction or disjunctions. It turns out that
quantifiers and conjunction can be handled with ease by simply setting

(Quϑ)? := Qu(ϑ?) for both quantifiers Q ∈ {∃,∀}, and
(ϑ1 ∧ ϑ2)? := ϑ?1 ∧ ϑ?2,

because when evaluating conjunctions in team semantics, the team is not modified and
in the process of evaluating quantifiers there are just more columns added to the team
(w.l.o.g. we assume that every variable in the formula occurs either freely or is quantified
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exactly once). However, for disjunctions the situation is much more delicate because it is not
possible to define (ϑ1 ∨ ϑ2)? as ϑ?1 ∨ ϑ?2. The reason for this is that after splitting the team
X into X1, X2 with X = X1 ∪X2 and A |=Xj

ϑ?j it cannot be guaranteed that Xj(vi) still
describes the original Ri (up to equivalence). To make sure that we do not loose information
about R1, . . . , Rk, we use instead an adaptation of the value preserving disjunction that was
introduced by Rönnholm [14].

I Lemma 4. Let ψ1, ψ2 ∈ FO(⊆≈, |≈) and v1, . . . , vk be some tuples of variables. Then there
exists a formula ψ1 ∨

v1,...,vk

ψ2 ∈ FO(⊆≈, |≈) such that the following are equivalent:

(i) A |=X ψ1 ∨
v1,...,vk

ψ2

(ii) X = X1 ∪X2 for some teams X1, X2 such that for both j = 1 and j = 2:
A |=Xj

ψj, and
if Xj 6= ∅, then Xj(vi) ≈ X(vi) for all i ∈ {1, . . . , k}.

Proof. The construction of ψ1 ∨
v1,...,vk

ψ2 relies on the intuitionistic disjunction ψ1 t ψ2 with

A |=X ψ1 t ψ2 ⇐⇒ A |=X ψ1 or A |=X ψ2.

On structures A ∈ (τ,≈) with ≈A 6= A2 this is definable in FO(⊆≈, |≈) since

ψ1 t ψ2 ≡ ∃c`∃cr(dep≈(c`) ∧ dep≈(cr) ∧ [(c` ≈ cr ∧ ψ1) ∨ (¬c` ≈ cr ∧ ψ2)])

where c` and cr are some variables not occurring in ψ1 or ψ2. Note that dep≈(c) expresses
that c only assumes values from a single equivalence class. The proof of this equivalence is a
simple exercise. Now consider the following formula, which is a modification of a construction
by Rönnholm [14].

ψ1 ∨′
v1,...,vk

ψ2 := (ψ1 t ψ2) t ∃c`∃cr
(
dep≈(c`) ∧ dep≈(cr) ∧ c` 6≈ cr∧

∃y
(

[(y ≈ c` ∧ ψ1) ∨ (y ≈ cr ∧ ψ2)]∧
k∧
i=1

Θi ∧Θ′i
))
.

Θi and Θ′i are given by

Θi := ∃z1∃z2([(y ≈ c` ∧ z1 = vi ∧ z2 = c`) ∨ (y ≈ cr ∧ z1 = c` ∧ z2 = vi)]
∧ vi ⊆≈ z1 ∧ vi ⊆≈ z2)

Θ′i := ∃z1∃z2([(y ≈ c` ∧ z1 = vi ∧ z2 = cr) ∨ (y ≈ cr ∧ z1 = cr ∧ z2 = vi)]
∧ vi ⊆≈ z1 ∧ vi ⊆≈ z2).

where c` = (c`, c`, . . . , c`) and cr = (cr, cr, . . . , cr) are always tuples of the correct length.
It is not difficult to prove that this formula is almost what we want: it satisfies the

properties required by Lemma 4 under the additional condition that ≈ has at least two
different equivalence classes. To get rid of this condition, we put:

ψ1 ∨
v1,...,vk

ψ2 := [∀x∀y(x ≈ y) ∧ (ψ1 ∨ ψ2)] ∨
[
∃x∃y(x 6≈ y) ∧

(
ψ1 ∨′

v1,...,vk

ψ2

)]
. J

We can now complete the inductive definition of ϕ? by:

(ϑ1 ∨ ϑ2)? := ϑ?1 ∨
v1,...,vk

ϑ?2

By rather straighforward inductions one can establish the following two lemmata.

CSL 2018



25:8 Dependency Concepts up to Equivalence

I Lemma 5. For every A ∈ (τ,≈) and every team X with dom(X) = {v1, . . . , vk},

A |=X ϕ? =⇒ (A, RX1 , . . . , RXk ) |=X ϕ

where RXi := (X(vi))≈ for i = 1, . . . , k, i.e. RXi is defined as the ≈-closure of X(vi).

I Lemma 6. Let R = (R1, . . . , Rk) be a tuple of non-empty ≈-closed relations with (A, R) |=
ϕ. Then A |=Y ϕ? where Y := {(v1, . . . , vk) 7→ (a1, . . . , ak) : a1 ∈ R1, . . . , ak ∈ Rk}.

The non-emptiness requirement of R1, . . . , Rk does not create a serious problem, because
by rewriting the formula ϕ it can be assumed w.l.o.g. that ∃≈R1 . . . ∃≈Rkϕ is satisfied in
a structure A if, and only if, there are non-empty ≈-closed relations R1, . . . , Rk such that
(A, R) |= ϕ.

I Theorem 7. ψ := ∃v1 . . . ∃vkϕ? is equivalent to ∃≈R1 . . . ∃≈Rkϕ.

Proof. Assume that A |= ψ. It follows that there exists some team X with dom(X) =
{v1, . . . , vk} and A |=X ϕ?. By Lemma 5 and free(ϕ) = ∅, we obtain that (A, RX1 , . . . , RXk ) |=
ϕ. By definition, the relations RXi are ≈-closed and, hence, A |= ∃≈R1 . . . ∃≈Rkϕ.

For the converse direction, let A |= ∃≈R1 . . . ∃≈Rkϕ. So there exists some non-empty
≈-closed relations R1, . . . , Rk such that (A, R1, . . . , Rk) |= ϕ. So by Lemma 6, it follows that
A |=Y ϕ? where Y is the team given in Lemma 6. This leads to A |= ∃v1 . . . ∃vkϕ?. J

3.2 From FO(⊆≈, |≈) to Σ1
1(≈)

Up to this point we only know that Σ1
1(≈) ≤ FO(⊆≈, |≈). In this section we prove that these

two logics have in fact the same expressive power. Towards this end, we demonstrate how a
given formula ϕ ∈ FO(⊆≈, |≈) can be translated into Σ1

1(≈). There are two obstacles that
we need to overcome:
1. When viewed as relations, teams usually are not ≈-closed, so we cannot use the quantifier
∃≈ to fetch the subteams we would need to satisfy the subformulae of e.g. a disjunction.

2. Unlike in Σ1
1, where a formula of the form ∀x∃Y (. . . ) is equivalent to formula like

∃Y ′∀x(. . . ) where ar(Y ′) = ar(Y ) + 1, there seems to be no obvious way to perform a
similar syntactic manipulation in Σ1

1(≈). Thus we have to be content with the limited
quantification that Σ1

1(≈) allows us.

The main idea of the construction, which is inspired by [14], is to replace every inclusion
and exclusion atom ϑ by a seperate new relation symbol Rϑ that contains certain values
enabling us to express the semantics of ϕ in Σ1

1(≈).
First we describe how this approach deals with exclusion atoms. Let ϑ1, . . . , ϑk be an

enumeration of all occurrences of exclusion atoms ϑi = ui |≈ wi in ϕ. We assume w.l.o.g.
that the tuples u1, . . . , uk, w1, . . . , wk are pairwise different. We use new relation symbols
Rϑ1 , . . . , Rϑk

that are intended to separate the sets of possible values for vi and wi (up to
equivalence). The desired translation ϕ? of ϕ is now obtained by replacing the exclusion
atoms ϑi = ui |≈ wi by Rϑi

ui ∧¬Rϑi
wi. This construction leads to the following result. The

proof is by induction over ϕ and is given in the appendix.

I Theorem 8. For every formula ϕ(x) ∈ FO(|≈,⊆≈) with signature τ there exists a formula
ϕ?(x) ∈ FO(⊆≈) with signature τ ∪ {R}, where R is a tuple of new relation symbols, such
that for every A ∈ (τ,≈) and every team X the following are equivalent:
(i) A |=X ϕ

(ii) There are ≈-closed relations R over A such that (A, R) |=X ϕ?.
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After this elimination of the exclusion atoms we still need to cope with ⊆≈-atoms.
Towards this end, let ϕ ∈ FO(⊆≈) and ϑ1, . . . , ϑk be an enumeration of all occurrences of
inclusion atoms in ϕ, with ϑi := xi ⊆≈ yi for every i ∈ {1, . . . , k}. We shall use new relation
symbols Rϑ1 , . . . , Rϑk

with the intended semantics that Rϑi ⊆ X(yi)≈ where X is the team
that “arrives” at ϑi. This will allow us to replace the subformulae ϑi by the formula Rϑi

xi.
However, this formula alone does not verify that Rϑi ⊆ X(yi)≈ really holds. Additional
formulae ϕ(1)(z1), . . . , ϕ(k)(zk) are required for the verification that values from Rϑi

could
occur (up to equivalence) as a value for yi in the team X that arrives at the corresponding
inclusion atom. More precisely, ϕ(i) is constructed such that

(A, Rϑ1 , . . . , Rϑk
) |=s[zi 7→a] ϕ

(i)(zi)

implies that the assignment s also satisfies ϕ and, more importantly, leads to an assignment
s′ that satisfies s′(zi) ≈ a and that could be part of the team that satisfies the inclusion
atom. Formally, we are going to prove that

A |=X ϕ⇐⇒ there are ≈-closed relations Rϑ1 , . . . , Rϑk
such that (A, R) |=X ϕ? and

for every a ∈ Rϑi
there is an s ∈ X with (A, R) |=s[zi 7→a] ϕ

(i)(zi).

As already pointed out, ϕ? results from ϕ by replacing every inclusion atom ϑi = xi ⊆≈ yi
by Rϑi

xi, while ϕ(i) is defined by induction (for every i ∈ {1, . . . , k}). Let ϑ be a subformula
of ϕ. First-order literals are unchanged, i.e. ϑ? := ϑ =: ϑ(i) if ϑ is such a literal. The
inclusion atoms are translated as follows:

(xj ⊆ yj)(i) :=
{
Rϑi

xi ∧ yi ≈ zi, if i = j

Rϑjxj , if i 6= j

Conjunctions and existential quantifiers are handled by defining

(∃x ϑ̃)(i) := ∃x ϑ̃(i) and

(ϑ̃1 ∧ ϑ̃2)(i) := ϑ̃
(i)
1 ∧ ϑ̃

(i)
2 .

However, the translation of universal quantifiers or disjunctions is more complex:

(ϑ̃1 ∨ ϑ̃2)(i) :=
{
ϑ̃

(i)
j , if xi ⊆≈ yi occurs in ϑ̃j

(ϑ̃1 ∨ ϑ̃2)?, otherwise

(∀x ϑ̃)(i) := ∃x ϑ̃(i) ∧ (∀x ϑ̃)?.

By construction we have that (∀xϑ)? is implied by (∀xϑ)(i), because it is a subformula,
while ∃xϑ(i) fetches the correct extension of the current assignment such that we end up
with an assignment satisfying yi ≈ zi when arriving at the translation of xi ⊆≈ yi. The next
lemma states that this construction actually captures the intuition that we have described
above. The proof is given in the appendix.

I Lemma 9. Let A ∈ (τ,≈) and X be a team over A with free(ϕ) = dom(X). Then the
following are equivalent:
(i) A |=X ϕ

(ii) There are ≈-closed relations R = (Rϑ1 , . . . , Rϑk
) over A such that (A, R) |=X ϕ? and

for every i ∈ {1, . . . , k}, a ∈ Rϑi
there exists some s ∈ X such that (A, R) |=s[zi 7→a] ϕ

(i).

We are now ready to show how inclusion atoms are translated into Σ1
1(≈).
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I Theorem 10. For every formula ϕ(x) ∈ FO(⊆≈) there exists a sentence ϕ′(X) ∈ Σ1
1(≈)

such that A |=X ϕ(x)⇐⇒ (A, X) |= ϕ′(X) for every structure A and every team X.

Proof. Let

ϕ′ := ∃≈Rϑ1 . . . ∃≈Rϑk

(
∀x(Xx→ ϕ?(x)) ∧

k∧
i=1
∀zi(Rϑizi → ∃x(Xx ∧ ϕ(i)(x, zi)))

)
.

By construction, (A, X) |= ϕ′ if, and only if, there exist ≈-closed relations R over A

such that (A, R) |=s ϕ
? for every s ∈ X, and for every a ∈ Ri there exists some s ∈ X with

(A, R) |=s[zi 7→a] ϕ
(i). Since ϕ? is a first-order formula, A |=s ϕ

? for every s ∈ X if, and only
if, (A, R) |=X ϕ?. Hence, by Lemma 9, we can conclude that (A, X) |= ϕ′ ⇐⇒ A |=X ϕ. J

In particular, every sentence ϕ ∈ FO(⊆≈) can be translated into an equivalent sentence
ϕ′ ∈ Σ1

1(≈).

4 FO(⊆≈) vs. GFP

An important result on logics with team semantics is the tight connection between inclusion
logic and GFP+, established by Galliani and Hella [6]. In this section we prove a similar
result for FO(⊆≈) by defining a fragment of GFP+ which has the same expressive power as
FO(⊆≈).

I Definition 11 (para-GFP+
≈). The logic para-GFP+

≈ is defined as an extension of FO in
negation normal form by the following formula formation rule. Let k ≥ 1 andR = (R1, . . . , Rk)
be a tuple of unused relation symbols of arity n1, . . . , nk respectively and let (ϕi(R, xi))i=1,...,k
be a tuple of FO(τ ∪ {R1, . . . , Rk})-formulae in negation normal form where |xi| = ni and
every Ri occurs only positively in ϕ1, . . . , ϕk. Furthermore, let j ∈ {1, . . . , k} and v be a
nj-tuple of variables. Then

ϕ(v) := [para-GFP≈ (Ri, xi)i=1,...,k . (ϕi(R, xi))i=1,...,k]j(v)

is a para-GFP+
≈-formula.

On every structure A ∈ (τ,≈), the system (ϕi(R, xi))i=1,...,k defines a parallel update
operator ΓA : P(An1)× · · · × P(Ank )→ P(An1)× · · · × P(Ank ), by

Γ(R) :=
(
Γ1(R), . . . ,Γk(R)

)
where

Γi(R) := Jϕi(R)KA≈ = {a ∈ Ani : (A, R) |= ϕi(R, a)}≈

A tuple (A, s) where A ∈ (τ,≈) and s : {v} → A is called a model of ϕ (and we write
A |=s ϕ in this case) if, and only if, for the greatest fixed-point S = (S1, . . . , Sk) of ΓA we
have that s(v) ∈ Sj .

The non-parallel variant GFP+
≈, where it is only allowed to use the operator para-GFP≈

in a non-parallel way, i.e. only in the following shape

[GFP≈ Rx .ϕ(R, x)](y) := [para-GFP+
≈Rx .ϕ(R, x)]1(y),

has exactly the same expressive power as para-GFP+
≈.

The following lemma gives a characterization of the fixed-points of Γ:
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I Lemma 12 (Knaster-Tarski-Theorem for para-GFP+
≈). Let

ϕ(v) = [para-GFP≈ (Ri, xi)i=1,...,k . (ϕi(R, xi))i=1,...,k]j(v)

be a para-GFP+
≈-formula, A ∈ (τ,≈) and Γ(= ΓA) be the corresponding parallel update

operator w.r.t. ϕ1, . . . , ϕk. For two given k-tuples R,S of relations, we write R ⊆ S if, and
only if Ri ⊆ Si for every i ∈ {1, . . . , k}.

Let X := {S : S ⊆ Γ(S)}. Then
⋃
X := (Y1, . . . , Yk) where for every j ∈ {1, . . . , k},

Yj :=
⋃
S∈X Sj is the greatest fixed-point of Γ. Furthermore, these Yj are ≈-closed.

4.1 From FO(⊆≈) to GFP+
≈

I Theorem 13. For every formula ϕ(x) ∈ FO(⊆≈) there exists a sentence ϕ+ ∈ GFP+
≈ such

that A |=X ϕ ⇐⇒ (A, X) |= ϕ+ for every structure A ∈ (τ,≈) and every team X over A.

Proof. In the last section we have presented the FO-formulae ϕ?(R) and ϕ(i)(R) (for
i ∈ {1, . . . , k}) using new relation symbols R = (R1, . . . , Rk) such that for every A ∈ (τ,≈)
and every team X over A with dom(X) ⊇ free(ϕ) the following are equivalent:
(1) A |=X ϕ

(2) There are ≈-closed relations R over A such that (A, R) |=X ϕ? and for every i ∈
{1, . . . , k}, a ∈ Ri there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϕ

(i).
Furthermore, the relation symbols R1, . . . , Rk occur only positively in ϕ? and ϕ(i) and the
tuple zi occurs exactly once in a subformula of the form xi ≈ zi in ϕ(i). Let ϕ̃? and the ϕ̃(i)

be the formulae that result from ϕ?, ϕ(i) by replacing every occurrence of the form Riv by
its guarded version (Ri)≈v := ∃w(v ≈ w∧Riw). This allows us to drop the requirement that
the relations R are ≈-closed.
I Claim 14. For every A and every team X over A, (1) and (2) are equivalent to:
(3) There are relations R over A such that (A, R) |=X ϕ̃? and for every i ∈ {1, . . . , k}, a ∈ Ri

there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϕ̃
(i).

To prove this, one has to exploit the fact that every Rj (j ∈ {1, . . . , k}) occurs only
≈-guarded in ϕ̃?, ϕ̃(1), . . . , ϕ̃(k) and the variables zi occur (exactly once) in a subformula of
the form w ≈ zi in ϕ(i). By expressing (3) in existential second-order logic, we obtain the
following equivalent statement:
(4) (A, X) |= ∃R

(
∀x(Xx→ ϕ̃?(R, x)) ∧ ψ

)
where ψ :=

∧k
i=1 ∀zi(Rizi → ηi(R, zi)) and

ηi(R, zi) := ∃x(Xx ∧ ϕ̃(i)(R, zi, x)).

Let Γ(R) :=
(
Γ1(R), . . . ,Γk(R)

)
where

Γi(R) := Jηi(R, zi)K(A,X) = {a ∈ Aar(Ri) : (A, X(x), R) |= ηi(a)}.

Note that Jηi(R, zi)K(A,X(x)) = Jηi(R, zi)K(A,X(x))
≈ , because the free variables zi occur exactly

once in a subformula of the form w ≈ zi. This is the reason why Γ is the para-GFP+
≈-update

operator w.r.t. η1, . . . , ηk.
Furthermore, (A, X,R) |= ∀zi(Rizi → ηi(R, zi)) if, and only if, Ri ⊆ Γi(R). Consequently,

we have (A, X,R) |= ψ if, and only if, R ⊆ Γ(R).
I Claim 15. For j ≤ k, let ϑj(zj) := [para-GFP≈ (Ri, zi)i=1,...,k . (ηi(R, zi))i=1,...,k)]j(zj),
and let γ result from ϕ̃? by replacing every occurrence of Rj(w) by ϑj(w). Then, for every
A ∈ (τ,≈) and every team X, (4) is equivalent to
(5) (A, X) |= ∀x(Xx→ γ).
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Proof. (4) =⇒ (5) : Let (A, X) |= ∃R
(
∀x(Xx→ ϕ̃?(R, x)) ∧ ψ

)
. Then there are relations R

such that (A, X,R) |= ∀x(Xx→ ϕ̃?(R, x)) and (A, X,R) |= ψ. As observed above, it follows
that R ⊆ Γ(R). So, by Lemma 12, R ⊆ S where S is the greatest fixed-point of Γ. Since
we have (A, X,R) |= ∀x(Xx→ ϕ̃?(R, x)) and the relations symbols R1, . . . , Rk occur only
positively in ϕ̃?, we can conclude that (A, X, S) |= ∀x(Xx → ϕ̃?(S, x)). Because S is the
greatest fixed-point of Γ, it follows that Si = Jϑi(zi)K(A,X) and, by construction of γ, we
obtain that (A, X) |= ∀x(Xx→ γ).

(5) =⇒ (4) : Let (A, X) |= ∀x(Xx→ γ) and let S be the greatest fixed-point of Γ. Then
(A, X, S) |= ∀x(Xx→ ϕ̃?) and S = Γ(S). Therefore, we have (A, X, S) |= ∀zi(Sizi → ηi(zi))
for every i ∈ {1, . . . , k} and, hence, (A, X, S) |= ψ(S). J

By construction ∀x(Xx→ γ) ∈ para-GFP+
≈. Since para-GFP+

≈ has the same expressive
power as GFP+

≈, there also exists a sentence ϕ+ ∈ GFP+
≈ that is equivalent to ϕ(x). J

4.2 From GFP+
≈ to FO(⊆≈)

In order to translate a given sentence ϕ ∈ GFP+
≈ into a FO(⊆≈)-formula, we assume that ϕ

is in a normal form which is given by the following lemma. By using adaptations of ideas
from [6] we then show that such a sentence can be expressed in FO(⊆≈).

I Lemma 16. For every sentence ϕ ∈ para-GFP+
≈ there exists a formula ψ(R, x) ∈ FO, in

which R occurs only positively and only ≈-guarded, such that ϕ is equivalent to

∃v[GFP≈ Rx .ψ(R, x)](v).

Our next lemma shows that we can eliminate the relation symbol R in ψ by introducing
⊆≈-atoms and encoding R in a tuple x of variables.

I Lemma 17. Let R be a relation symbol of arity n, let x, y be tuples of variables where
|x| = n (whereas y is of arbitrary length and can also be empty). Furthermore, let ψ(R, x, y) ∈
FO(τ ∪ {R}) be a first-order formula in which R occurs only positively and ≈-guarded, and
with free(ψ) ⊆ {x, y} such that the variables in x are never quantified in ψ. Then there exists
a formula ψ?(x, y) ∈ FO(⊆≈) of signature τ such that for every A ∈ (τ,≈) and every team
X we have that

A |=X ψ?(x, y)⇐⇒ (A, X(x)) |=s ψ(R, x, y) for every s ∈ X.

This lemma can be shown by induction over the structure of ψ. Now we are able to express
[GFP≈ Rx .ϕ(R, x)] in FO(⊆≈).

I Theorem 18. Let ψ(R, x) ∈ FO where ar(R) = |x|, R occurs only positively and ≈-
guarded in ψ, and the variables in x are never quantified in ψ. Then there exists a formula
ψ+(x) ∈ FO(⊆≈) such that for every A ∈ (τ,≈) and every team X we have that

A |=X ψ+(x)⇐⇒ A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X.

Proof. Let ψ+(x) := ∃y(x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z))).
“=⇒”: First we assume that A |=X ψ+(x). Then there exists a function F : X →

P(An) \ {∅} such that A |=Y x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z)) where Y := X[y 7→ F ]. So there
exists a function G : Y → P(An) \ {∅} satisfying A |=Z y ≈ z ∧ψ?(z) where Z := Y [z 7→ G].
By Lemma 17, it follows that

(A, Z(z)) |=s ψ(R, z) for every s ∈ Z.
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So we have Z(z) ⊆ Jψ(R, z)K(A,Z(z)) ⊆ Jψ(R, z)K(A,Z(z))
≈ = Γψ(Z(z)) where Γψ := ΓA

ψ is the
GFP+

≈-update operator w.r.t. ψ. It follows that Z(z) ⊆ gfp(Γψ) (by Lemma 12). Since
gfp(Γψ) is ≈-closed and X(x) ⊆≈ Y (y) ≈ Z(z), we have that X(x) ⊆ gfp(Γψ). Hence, we
obtain that A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X.

“⇐=”: Now we assume that A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X. If X = ∅,
then A |=X ψ+(x) follows from the empty team property. Henceforth, let X 6= ∅. Let
Γψ = ΓA

ψ be the GFP+
≈-update operator defined w.r.t. ψ(R). From our assumption follows

that X(x) ⊆ gfp(Γψ). Since X 6= ∅, it follows that gfp(Γψ) 6= ∅. Our goal is to prove that
A |=X ψ+(x). Towards this end, we define F : X → P(An) \ {∅}, F (s) := gfp(Γψ) and
Y := X[y 7→ F ] and claim that A |=Y x ⊆≈ y ∧ ∃z(y ≈ z ∧ ψ?(z)). Since Y (x) = X(x) ⊆
gfp(Γψ) = Y (y) it is clear that A |=Y x ⊆≈ y.

We still need to prove that A |=Y ∃z(y ≈ z ∧ ψ?(z)). By definition of Y , we know that
Y (y) = gfp(Γψ) = Γψ(gfp(Γψ)) = Jψ(gfp(Γψ), x)KA≈. This implies that for every s ∈ Y there
exists some a ∈ Jψ(gfp(Γψ), x)KA such that a ≈ s(y).

Let G : Y → P(An) \ {∅} be given by

G(s) := {a ∈ Jψ(gfp(Γψ), x)KA : s(y) ≈ a}

and Z := Y [z 7→ G]. Clearly it holds that Z(z) ⊆ Jψ(gfp(Γψ), x)KA. We claim that even
Z(z) = Jψ(gfp(Γψ), x)KA is true. To see this, let a ∈ Jψ(gfp(Γψ), x)KA ⊆ Jψ(gfp(Γψ), x)KA≈ =
Y (y). So there exists an s ∈ Y with s(y) ≈ a. Hence, we have that a ∈ G(s) and, consequently,
a ∈ Z(z).

It is the case that A |=Z y ≈ z, because this follows from the definition of G. Now we prove
that A |=Z ψ

?(z). By Lemma 17, we need to verify that (A, Z(z)) |=s ψ(R, z) for every s ∈ Z.
In other words, we need to verify that Z(z) ⊆ Jψ(Z(z), z)KA. Since Z(z) = Jψ(gfp(Γψ), x)KA,
we can conclude that

Jψ(Z(z), z)KA = Jψ(Jψ(gfp(Γψ), x)KA, z)KA

Due to the fact that R occurs only ≈-guarded in ψ, we can observe that

Jψ(Jψ(gfp(Γψ), x)KA, z)KA = Jψ(Jψ(gfp(Γψ), x)KA≈, z)KA

= Jψ(Γψ(gfp(Γψ)), z)KA

= Jψ(gfp(Γψ), z)KA = Z(z)

Therefore, we have Z(z) = Jψ(Z(z), z)KA which implies that Z(z) ⊆ Jψ(Z(z), z)KA. So we
have (A, Z(z)) |=s ψ(R, z) for every s ∈ Z, which concludes the proof of A |=Z ψ? and of
A |=X ψ+. J

I Corollary 19. For every GFP+
≈-sentence ϕ there is an equivalent sentence ϑ ∈ FO(⊆≈).

Proof. Let ϕ ∈ GFP+
≈. By Lemma 16, there exists a first-order formula ψ(R, x) where the

n-ary relation symbol R occurs only positively and only ≈-guarded in ψ such that

ϕ ≡ ∃v[GFP≈ Rx .ψ(R, x)](v).

W.l.o.g. we can assume that the variables in x are never quantified in ψ. So, by Theorem 18,
it follows that there exists some ψ+(x) ∈ FO(⊆≈) such that for every A ∈ (τ,≈) and every
team X over A with dom(X) ⊇ {x} holds

A |=X ψ+(x)⇐⇒ A |=s [GFP≈ Rx .ψ(R, x)](x) for every s ∈ X
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Let ϑ := ∃vψ+(v) and A ∈ (τ,≈). Our goal is to prove that A |= ϕ⇐⇒ A |= ϑ.
“⇐=”: Let A |= ϑ. Then there exists a function F : {∅} → P(A|v|) \ {∅} such that

A |=Y ψ+(v) where Y = {∅}[v 7→ F ]. Then we have A |=s [GFP≈ Rx .ψ(R, x)](v) for every
s ∈ Y and, since Y is non-empty, it follows that A |= ∃v[GFP≈ Rx .ψ(R, x)](v).

“=⇒”: Now let A |= ϕ ≡ ∃v[GFP≈ Rx .ψ(R, x)](v). Then there exists some a ∈ A such
that A |= [GFP≈ Rx .ψ(R, x)](a). Let Y = {s} be the singleton team consisting only of
s with s(v) = a. Then it follows that A |=s [GFP≈ Rx .ψ(R, x)](v) for every s ∈ Y and,
consequently, A |=Y ψ+(v), proving that A |={∅} ∃vψ+(v) = ϑ. J

5 Σ1
1(≈) on restricted classes of structures

In this section we compare Σ1
1(≈) with FO and Σ1

1 and study how restrictions imposed on
the given equivalence influence the expressive power of Σ1

1(≈). Our first result is that the
expressive power of Σ1

1(≈) ≡ FO(⊆≈, |≈) lies strictly between FO and Σ1
1. Furthermore, we

also have FO < FO(⊆≈, |≈) < Σ1
1 on the class of structures with only a bounded number of

non-trivial equivalence classes and on the class of structures where each equivalence class is
of size ≤ k (for some fixed k > 1). However, when restricting both the size of the equivalence
classes and the number of non-trivial equivalence classes, then FO(⊆≈, |≈) has the same
expressive power as Σ1

1. To prove these results, we use an adaption of the Ehrenfeucht-Fraïssé
method for FO(⊆≈, |≈), which relies on the games presented in [15].

I Definition 20. Let A,B ∈ (τ,≈), n ∈ N and Ω≈ ⊆ {dep≈,⊥≈,⊆≈, |≈}. The game
GΩ≈,n(A,B) is played by two players which are called Duplicator and Spoiler. The positions
of the game are tuples (X,Y ) of teams over A,B with dom(X) = dom(Y ). Unless stated
otherwise the game starts at position ({∅}, {∅}) and then n moves are played. In each move
Spoiler always chooses between one of the following 3 moves to continue the game:
1. Move ∨:

Spoiler represents X as a union X = X0 ∪X1.
Duplicator replies with a representation of Y as Y = Y0 ∪ Y1.
Spoiler chooses i ∈ {0, 1} and the game continues at position (Xi, Yi).

2. Move ∃:
Spoiler chooses a function F : X → P(A) \ {∅}.
Duplicator replies with a function G : Y → P(B) \ {∅}.
The game continues at position (X[v 7→ F ], Y [v 7→ G]) where v is a new variable.

3. Move ∀:
The game continues at position (X[v 7→ A], Y [v 7→ B]) where v is a new variable.

Positions (X,Y ) with A |=X ϑ but B 6|=Y ϑ for some literal ϑ ∈ FO(Ω≈) are Spoiler’s
winning position. Duplicator wins, if such positions are avoided for n moves.

The game GΩ≈(A,B) is played similarly: first Spoiler chooses a number n ∈ N and then
GΩ≈,n(A,B) is played.

These games characterize semi-equivalences of A and B (up to a certain depth). The
depth of ϕ ∈ FO(Ω≈), denoted as depth(ϕ), is defined inductively:

depth(ϑ) := 0 for every literal ϑ ∈ FO(Ω≈)
depth(∃vϕ′) := depth(ϕ′) + 1 =: depth(∀vϕ′)

depth(ϕ1 ∨ ϕ2) := max(depth(ϕ1),depth(ϕ2)) + 1
depth(ϕ1 ∧ ϕ2) := max(depth(ϕ1),depth(ϕ2))
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I Definition 21 (Semi-equivalence, [15]). Let A,B ∈ (τ,≈) and X,Y be teams over A,B

with dom(X) = dom(Y ). We write A, X VΩ≈,n B, Y (and say that A, X is semi-equivalent
to B, Y up to depth n), if A |=X ϕ implies B |=Y ϕ for every ϕ ∈ FO(Ω≈) with depth(ϕ) ≤ n.
Furthermore, we write A, X VΩ≈ B, Y , if A, X VΩ≈,n B, Y for every n ∈ N. When Ω≈ is
clear from the context, we sometimes omit it as a subscript.

In first-order logic, the concept of semi-equivalence coincides with the usual equivalence
concept between structures, but this is not the case in logics with team semantics. For
example A, X V B,∅ follows from the empty team property, but B,∅V A, X is not true
in general. We write A, X ≡n B, Y , if A, X Vn B, Y and B, Y Vn A, X. A, X ≡ B, Y is
defined analogously.

I Theorem 22. Let τ be a finite signature and A,B ∈ (τ,≈). Duplicator has a winning
strategy for GΩ≈,n(A,B) from position (X,Y ) if, and only if A, X VΩ≈,n B, Y .

Having these games at our disposal, we can prove that FO(⊆≈, |≈) is strictly less powerful
than Σ1

1. Consider the following problem:

Ceven := {A ∈ (τ,≈) : there is some a ∈ A such that |[a]≈| is even}.

I Theorem 23. Ceven is not expressible in FO(⊆≈, |≈).

We just give a short sketch of the proof: Consider Am := (Am,≈Am) and Bm :=
(Bm,≈Bm) where |Am| = 2m, |Bm| = 2m + 1, ≈Am := Am × Am and ≈Bm := Bm × Bm.
Then Am ∈ Ceven while Bm /∈ Ceven. It is not difficult to prove that Duplicator wins the
games Gm(Am,Bm) and Gm(Bm,Am) by maintaining as an invariant that the equality types
induced by the assignments in the two teams are always equal. On the other hand, it is easy
to see that FO(dep≈)(≤ FO(⊆≈, |≈)) can express that the number of equivalence classes is
even, but this is not definable in first-order logic.

I Corollary 24. FO < FO(⊆≈, |≈) < Σ1
1.

Next we study whether restrictions imposed on the given equivalence influence the
expressive power of Σ1

1. Consider the class K≤p of structures A ∈ (τ,≈) where every
equivalence class of A is of size ≤ p. On K≤1, Σ1

1(≈) has the same expressive power as Σ1
1,

because every relation over A ∈ K≤1 is ≈A-closed. However, this is not the case for p ≥ 2 as
the next theorem shows.

I Theorem 25. Let p ≥ 2. FO < FO(⊆≈, |≈) < Σ1
1 holds on the class K≤p of structures

A ∈ (τ,≈) with |[a]≈| ≤ p for every a ∈ A.

To prove this (see appendix), we are using an Ehrenfeucht-Fraïssé argument and prove
that FO(⊆≈, |≈) is unable to express non-connectivity of graphs when the equivalence classes
are allowed to contain up to 2 elements.

Restricting the number of equivalence classes is not really interesting, because it leads
to a situation where Σ1

1(≈) has the same expressive power as FO, because there are only
2(kr) many ≈-closed relations of arity r when k is the number of ≈-classes, which can be
simulated in first-order logic.

Another possible restriction is to admit only a bounded number of non-trivial equivalence
classes (which consist of more than one element). Let KNT≤p be the class of all A ∈ (τ,≈)
with at most p many non-trivial equivalence classes (for some p ≥ 1).

But then again, Ceven ∩KNT≤p is not definable in FO(⊆≈, |≈) on KNT≤p. Hence, we also
have FO < Σ1

1(≈) < Σ1
1 on KNT≤p.
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However, combining the conditions imposed on the number of non-trivial equivalence and
their size, leads to an interesting situation: Σ1

1(≈) ≡ Σ1
1 on KNT≤p1,≤p2 := KNT≤p1 ∩ K≤p2 .

The reason for this is that at most p1 · p2 many elements are located inside non-trivial
equivalence classes, while all the other elements are only equivalent to themselves. Since
Σ1

1(≈) allows us to obtain a linear order on the equivalence classes, it is possible to encode
arbitrary relations and, hence, to simulate Σ1

1.
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A Appendix

A.1 The Expressive Power of FO(⊆≈, |≈)
Proof of Theorem 8. By induction:

Case ϕ = v |≈ w: Then ϕ? := Rϕv ∧ ¬Rϕw. Let Rϕ := (X(v))≈, which is the ≈-closure
of X(v). Now we observe that

A |=X v |≈ w ⇐⇒ for every s, s′ ∈ X : s(v) 6≈ s′(w)
⇐⇒ for every s ∈ X : s(v) ∈ Rϕ and s(w) /∈ Rϕ
⇐⇒ (A, Rϕ) |=X Rϕv ∧ ¬Rϕw.

Case ϕ is some FO-literal or an ⊆≈-atom: Then we have ϕ? = ϕ and there is nothing to
prove, because the relation symbols R do not occur in ϕ?.

Case ϕ = ϕ0 ∨ ϕ1: Let ϑ(j)
1 , . . . , ϑ

(j)
kj

be the exclusion atoms that occur in ϕj .
“(i) =⇒ (ii)”: First, we assume that A |=X ϕ0 ∨ ϕ1. Then there are teams X0, X1 such

that X = X0 ∪X1 and A |=Xj
ϕj for j ∈ {0, 1}. By induction hypothesis, there exists two

tuples of ≈-closed relations Rj = (R
ϑ

(j)
1
, . . . , R

ϑ
(j)
kj

) such that (A, Rj) |=Xj ϕ
?
j (for j ∈ {0, 1}).

We define

R := (R
ϑ

(0)
1
, . . . , R

ϑ
(0)
k0
, R

ϑ
(1)
1
, . . . , R

ϑ
(1)
k1

)

and, since the relations Rj do not occur in ϕ1−j , it follows that (A, R) |=Xj
ϕ?j for j ∈ {0, 1}.

Therefore, (A, R) |=X ϕ?.
“(i) ⇐= (ii)”: For the other direction, let there be ≈-closed relations R such that

(A, R) |=X ϕ? and, hence, there are teams X0, X1 such that X = X0∪X1 and (A, R) |=Xj ϕ
?
j

for j ∈ {0, 1}. By induction hypothesis, this implies that A |=Xj
ϕj for j ∈ {0, 1}, whence it

follows that A |=X ϕ.
The case where ϕ = ϕ0 ∧ ϕ1 is similar to the previous one, and the cases where ϕ = ∀xψ

or ϕ = ∃xψ are trivial. J

Proof of Lemma 9. Let A ∈ (τ,≈) and X be some team over A with free(ϕ) ⊆ dom(X).
Recall that ϑ1, . . . , ϑk are the inclusion atoms that occur in ϕ. Our goal is now to prove that
the following statements are equivalent for every subformula ϑ of ϕ:
(1) A |=X ϑ

(2) There are ≈-closed relations R = (Rϑ1 , . . . , Rϑk
) over A such that (A, R) |=X ϑ? and for

every i ∈ {1, . . . , k}, a ∈ Rϑi
there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a] ϑ

(i).
Whenever we are proving that (2) holds, we can often use that ϑ(i) and ϑ? are equivalent, if
ϑi = xi ⊆≈ yi does not occur in ϑ. Hence, we only need to prove that A |=X ϑ? holds and
that for every i ∈ {1, . . . , k} such that ϑi occurs in ϑ and every a ∈ Rϑi there exists some
si,a ∈ X with A |=si,a[zi 7→a] ϑ

(i)(zi).
For the empty team X = ∅, there is nothing to prove, because A |=∅ ϑ follows from the

empty team property and the empty relations trivially satisfy the conditions stated in (2).
From now on we only consider non-empty teams X in this proof, which proceeds now by
induction:

Case ϑ = v ⊆≈ w: Then there exists a unique ` ∈ {1, . . . , k} such that ϑ` = ϑ and
Rϑ`

= Rϑ. Recall that we have defined ϑ? := Rϑv and

ϑ(i) :=
{
ϑ?, if i 6= `

ϑ? ∧ w ≈ zi, if i = `.
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“(1) =⇒ (2)”: Suppose A |=X v ⊆≈ w. Then X(v) ⊆≈ X(w) and, this is why, setting
Rϑ := X(w)≈ leads to (A, Rϑ) |=X Rϑv = ϑ?. Moreover, for every a ∈ Rϑ = X(w)≈ there
exists, by definition of X(w)≈, an assignment s ∈ X such that s(w) ≈ a and, hence, it holds
that (A, Rϑ) |=s[z` 7→a] w ≈ z`, which leads to (A, Rϑ) |=s[z` 7→a] ϑ

(`). Since the other relations
Rϑi

for i 6= ` occur neither in ϑ? nor ϑ(i), it does not matter what values they contain.
“(1) ⇐= (2)”: For the converse direction, we assume that there are ≈-closed relations R

such that (A, R) |=X Rϑ`
v and that for every i ∈ {1, . . . , k}, a ∈ Rϑi

there is some si,a ∈ X
such that (A, R) |=si,a[zi 7→a] ϑ

(i). In particular, for every a ∈ Rϑ`
holds

(A, R) |=s`,a[z` 7→a] ϑ
(`) = Rϑ`

v ∧ w ≈ z`.

Our goal is to prove that A |=X v ⊆≈ w. Towards this end, let s ∈ X. Because (A, R) |=X

Rϑ`
v, it follows that s(v) ∈ Rϑ`

. So for s′ := s`,s(v) ∈ X holds (A, R) |=s′[z` 7→s(v)] w ≈ z`.
Therefore, s′(w) ≈ s(v). Since s ∈ X was chosen arbitrarily, this proves that A |=X v ⊆≈ w.

Case ϑ is an FO-literal: Then we have ϑ? := ϑ =: ϑ(i). For arbitrary (not necessarily
≈-closed) relations R holds

A |=X ϑ ⇐⇒
X 6=∅

(A, R) |=s ϑ for every s ∈ X and

for every i ∈ {1, . . . , k}, a ∈ Rϑi
exists s ∈ X

such that (A, R) |=s[zi 7→a] ϑ = ϑ(i)

Case ϑ = ψ0 ∨ ψ1: Let ϑ(j)
1 , . . . , ϑ

(j)
kj

be the inclusion atoms that occur in ψj .
“(1) =⇒ (2)”: First we assume that A |=X ϑ. Then there are two teams Y0, Y1 such that

X = Y0 ∪ Y1 and A |=Yj ψj for j ∈ {0, 1}.
By induction hypothesis, there are tuples of ≈-closed relations R(j) = (R(j)

ϑ1
, . . . , R

(j)
ϑk

)
such that (A, R(j)) |=Yj ψj (for j ∈ {0, 1}) and for every i ∈ {1, . . . , k} and every a ∈ R(j)

ϑi

there exists some s ∈ Yj such that (A, R(j)) |=s[zi 7→a] ψ
(i)
j . Let R = (Rϑ1 , . . . , Rϑk

) be a
tuple of ≈-closed relations such that Rϑi = R

(j)
ϑi
⇐⇒ ϑi occurs in ψj .3

We are going to prove that (A, R) |=X ϑ? and that for every i ∈ {1, . . . , k} such that
ϑi occurs in ϑ and every a ∈ Rϑi

, there exists some s ∈ X such that (A, R) |=s[zi 7→a] ϑ
(i).

Since (A, R(j)) |=Yj
ψ?j , we also have (A, R) |=Yj

ψ?j , because whenever a relation symbol Rϑi

occurs in ψj , it must be the case that ϑi occurs in ψj and, hence, Rϑi = R
(j)
ϑi

. Additionally
we still have X = Y0 ∪ Y1 and, thus, (A, R) |=X ϑ?.

Towards proving the second part, let i ∈ {1, . . . , k} such that ϑi occurs in ϑ and a ∈ Rϑi .
There must be some (unique) j ∈ {0, 1} such that ϑi occurs in ψj and Rϑi

= R
(j)
ϑi

. We know
already that there exists some s ∈ Yj that satisfies (A, R(j)) |=s[zi 7→a] ψ

(i)
j , which implies that

(A, R) |=s[zi 7→a] ψ
(i)
j . Furthermore, we have that ϑ(i) := ψ

(i)
j and, consequently, it follows

that (A, R) |=s[zi 7→a] ϑ
(i), which is exactly what we wanted to achieve.

“(1) ⇐= (2)”: Suppose that there are ≈-closed relations R such that (A, R) |=X ϑ? and
that for every i ∈ {1, . . . , k}, a ∈ Rϑi

there exists some si,a ∈ X such that (A, R) |=si,a[zi 7→a]

ϑ(i). Then there are some teams Y0, Y1 such that Y = Y0 ∪ Y1 and (A, R) |=Yj
ψ?j for

j ∈ {0, 1}. Furthermore, by definition of ϑ(i), for every i ∈ {1, . . . , k} such that ϑi occurs in
ϑ, there exists a (unique) j(i) ∈ {0, 1} with ϑ(i) = ψ

(i)
j(i). For j ∈ {0, 1} let

Y ′j := {si,a : i ∈ {1, . . . , k}, ϑi occurs in ϑ, a ∈ Rϑi
and j(i) = j} (⊆ X).

3 Such R exists, because ϑi cannot occur in both ψ0 and ψ1.
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It follows that (A, R) |=s ψ
(i)
j for every s ∈ Y ′j , because every s ∈ Yj has the form s = si,a

and we have that (A, R) |=si,a
ϑ(i) = ψ

(i)
j(i)(= ψ

(i)
j ). Since ψ(i)

j |= ψ?j , we can conclude that
also (A, R) |=si,a[zi 7→a] ψ

?
j . This, together with the flatness property of FO, implies that

(A, R) |=Zj ψ
?
j where Zj := Yj ∪ Y ′j .

For j ∈ {0, 1} let R(j) = (R(j)
ϑ1
, . . . , R

(j)
ϑk

) be given by

R
(j)
ϑi

:=
{
Rϑi

, if ϑi is a subformula of ψj
∅, otherwise.

Because the relation symbol Rϑi occurs in ψ?j if, and only if ϑi is a subformula of ψj , we still
have (A, R(j)) |=Zj

ψ?j for j ∈ {0, 1}. Furthermore, for every j ∈ {0, 1}, every i ∈ {1, . . . , k}
and every a ∈ R(j)

ϑi
it must be the case that ϑi is a subformula of ψj (otherwise we would have

R
(j)
ϑi

= ∅, but this contradicts a ∈ R(j)
ϑi

) and, thus, it follows that ϑ(i) = ψ
(i)
j and, therefore,

(A, R(j)) |=si,a[zi 7→a] ψ
(i)
j , because we have (A, R) |=si,a[zi 7→a] ϑ

(i) and si,a ∈ Y ′j ⊆ Zj .
This is the reason, why we are allowed to use the induction hypothesis, which yields us

that A |=Zj
ψj for j ∈ {0, 1}. Consequently, it follows that A |=Z0∪Z1 ϑ.

It is easy to observe that Z0 ∪ Z1 = Y0 ∪ Y1 ∪ Y ′0 ∪ Y ′1 = X, because Y ′0 , Y ′1 ⊆ X and
X = Y0 ∪ Y1. As a result, we obtain that A |=X ϑ.

Case ϑ = ψ0 ∧ ψ1: Similar and even easier than the previous case!
Case ϑ = ∃xψ: Recall that we have defined ϑ? := ∃xψ? and ϑ(i) = ∃xψ(i) for every

i ∈ {1, . . . , k}. We only prove “(1) ⇐= (2)”, since the other direction is quite trivial.
Suppose that there are ≈-closed relations R such that (A, R) |=X ∃xψ? and for every

i ∈ {1, . . . , k}, a ∈ Rϑi there exists an si,a ∈ X such that (A, R) |=si,a[zi 7→a] ∃xψ(i). Then
there is a function F : X → P(A)\{∅} such that for Y := X[x 7→ F ] holds (A, R) |=Y ψ? and
for every i ∈ {1, . . . , k}, a ∈ Ri there exists some bi,a ∈ A such that (A, R) |=s′

i,a
[zi 7→a] ψ

(i)

where s′i,a = si,a[x 7→ bi,a]. Let Y ′ := {s′i,a : i ∈ {1, . . . , k}, a ∈ Rϑi}. Due to ψ(i) |= ψ? and
the flatness property of FO, it follows that (A, R) |=Z ψ

? for Z := Y ∪ Y ′. Furthermore, for
every i ∈ {1, . . . , k}, a ∈ Rϑi

we have s′i,a ∈ Y ′ ⊆ Z with (A, R) |=s′
i,a

[zi 7→a] ψ
(i). Thus, we

can apply the induction hypothesis with Z and ϑ̃ to obtain that A |=Z ψ. By definition
of Z we have Z � dom(X) = (Y � dom(X)) ∪ (Y ′ � dom(X)). Furthermore, it is the case
that Y � dom(X) = X[x 7→ F ] � dom(X) = X (recall that we assume that no variable is
quantified twice and that dom(X) = free(ϑ)) and Y ′ � dom(X) ⊆ X, because every s′ ∈ Y ′
has the form s′ = s′i,a = si,a[x 7→ bi,a] where si,a ∈ X. Therefore, Z � dom(X) = X and,
hence, it follows that A |=X ∃xψ = ϑ.
Case ϑ = ∀xψ: Recall that we have defined ϑ? := ∀xψ? and ϑ(i) := ∃x(ψ(i)) ∧ ∀x(ψ?).

“(1) =⇒ (2)”: Let A |=X ∀xψ. Then A |=Y ψ where Y := X[x 7→ A]. By induction
hypothesis, there are ≈-closed relations R such that (A, R) |=Y ψ? and for every i ∈
{1, . . . , k}, a ∈ Rϑi

there exists an s′i,a ∈ Y that satisfies (A, R) |=s′
i,a

[zi 7→a] ψ
(i).

Since Y = X[x 7→ A], it follows that (A, R) |=X ∀xψ? = ϑ?. We have already mentioned
above that ϑ? ∈ FO. So we can use the flatness property, which leads to (A, R) |=s ∀xψ?
for every s ∈ X. In particular, this holds for the assignments si,a := (s′i,a � dom(X)) ∈ X.
This is why, we have (A, R) |=si,a

∀xψ?. Furthermore, from (A, R) |=s′
i,a

[zi 7→a] ψ
(i) follows

that (A, R) |=si,a[zi 7→a] ∃xψ(i). Consequently, we can conclude that (A, R) |=si,a
∃x(ψ(i)) ∧

∀x(ψ?) = ϑ(i) for every i ∈ {1, . . . , k}, a ∈ Rϑi and we have that (A, R) |=X ϑ?.
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“(1) ⇐= (2)”: Suppose that there are ≈-closed relations R satisfying (A, R) |=X ∀xψ?
and for every i ∈ {1, . . . , k}, a ∈ Rϑi

there exists some si,a ∈ X such that

(A, R) |=si,a[zi 7→a] ϑ
(i) = ∃x(ψ(i)) ∧ ϑ?.

Let Y := X[x 7→ A]. Then we have (A, R) |=Y ψ? (because (A, R) |=X ∀xψ?). Further-
more, for every i ∈ {1, . . . , k}, a ∈ A there exists some bi,a ∈ A such that (A, R) |=s′

i,a
[zi 7→a]

ϑ(i) where s′i,a := si,a[x 7→ bi,a] ∈ Y (because (A, R) |=si,a[zi 7→a] ∃xψ(i)). So, by induc-
tion hypothesis, it follows that A |=Y ψ and, because of Y = X[x 7→ A], we obtain that
A |=X ∀xψ = ϑ. J

A.2 Σ1
1(≈) on restricted classes of structures

Proof of Theorem 25. It suffices to prove this for p = 2. Let τ = {E,≈}. Consider the
following problem: C := {A ∈ K≤2 : (A,EA) is not connected}. By using the method of
Ehrenfeucht-Fraïssé we will show that C is not definable in FO(⊆≈, |≈).

For every m > 3 let Am := (Am, EAm ,≈) and Bm := (Bm, EBm ,≈) where Am :=
{0, . . . ,m− 1} ∪ {0′, . . . , (m− 1)′} =: Bm and EAm := EAm

+ ∪ EAm
− with

EAm
+ := {(i, j), (i′, j′) : j = i+ 1 (mod m)}

and EAm
− := {(w, v) : (v, w) ∈ EAm

+ }. Similary, EBm := EBm
+ ∪ EBm

− where EBm
+ :=

{(0, 1), (1, 2), . . . , (m − 2,m − 1), (m − 1, 0′), (0′, 1′), . . . , ((m − 2)′, (m − 1)′), ((m − 1)′, 0)}
and EBm

− := {(w, v) : (v, w) ∈ EBm
+ }. ≈ is in both structures defined such that [i]≈ = {i, i′}

for every i ∈ {0, . . . ,m−1}. In other words, Am consists of two cycles (0, 1, . . . ,m−1, 0) and
(0′, 1′, . . . , (m−1)′, 0′) of length m, while Bm is a single cycle (0, 1, . . . ,m−1, 0′, 1′, . . . , (m−
1)′, 0) of length 2m.

For every v ∈ {0, 1, . . . ,m− 1, 0′, 1′, . . . , (m− 1)′} there are uniquely determined sAm(v)
and sBm(v) such that (v, sAm(v)) ∈ EAm

+ and (v, sBm(v)) ∈ EBm
+ . Similarly, there are exists

uniquely determined predecessors (sAm)−1(v) and (sBm)−1(v) with (v, (sAm)−1(v)) ∈ EAm
−

and (v, (sAm)−1(v)) ∈ EBm
− . We define for every v ∈ Am, every w ∈ Bm and every k ∈ Z

v +Am k := (sAm)k(v) and w +Bm k := (sBm)k(w).

We are going omit Am and Bm as a subscript, when it is clear from the context that v
belongs to Am resp. Bm.

For v, w ∈ Am we define distAm
(v, w) to be the minimal number n ∈ N such that

v + n = w or v − n = w, or ∞, if no such number n ∈ N exists. distBm
(v, w) is defined

analogously. Please note, that distAm
(v, w) = distAm

(w, v) and distBm
(v, w) = distBm

(w, v).
Furthermore, for every a ∈ {0, 1, . . . ,m− 1, 0′, 1′, . . . , (m− 1)′} and every b, c ∈ Z holds,

(a+Am
b) +Am

c = a+Am
(b+ c) and (a+Bm

b) +Bm
c = a+Bm

(b+ c).

It is easy to see that dist(v1, v3) ≤ dist(v1, v2) + dist(v2, v3) for every v1, v2, v3 from Am
or Bm. Furthermore, v ≈ w implies that sAm(v) ≈ sBm(v) and (sAm)−1(v) ≈ (sBm)−1(v).
This observation leads to the following corollary.
I Claim 26. Let v ∈ Am, w ∈ Bm with v ≈ w. Then v + k ≈ w + k for every k ∈ Z.

For every i, j, q ∈ N we write i ≈q j if, and only if i = j or i ≥ q ≤ j. Given two
assignments s : {x1, . . . , x`} → Am and t : {x1, . . . , x`} → Bm, we write s ≈q t if, and only
if s(xi) ≈ t(xi) (which is equivalent to: s(xi), t(xi) ∈ {n, n′} for some n ∈ {0, . . . ,m − 1})
and distAm

(s(xi), s(xj)) ≈q distBm
(t(xi), t(xj)) holds for every i, j ∈ {1, . . . , `}.
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I Lemma 27. Let m > 2n+2 and 0 ≤ ` ≤ k < n. Furthermore, let s : {x1, . . . , x`} → Am
and t : {x1, . . . , x`} → Bm be two assignments with s ≈2n+1−k t. Then:
(1) For every a ∈ Am there exists some b = b(s, t, a) ∈ Bm such that

s′ := s[x`+1 7→ a] ≈2n−k t[x`+1 7→ b] =: t′.

(2) For every b ∈ Bm there exists some a = a(s, t, b) ∈ Am such that

s′ := s[x`+1 7→ a] ≈2n−k t[x`+1 7→ b] =: t′.

Furthermore, for two teams X,Y over Am,Bm with dom(X) = {x1, . . . , x`} = dom(Y )
we write X ≈q Y if, and only if for every s ∈ X there exists some t ∈ Y and, conversely, for
every t ∈ Y there exists some s ∈ X such that s ≈q t.
I Claim 28. Let n,m ∈ N with m > 2n+2. Duplicator has a winning strategy in Gn(Am,Bm).

Thus we have Am Vn Bm for every m > 2n+2. Using very similar arguments, it is
possible to prove that Bm Vn Am. Furthermore, we have Am ∈ C and Bm /∈ C. This proves
that C is not definable in FO(⊆≈, |≈) (because ϕ is unable to distinguish between Am and
Bm for every m > 2depth(ϕ)+2). On the other hand, C is definable in Σ1

1 by the sentence
∃X∃x∃y(Xx∧¬Xy∧∀u∀v(Xu∧Euv → Xv)). This concludes the proof of FO(⊆≈, |≈) < Σ1

1.
FO < FO(⊆≈, |≈) follows from the fact that FO(|≈) ≡ FO(dep≈) and that the sentence

∀x∃y∀x′∃y′(dep≈(x, y) ∧ dep≈(x′, y′) ∧ x 6≈ y ∧ (x 6≈ x′ ∨ y ≈ y′) ∧ (x 6≈ y′ ∨ y ≈ x′))

expresses that a even number of equivalence classes exists. Using standard Ehrenfeucht-Fraïssé
arguments, it is not difficult to prove, that C is not FO-definable. J
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