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Abstract
With the help of an idea of contextual modal logic, we define a logical system λrefl that in-
corporates monadic reflection, and then investigate delimited continuations through the lens of
monadic reflection. Technically, we firstly prove a certain universality of continuation monad,
making the character of monadic reflection a little more clear. Next, moving focus to delimited
continuations, we present a macro definition of shift/reset by monadic reflection. We then prove
that λrefl

2cont, a restriction of λrefl, has exactly the same provability as λs/r
pure, a system that incorpo-

rates shift/reset. Our reconstruction of monadic reflection opens up a path for investigation of
delimited continuations with familiar monadic language.
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1 Introduction

Every light is accompanied by darkness. Every term is accompanied by its continuation.
Suppose that the part indicated by the underline in the following term is being evaluated:

1 + 2× 3− 4

In this case, the continuation of 2×3 is intuitively A (1+[ ]−4), where A (M) means “compute
M and then quit”. In other words, a continuation is the rest of the computation, and is
therefore expressed as a term with just one “hole”. Some calculi[5][21] can turn a continuation
into a function and use it in terms as if it were an ordinary function. Such manipulations of
continuations are well-understood today, and indeed it is a well-known fact that these can
be characterized as classical inferences via the Curry-Howard Isomorphism[10][21]. In the
correspondence, the type of A (1 + [ ]− 4) is understood to be N→ ⊥, assuming that N is
the type of natural numbers.

Delimited continuation[4][6][11] is a variant of continuation. In operational terms, a
delimited continuation is explained as the rest of the computation up to the nearest enclosing
delimiter. For example, consider the following term:

d1 + 2× 3e − 4

where we denote the delimiter by d−e. In this case, the delimited continuation of 2× 3 is
1 + [ ]. As in the case of ordinary continuations, there are calculi that can turn a delimited
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27:2 A Contextual Reconstruction of Monadic Reflection

continuation into a function[4][15]. This perhaps seemingly trivial modification is in fact
significant, enhancing the expressibility of continuations drastically. Delimited continuations
are so expressive that it can realize, for example, coroutines, non-determinisim, and statically
typed printf[2]. This expressibility essentially comes from the fact that delimited continuations
are composable as functions, whereas ordinary continuations are not since their codomains
are ⊥.

In addition to the above intriguing applications of delimited continuations, there exists
one more elegant use of it: monadic reflection[7][8]. Monadic reflections allow programmers
to write programs that involve monads as if those monads are “built-in” to the language,
or in Haskell terminology, without do-notation. A little more specifically, in a system
with monadic reflection, a monadic term M : TA can be turned into a non-monadic term
reflectTM : A without disrupting the intuitive behavior of M , easing the trouble of writing
effectful programs in a purely-functional language.

On the other hand, however, delimited continuations are logically complicated. In contrast
to the fact that ordinary continuations correspond to classical inferences, there does not seem
to exist such a simple correspondence for delimited ones. Although there exists, for example,
an interesting work that embeds a system with delimited continuations into a variant of
classical logic[1], the embedding is still not “the end of the story” in that the original system
with delimited continuations[4] does not allow classical inferences.

Thus, to sum up the plot, an elegant application is being derived from a rather opaque
starting point. In this paper, with the help of an idea of contextual modal logic, we invert
the direction of this storyline: We directly define a logical system λrefl that incorporates
monadic reflection, and then investigate delimited continuations through the lens of monadic
reflection, obtaining a better understanding of delimited continuations. Our contribution in
this paper is now summaried as follows:

A modal logical system that incorporates monadic reflection,
The universality of continuation monad with respect to monadic reflection,
Logical understanding of delimited continuations via “quasi-double negation”,
Equivalence of monadic reflection and delimited continuation in provability.

In the next section, we overview the idea of Fitch-style contextual modal logic to obtain
the foundational idea of context layering. In the section, we also briefly review ordinary
modal logic since it might be an unfamiliar concept for researchers on delimited continuations.
Readers who are familiar with modal logic can safely skip the first part of the section. Using
the idea of contextual modal logic, in Section 3, we define a system λrefl that incorporates
monadic reflection, and show the univesality of continuation monad with respect to reflection,
making the character of monadic reflection a little more clear. We also present a macro
definition of shift/reset in the section. Section 4 is dedicated to an investigation of delimited
continuations via the lens of monadic reflection. We show certain equivalence of these two
concepts with respect to provability in the section. In Section 5, we put our contribution
into perspective by comparing our work to related work. Section 6 concludes this paper with
discussion of future work.

2 Fitch-Style Contextual Modal Logic

2.1 A Quick Tour of Modal Logic
Modal logic is a logic in which we can add certain modalities, or “flavors”, to propositions.
In modal logic, one can state that a proposition is “necessarily” true, “possibly” true, or
“should be” true, etc. Let us focus on necessity and possibility here. Typically, when a
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proposition A is necessarily or possibly true under an assumption Γ, one writes Γ ` �A or
Γ ` ♦A, respectively. Using these operators, one can extend ordinary logic into modal one.

But what after all is necessity? What is possibility? The critical problem of modal logic
in its early days was the very fact that people did not share any firm consensus on these
concepts. Is a proposition �A→ ��A true? How about �(A→ B)→ (�A→ �B)? Since
people did not have any precise definitions of modalities, the answer naturally differed among
people, which resulted in a lot of different variant of modal logics.

Fortunately, around 1960, this situation was recovered by Kripke[16][17], who presented
a semantics for modal logic. He presented formal definitions of the two modalities in his
semantics which employs a concept that would excite Sci-Fi enthusiasts and even others:
possible worlds. His semantics introduces a set of possible worlds and an “accessibility
relation” between them. Under this framework, for example, the meaning of necessity is
defined as follows: �A is true in a possible world w if and only if A is true in any world w′
that is accessible from the world w. The various aspects of necessity are then characterized
by how this accessibility relation is defined. For instance, if the accessibility relation under
consideration is reflexive, the box modality validates �A→ A. If the relation if transitive,
the modality validates �A→ ��A, etc. In this way, he gave formal definitions of “necessity”
and “possibility”, or whatever they are called, in modal logic.

2.2 Fitch-Style Contextual Modal Logic

There still remains a pitfall. Modalities become tricky when they are combined with bindings.
Let us take the example by Quine[23]. The sentence �(8 > 7) is true as long as our box
modality considered here validates A→ �A. Now, we know that the number of the planets
in our solar system is 8. Let us define

N := (the number of the planets in our solar system).

Then N = 8 is true. Now, however, the statement �(N > 7) is intuitively false, since we
can consider a possible world in which we have, for instance, only 5 planets in our solar
system. This phenomenon suggests that box modality has a delicate character with respect
to bindings. Some might think that the box modality should contain information about its
argument just like universal/existential quantifiers.

And here comes contextual modal logic. Contextual modal logic[19] is an attempt to
generalize the modalities with contextual information. In this logic, the box modality is
generalized from �A to [Γ]A. The latter proposition intuitively reads as “A is necessarily true
under Γ”. [Γ]A degenerates to the ordinary box modality when Γ is empty. By generalizing
box modality in this way, one can obtain a more fine-grained modality.

Multi-level Fitch-style contextual modal logic[20] is a variant of contextual modal logic.
In the logic, the form of judgments are generalized to Γ1 ; . . . ; Γn ` A. Intuitively, this
reads as “A is true under Γn, is true under Γn−1, . . . , is true under Γ1”. In other words, this
logic extends our vocabulary in the system, allowing statements of the form not only

A is true under Γ

but also

“A is true under Γ2” is true under Γ1.

CSL 2018
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By internalizing the meaning of this statement, we can incorporate quotation to our logic.
For example, we can consider the following inference rules

~Π ; Γ ` A
�i

~Π ` [Γ]A

~Π ` [Γ]A
�e

~Π ; Γ ` A

which internalize quotation, or the relative pronoun “that”, as the box modality. It would be
worth noting that this box modality defined above characterizes the so-called K modality.
Furthermore, by extending these rules in a certain way, we can also characterize T, K4, and
S4 modalities. Interested readers are referred to [18][20]. In this paper, however, we think
that this quick explanation is sufficient for our purpose, and therefore do not go into further
details here.

3 A Contextual Reconstruction of Monadic Reflection

3.1 A Logical System with Monadic Reflection

3.1.1 Syntax
The syntax of λrefl is defined as follows. Here, the x and t in the following definition are a
variable and a type-variable, respectively. We assume that the set of variables and that of
type-variables are distinct.

A,B ::= t | A→ A

T ::= [ ] | t | T → T

M,N,P,Q ::= x | λx.M | M@M | reflectTM | reifyTM

Γ,∆ ::= ∅ | x : A,Γ
~Π ::= · | Γ ; ~Π
~L ::= · | T ; ~L

We define T [A] to be the proposition obtained by replacing all the occurrances of [ ] in T
with A. For example, when T = [ ]→ B, T [A] is A→ B. Although the definition of T in
the rule above is somewhat restricted, we can easily generalize it if necessary. We denote
T [A] by TA. We also abbreviate Γ1 ; . . . ; Γn ; · as Γ1 ; . . . ; Γn, and T1 ; . . . ; Tn ; · as
T1 ; . . . ; Tn. Every judgment of λrefl is of the form ~L | ~Π `M : A.

3.1.2 Logic
The type system of λrefl is as follows.

var
~L ; T | ~Π ; Γ, x : A ` x : A

~L | ~Π ; Γ, x : A `M : B →i
~L | ~Π ; Γ ` λx.M : A→ B

~L | ~Π `M : A→ B ~L | ~Π ` N : A →e
~L | ~Π `M@N : B

T ; ~L | ∅ ; ~Π `M : A
reify

~L | ~Π ` reifyTM : TA

~L | ~Π `M : TA
reflect

T ; ~L | Γ ; ~Π ` reflectTM : A
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There exist two side-conditions. Firstly, the rule →i can be applied only when M does not
have any reflects that are not encapsulated by reify. This side-condition is required to define
the reduction of this system in the ordinary call-by-value way. At the same time, however,
this side-condition can seemingly be dropped by allowing reduction in abstraction, and we
will revisit this point later. Secondly, when the rules reify or reflect are applied, the following
two rules must be admissible without appealing reify and reflect:

~L | ~Π `M : A
return

~L | ~Π ` returnT M : TA

~L | ~Π ; Γ `M : TA ~L | ~Π ; Γ, x : A ` N : TB
bind

~L | ~Π ; Γ `M BT
x N : TB

where returnT M and M BT
x N are “macros” defined by terms in the system1. For example,

suppose T = [ ]. For this identity effect T , the rule return is vacuously admissible. The rule
bind is also admissible for this effect since we have the following derivation tree:

~L | ~Π ; Γ, x : A ` N : B
~L | ~Π ; Γ ` λx.N : A→ B ~L | ~Π ; Γ `M : A

~L | ~Π ; Γ ` (λx.N)@M : B

Thus, we are allowed to apply the rules reify and reflect when T = [ ]. In this case, return[ ] M

and M B[ ]
x N are understood as macros for M and (λx.N)@M , respectively.

I Definition 1. A proposition A is provable in λrefl when there exists a term N such that
[ ] | ∅ ` N : A is derivable in λrefl. Such N is said to be well-typed.

We write λrefl ` A when A is provable in λrefl. We also write λrefl ` J when J is derivable
in λrefl. We use these notations for subsystems of λrefl that we will define later, too.

3.1.3 Reduction
Values V , contexts E, and pure-contexts F are defined as follows.

V ::= x | λx.M

E ::= [ ] | V@E | E@M | reifyTE

F ::= [ ] | V@F | F@M

We define E[M ] in the same way as T [A]. The reduction of this system is defined as follows.

E[(λx.M)@V ] E[M{x := V }]
E[reifyTF [reflectTM ]] E[M BT

x reifyTF [x]]
E[reifyTV ] E[returnT V ]

Here, the second rule “factors out” a detour resulted from reify/reflect. Specifically, the rule
translates a derivation tree

1 Note that we do not impose the laws of monads here.

CSL 2018
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(· · · )
~L | ~Π `M : TA

T ; ~L | ∅ ; ~Π ` reflectTM : A
(· · · )

T ; ~L | ∅ ; ~Π ` F [reflectTM ] : B
~L | ~Π ` reifyTF [reflectTM ] : TB

into

(· · · )
~L | ~Π `M : TA

T ; ~L | ∅ ; ~Π, x : A ` x : A
(· · · )

T ; ~L | ∅ ; ~Π, x : A ` F [x] : B
~L | ~Π, x : A ` reifyTF [x] : TB

~L | ~Π `M BT
x reifyTF [x] : TB

The following elementary properties can be shown by ordinary induction.

I Proposition 2. If a judgment ~L | ~Π ; Γ `M : A is derivable in λrefl, ~L | ~Π ; Γ, x : B `M : A
is also derivable for any fresh variable x and any type B.

I Proposition 3. If M is a well-typed term of type A, M  N implies N : A.

I Proposition 4. If ~L | ~∅ `M : A is derivable, M is one of the followings:
M = λx. P

M = E[R]
M = F [reflectTP ]

where R is one of (λx. P )@V, reifyTF [reflectTP ], reifyTV .

The last proposition implies the progress property:

I Corollary 5. Every well-typed term M is either a value, or can be uniquely written as
E[R], where R is one of (λx. P )@V, reifyTF [reflectTP ], reifyTV .

3.2 λrefl
2 , λrefl

2cont: Restrictions of λrefl

Now, let us investigate the character of continuation monad. The system λrefl
2 is defined to

be the system obtained from λrefl by restricting the form of judgments to the following two:
[ ] | Γ `M : A
T ; [ ] | ∅ ; Γ `M : A

The system λrefl
2cont is also defined to be the system obtained by restricting the form of

judgments to the following two:
[ ] | Γ `M : A
contB ; [ ] | ∅ ; Γ `M : A

where contA stands for ([ ]→ A)→ A. For this cont(−), the rule return is admissible by the
following derivation:

~L | ~Π ; Γ, k : A→ B ` k : A→ B

~L | ~Π ; Γ `M : A
~L | ~Π ; Γ, k : A→ B `M : A

~L | ~Π ; Γ, k : A→ B ` k@M : B
~L | ~Π ; Γ ` λk. k@M : contBA
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and the rule bind is also admissible as follows:

~L | ~Π ; Γ `M : contCA

~L | ~Π ; Γ, x : A ` N : contCB

~L | ~Π ; ∆ ` N : contCB ~L | ~Π ; ∆ ` w : B → C

~L | ~Π ; ∆ ` N@w : C
~L | ~Π ; Γ, w : B → C ` λx.N@w : A→ C

~L | ~Π ; Γ, w : B → C `M@(λx.N@w) : C
~L | ~Π ; Γ ` λw.M@(λx.N@w) : contCB

where ∆ is a shorthand for Γ, x : A,w : B → C. These admissibilities give us a license to
apply reify and reflect for this effect.

We will write reifyAM for reifycontAM and reflectAM for reflectcontAM .

3.3 Universality of Continuation Monad
The system λrefl

2cont is obviously a subsystem of λrefl
2 , and therefore any proposition that can

be proved in λrefl
2cont can also be proved in λrefl

2 . Here, we show that the other direction is in
fact also true.

I Theorem 6. Let J be a derivable judgment in λrefl
2 . If J is of the form [ ] | Γ ` M : A,

there exists a term N such that [ ] | Γ ` N : A is derivable in λrefl
2cont. If J is of the form

T ; [ ] | ∅ ; Γ ` M : A, for any type B, there exists a term N such that the judgment
contT B ; [ ] | ∅ ; Γ ` N : A is derivable in λrefl

2cont.

Proof. We prove the statement by induction on the derivation of J . When J is derived
from var,→i, or →e, the proofs are routine. Suppose that J is derived from reflect and of the
form T ; [ ] | ∅ ; Γ ` reflectTM : A. In this case we have [ ] | Γ `M : TA. By the induction
hypothesis, there exists a term N such that [ ] | Γ ` N : TA is derivable in λrefl

2cont. Now, we
can construct the following valid deriviation tree for any type B:

[ ] | Γ ` N : TA
[ ] | Γ, k : A→ TB ` N : TA

[ ] |∆ ` k : A→ TB [ ] |∆ ` x : A
[ ] | Γ, k : A→ TB, x : A ` k@x : TB

[ ] | Γ, k : A→ TB ` N BT
x k@x : TB

[ ] | Γ ` λk.N BT
x k@x : (A→ TB)→ TB

contT B ; [ ] | ∅ ; Γ ` reflectT B(λk.N BT
x k@x) : A

where the ∆ is a shorthand for Γ, k : A→ TB, x : A.
Suppose that J is derived from reify and of the form [ ] | Γ ` reifyTM : TA. In this case,

we have T ; [ ] | ∅ ; Γ `M : A. Just as in the previous case, for any type B, there exists a
term N such that contT B ; [ ] | ∅ ; Γ ` N : A. Since the B in this judgment is arbitrary, we
can take it to be A. In other words, we have contT A ; [ ] | ∅ ; Γ ` N : A. Now we just need
to construct the following derivation tree:

contT A ; [ ] | ∅ ; Γ ` N : A
[ ] | Γ ` reifyT AN : (A→ TA)→ TA

[ ] | Γ, x : A ` x : A
[ ] | Γ, x : A ` returnT x : TA

[ ] | Γ ` λx. returnT x : A→ TA

[ ] | Γ ` (reifyT AN)@(λx. returnT x) : TA
J

I Corollary 7. λrefl
2 ` A iff λrefl

2cont ` A.

CSL 2018
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Note that we had to state the theorem only for provability, and not for term conversion.
One might wonder why we did not define, for example, a translation by

x\ = x

(λx.M)\ = λx.M \

(M@N)\ = M \@N \

(reflectTM)\ = reflectT B(λk.M \ BT
x k@x)

(reifyTM)\ = (reifyT AM \)@(λx. returnT x)

and state that M  N ⇔M \  N \. This is because the translation makes the correspon-
dence of redexes unclear. For example, in the following diagram, we cannot reduce the
upper-right term into the lower-right term because the “redex” 1 + 1 is encapsulated in the
lambda abstraction.

reflectTF [1 + 1] reflectT B(λk. F \[1 + 1]BT
x k@x)

reflectTF [2] reflectT B(λk. F \[2]BT
x k@x)

\

reduce ?

\

This fact complicates discussion on term conversion. Faced with the complexity, we had to
state the theorem only for provability, albeit we believe that our results can be strengthened
to include an account of term conversion. In Section 4, we state the equivalence of monadic
reflection and delimited continuations again “up to provability”. It is also because of this.

3.4 Deriving shift/reset from Monadic Reflection

When we instantiate the T in the rule reflect with contB , the rule behaves as if it were a rule
of double-negation:

~L | ~Π `M : (A→ B)→ B
reflect

contB ; ~L | Γ ; ~Π ` reflectBM : A

Of couse, this is not a properly classical inference since we do have a “debt” contB . Still, it
would be natural to expect that we might be able to handle continuations in some form using
this “quasi-double negation”, considering that classical inferences correspond to manipulations
of continuations via the Curry-Howard Isomorphism.

And this is in fact true. In λrefl, we can define the following macros:

dMeA = (reifyAM)@(λz. z)
SAk.M = reflectA(λk. dMeA)

These macros behave in exactly the same way as specified in the ordinary operational
semantics of shift/reset. Namely, we can easily check the followings:

dF [Sk.M ]e ∗ dM{k := λx. dF [x]e}e,
dV e ∗ V.
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Specifically, the former is justified by:

dF [Sk.M ]e
= (reify (F [reflect (λk. dMe)]))@(λz. z)
 ((λk. dMe)Bx reify (F [x]))@(λz. z)
= (λw. (λk. dMe)@(λx. (reify (F [x]))@w))@(λz. z)
 (λk. dMe)@(λx. (reify (F [x]))@(λz. z))
= (λk. dMe)@(λx. dF [x]e)
 dM{k := λx. dF [x]e}e

and the latter by:

dV e = (reify V )@(λz. z) (returnV )@(λz. z) = (λk. k@V )@(λz. z) ∗ V.

4 Investigating Delimited Continuations with Monadic Reflection

4.1 A Logical System with Delimited Continuations
Our logical system with delimited continuations, λs/r

pure, is obtained from λ
s/r
let [3], by

fixing the answer types,
restricting lambda abstractions to be pure, and
making the application of the rule exp explicit.

4.1.1 Syntax
The syntax of λs/r

pure is defined as follows.

A,B ::= t | A→ A

M,N ::= x | λx.M | M@N | SAk.M | dMeA | bMcA

Γ,∆ ::= ∅ | x : A,Γ

We often omit the type annotation in SAk.M, dMeA, and bMcA. The form of the judgments
of λs/r

pure is either Γ `M : A or B | Γ `M : A.

4.1.2 Logic
The type system of λs/r

pure is as follows.

var
Γ, x : A ` x : A

Γ, x : A `M : B →iΓ ` λx.M : A→ B

C | Γ `M : A→ B C | Γ ` N : A →e
C | Γ `M@N : B

B | Γ, k : A→ B `M : B
shift

B | Γ ` SBk.M : A
A | Γ `M : A

reset
Γ ` dMeA : A

Γ `M : A exp
B | Γ ` bMcB : A

I Definition 8. A proposition A is provable in λ
s/r
pure if there exists a term N such that

∅ ` N : A. We also say that such N is well-typed.

We define λs/r
pure ` A and λs/r

pure ` J as in λrefl.

CSL 2018
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4.2 Translations
We will compare λs/r

pure with λrefl
2cont. Towards that end, we syntactically distinguish the

applications of λrefl
2cont at different levels. In other words, we separate the rule →e in λrefl

2cont
into the following two:

[ ] | Γ `M : A→ B [ ] | Γ ` N : A →pure
e[ ] | Γ `M �B N : B

contC ; [ ] | ∅ ; Γ `M : A→ B contC ; [ ] | ∅ ; Γ ` N : A →e
contC ; [ ] | ∅ ; Γ `M@N : B

We sometimes omit the annotation in the former application for brevity.
With the preparation above, we define two translations (−)] : λs/r

pure → λrefl
2cont and (−)[ :

λrefl
2cont → λ

s/r
pure as follows:

x[ = x x] = x

(λx.M)[ = λx.M [ (λx.M)] = λx.M ]

(M@N)[ = M [@N [ (M@N)] = M ]@N ]

(M �A N)[ = dbM [cA@bN [cAeA −

(reflectAM)[ = SAk. bM [cA@bkcA (SAk.M)] = reflectA(λk. (reifyAM ]) �A (λx. x))

(reifyAM)[ = λk. dbkcA@M [eA (dMeA)] = (reifyAM ]) �A (λx. x)

− (bMcA)] = reflectA(λk. k �A M ])

We extend these translations for λs/r
pure-judgments

(Γ `M : A)] = [ ] | Γ `M ] : A

(B | Γ `M : A)] = contB ; [ ] | ∅ ; Γ `M ] : A

and for λrefl
2cont-judgments

([ ] | Γ `M : A)[ = Γ `M [ : A

(contB ; [ ] | ∅ ; Γ `M : A)[ = B | Γ `M [ : A.

4.3 Equivalence of the Two Systems in Provability
Now, we present the equivalence of monadic reflection and delimited continuation.

I Theorem 9. λrefl
2cont and λ

s/r
pure possess exactly the same provability. Specifically,

1. λs/r
pure ` J implies λrefl

2cont ` J ]

2. λrefl
2cont ` J implies λs/r

pure ` J [

Proof. (1) We prove the statement by the induction on the derivation of J . The proofs
for var,→i,→pure

e ,→e are routine. Assume that J is derived using shift and of the form
B | Γ ` SBk.M : A. In this case, we have B | Γ, k : A → B ` M : B. Applying the
translation, we obtain a judgment contB ; [ ] | ∅ ; Γ, k : A→ B `M ] : B, which is justified
by the induction hypothesis. Now we have the following derivation tree
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contB ; [ ] | ∅ ; Γ, k : A→ B `M ] : B
[ ] | Γ, k : A→ B ` reifyBM ] : (B → B)→ B

[ ] | Γ, k : A→ B, x : B ` x : B
[ ] | Γ, k : A→ B ` λx. x : B → B

[ ] | Γ, k : A→ B ` (reifyBM ]) �B (λx. x)
[ ] | Γ ` λk. (reifyBM ]) �B (λx. x) : (A→ B)→ B

contB ; [ ] | ∅ ; Γ ` reflectB(λk. (reifyBM ]) �B (λx. x)) : A

where x is a variable which does not occur in M ],Γ. The conclustion of this deriviation tree
is equal to the result of the translation of B | Γ ` SBk.M : A.

Assume that J is derived using reset and of the form Γ ` dMeA : A. In this case, we have
A | Γ ` M : A. Translating this judgment, we obtain a valid judgment contA ; [ ] | ∅ ; Γ `
M ] : A. Now, we can construct the following tree:

contA ; [ ] | ∅ ; Γ `M ] : A
[ ] | Γ ` reifyAM ] : (A→ A)→ A

[ ] | Γ, x : A ` x : A
[ ] | Γ ` λx. x : A→ A

[ ] | Γ ` (reifyAM ]) �A (λx. x) : A

Hence we have [ ] | Γ ` (reifyAM ])�A (λx. x) : A, which is equal to the result of the translation
of Γ ` dMeA : A.

Assume that J is derived using exp and of the form B | Γ ` bMcB : A. In this case, we
have Γ `M : A, and therefore [ ] | Γ `M ] : A. Now we have the following derivation:

[ ] | Γ, k : A→ B ` k : A→ B

[ ] | Γ `M ] : A
[ ] | Γ, k : A→ B `M ] : A

[ ] | Γ, k : A→ B ` k �B M ] : B
[ ] | Γ ` λk. k �B M ] : (A→ B)→ B

contB ; [ ] | ∅ ; Γ ` reflectB(λk. k �B M ]) : A

which concludes our proof for (1).
(2) Again, we prove the statement on the derivation of J . We present proofs only for

non-trivial cases: reflect, reify, and →pure
e . Assume that J is derived from reflect and of the

form contB ; [ ] | ∅ ; Γ ` reflectBM : A. Then we have [ ] | Γ ` M : (A → B) → B, which
implies Γ ` M [ : (A → B) → B by the induction hypothesis. Now we have the following
derivation tree:

Γ `M [ : (A→ B)→ B

B | Γ ` bM [cB : (A→ B)→ B

B | Γ, k : A→ B ` bM [cB : (A→ B)→ B

Γ, k : A→ B ` k : A→ B

B | Γ, k : A→ B ` bkcB : A→ B

B | Γ, k : A→ B ` bM [cB@bkcB : B
B | Γ ` SBk. bM [cB@bkcB : A

The conclusion of this tree is equal to (contB ; [ ] | ∅ ; Γ ` reflectBM : A)[.
Assume that J is derived from reify and of the form [ ] | Γ ` reifyBM : (A → B) → B.

In this case, we have contB ; [ ] | ∅ ; Γ `M : A, which implies B | Γ `M [ : A. The tree that
we need to construct is the following one:
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Γ, k : A→ B ` k : A→ B

B | Γ, k : A→ B ` bkcB : A→ B

B | Γ `M [ : A
B | Γ, k : A→ B `M [ : A

B | Γ, k : A→ B ` bkcB@M [ : B
Γ, k : A→ B ` dbkcB@M [eB : B

Γ ` λk. dbkcB@M [eB : (A→ B)→ B

Finally, assume that J is derived from →pure
e and of the form [ ] | Γ ` M �B N : B. In

this case, we have [ ] | Γ ` M : A → B and [ ] | Γ ` N : A for some A. We can therefore
construct the following derivation tree:

Γ `M [ : A→ B

B | Γ ` bM [cB : A→ B

Γ ` N [ : A
B | Γ ` bN [cB : A

B | Γ ` bM [cB@bN [cB : B
Γ ` dbM [cB@bN [cBeB : B

which concludes our proof for (2). J

I Corollary 10. λs/r
pure ` A iff λrefl

2cont ` A.

5 Related Work

5.1 Monadic Reflection
In his seminal work, Filinski[7] introduced the idea of monadic reflection with its implemen-
tation by shift/reset. His work is one of our main motivations of this paper. It would be
worth to note that the type system of the calculus with shift/reset in his paper is different
from the original one[4], and therefore from the one that we have discussed in this paper.
Indeed, for example, the original calculus is known to be strongly normalizing, whereas his
calculus is not[14].

Forster et al.[9] compares the expressibility of effect handlers, monadic reflection, and
delimited continuations. In the paper, among others, they show that delimited continuations
and monadic reflection can express each other in untyped setting. At the same time, they
show that their translation from delimited continuations to monadic reflection preserves
types, whereas the translation of the opposite direction does not. Comparing to their work,
our reconstruction can be understood as a proposal of an answer to the question of how we
can preserve types in both directions of these translations.

Zeilberger[24] discusses delimited continuations in his somewhat non-standard calculus
which incorporates polarity. He claims in the paper that monadic reflection is essentially the
isomorphism in the Yoneda lemma. His observation might play an important role when we
construct a categorical semantics of our system.

5.2 Logical Meaning of Delmited Continuations
Ariola et al.[1] explains the logical meaning of delimited continuations by translating a system
with a dynamic variable, which can interpret shift/reset with answer-type modification, into
a logical system with subtraction. In terms of classical logic, subtraction A−B is dual to
implication A→ B. Namely, A−B = A ∧ (¬B). A virtue of their system would be the fact
that it explains the meaning of answer-type modification. At the same time, however, it
should be noted that the subtractive system allows classical inference, whereas the original
system with shift/reset does not allow double-negation.
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Kameyama [12] covers a variant of delimited continuation operators which differs a little
from shift/reset. In his work, he consider a side-condition that the operation that corresponds
to shift can be used only when the operation that corresponds to reset will appear later.
Through the lens of our reconstruction, this condition seems to be closely related to the role
of the context stack in our system.

6 Conclusion

We have reconstructed monadic reflection using the idea of contextual modal logic, and
exploited it to investigate delimited continuations, obtaining the equivalence of these two
concepts in provability.

In this paper, we have focused on delimited continuations with pure abstractions. It
might be possible to extend our work and encompass impure abstractions. Indeed, we can
extend the pure-contexts in λrefl as follows:

F ::= [ ] | V@F | F@M | λx. F

and drop the side-condition of →i that we imposed in Section 3. With some modification to
the definition of the values, we have the following reduction, for example:

E[reifyT (λx. reflectTM)] E[M BT
y reifyT (λx. y)].

Note that our layered context ensures that M does not have x as free variable. By exploiting
this fact and the macro-definition of shift/reset in λrefl, we might be able to realize impure
functions.

Another direction of future work is categorical semantics of λrefl. Ordinary contextual
modal logic already has a categorical semantics based on iterative enrichment[20]. It might
be possible to explain λrefl based on their calculus.

Decomposing the effect T into contextual modalities is also an interesting topic. In [22],
the authors decompose the modality that corresponds to T in our system into ♦�. Using
the contextual possibility, it might be possible to decompose our T and derive the rule
reify, reflect.

We have restriced the depth of the context stack of λrefl
2cont to be 2. It might also be

possible to generalize the equivalence between delimited continuation and monadic reflection
to the “iterative” one by dropping this restriction, clarifying the character of shiftn/resetn in
the CPS hierarchy[13].
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