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Abstract
The “generic operational metatheory” of Johann, Simpson and Voigtländer (LiCS 2010) defines
contextual equivalence, in the presence of algebraic effects, in terms of a basic operational preorder
on ground-type effect trees. We propose three general approaches to specifying such preorders:
(i) operational (ii) denotational, and (iii) axiomatic; coinciding with the three major styles of
program semantics. We illustrate these via a nontrivial case study: the combination of probab-
ilistic choice with nondeterminism, for which we show that natural instantiations of the three
specification methods (operational in terms of Markov decision processes, denotational using a
powerdomain, and axiomatic) all determine the same canonical preorder. We do this in the case
of both angelic and demonic nondeterminism.
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1 Introduction

Contextual equivalence, in the style of Morris, is a powerful and general method for defining
program equivalence, applicable to many programming languages. Two programs are said
to be contextually equivalent if they ‘behave’ equivalently when embedded in any suitable
context that leads to ‘observable’ behaviour. More generally,1 one can define contextual
preorder in the same manner. Let P1 and P2 be comparable programs (for example, in a
typed language, P1 and P2 would have the same type in order to be comparable). Suppose
further that we have some basic preorder 4, defined on ‘observable’ computations, according
to appropriate behavioural considerations. Then the contextual preorder is defined by

P1 vctxt P2 ⇐⇒ for all observation contexts C[−], C[P1] 4 C[P2] . (1)

1 It is more general, since every equivalence relation is a preorder.
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29:2 Basic Operational Preorders for Probability and Nondeterminism

This method of definition has important consequences. For example, the relation vctxt is
guaranteed to be a precongruence with respect to the constructors of the programming
language. However, the quantification over contexts makes the definition awkward to
work with directly. So various more manageable techniques for reasoning about contextual
preorder relations have been developed, including: (bi)simulations and their refinements
(applicative/environmental bisimulations, bisimulations up-to), denotational interpretation
in domains, game semantics, program logics, and logical relations. These techniques are all
reasonably general, in the sense that they adapt to different styles of programming languages,
and combinations of programming features. Nonetheless, they are usually studied on a
language-by-language basis.

One direction for the systematisation of a range of programming features has been
provided by Plotkin and Power through their work on algebraic effects [13, 14]. Broadly
speaking, effects are interactions between a program and its environment (including the
machine state), and include features such as error raising, global/local state, input/output,
nondeterminism and probabilistic choice. Plotkin and Power realised that the majority of
effects (including all the aforementioned ones) are algebraic, in the sense that the operations
that trigger them satisfy a certain natural behavioural constraint.2

The algebraic effects in a programming language can be supplied via an algebraic signature
Σ of effect-triggering operations, and the operational semantics of the language can then
be defined parametrically in Σ. This is achieved by effectively splitting the semantics of
the language into two steps. In the first step, operational rules specify how any program
P evaluates to an associated effect tree |P |, which documents all the effects that might
potentially occur during execution. In an effect tree, the effects themselves are uninterpreted,
in the sense that no specific execution behaviour is imposed upon them. As the second step,
an interpretation is given to effect trees, by one means or another, from which a semantics for
the whole language is extrapolated. This methodology was first followed in [13], where the
operational reduction to effect trees (there called infinitary effect values) is used as a method
for proving the computational adequacy of denotational semantics. In [6], effect trees (there
called computation trees) are used to give a uniform definition of contextual preorder, and to
characterise it as a logical relation. Effect trees also allow a general definition of applicative
(bi)similarity for effects [17] (see [1] for a related approach not based on trees).

In this paper, as in [6], our aim is to exploit the notion of effect tree for the purpose of
giving a unified theory of contextual preorders for programming languages with algebraic
effects. In [6], this was carried out in the context of a specific polymorphically-typed call-
by-name functional language with general recursion, to which algebraic effects were added.
In this paper, we build on the technical work of [6], but an important departure is that
we detach the development from any fixed choice of background programming language.
This is based on the following general considerations. In order to define contextual preorder
via (1) above, one needs to specify what constitutes an observation context, and also the
basic behavioural relation 4 on the computations such contexts induce. In the case of a
language with algebraic effects, we can observe two things about a computation. Firstly, we
can observe any discrete return value. In any sufficiently expressive language, discrete values
should be convertible to natural numbers. So it is a not unreasonable restriction to restrict
observation contexts to ground contexts whose return values (if any) are natural numbers.
Secondly, we can also potentially observe aspects of effectful behaviour of such computations,

2 In operational terms, the constraint is that the behaviour of the operation does not depend on the
content of the continuation at the time the operation is triggered.
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with exactly what is observable very much depending on the effects in question. One general
approach to taking such effectful behaviour into account is to specify a basic operational
preorder 4 on the set of effect trees with natural-number-labelled leaves, which implements
a desired behavioural preorder on effectful computations with return values in N. We are
thus led to the following general formulation of contextual preorder. Given a chosen basic
operational preorder 4, we define the induced contextual preorder on programs by:

P1 vctxt P2 ⇐⇒ for all ground contexts C[−], |C[P1]| 4 |C[P2]| . (2)

In [6], this general approach was developed in detail for a polymorphically typed call-
by-name functional language with algebraic effects. The main result was that the resulting
contextual preorder, defined by (2), is well behaved if the basic operational preorder satisfies
two technical properties, admissibility and compositionality. In particular, it follows from
these conditions that the contextual preorder is characterisable as a logical relation (and
hence amenable to an important proof technique), and also that, on ground type programs
P1, P2, the contextual and basic operational preorders coincide (i.e., P1 vctxt P2 if and only if
|P1| 4 |P2|). Recently, we have carried out a similar programme for a call-by-value language,
similar to the language in [13], and obtained analogous results.3 It seems likely that similar
results hold for other language variants.

The notion of admissible and compositional basic operational preorder thus provides
a uniform and well-behaved definition of contextual preorder, for different languages with
algebraic effects. Furthermore, as is argued in [6, §V], it can also be given an intrinsic, more
conceptually motivated justification in terms of an explicit notion of observation. Our general
position is that the notion of admissible and compositional basic operational preorder is a
fundamental one. For any given combination of algebraic effects, one need only define a
corresponding admissible and compositional basic operational preorder. Once this has been
done, one obtains, via (2), a definition of contextual preorder that can be applied to many
programming languages containing those effects, and which will enjoy good properties.

In this paper, we describe three different approaches to defining basic operational preorders.
The first is an operational approach. One explicitly models the execution of the effects
in question, and uses this model to determine the preorder. This is the approach that
was followed in [6]. Under this approach, admissibility and compositionality do not hold
automatically, and so need to be explicitly verified. The second is a denotational approach.
One builds a suitable domain-based model of the relevant effect operations. This induces a
basic operational preorder on effect trees that is automatically admissible and compositional.
The third is axiomatic. One finds a set of (possibly infinitary) Horn-clause axioms asserting
desired properties of the intended preorder. The basic operational preorder is then taken to
be the smallest admissible preorder satisfying the axioms. In addition to being admissible by
definition, the resulting preorder is automatically compositional.

It will not have escaped the readers attention that our three approaches to defining
preorders parallel the three main styles of program semantics: operational, denotational
and axiomatic. Nonetheless, irrespective of how they are defined, we view basic operational
preorders themselves as a part of operational semantics, for their purpose is to define the
operational notion of contextual preorder.

The general identification of these three approaches is the first main contribution of the
paper. Our second contribution is more technical. We illustrate the three approaches with a
nontrivial case study: the combination of (finitary) nondeterminism with probabilistic choice,

3 Unfortunately, there is no space to include these results, which were obtained while the first author was
on an internship in Ljubljana in 2017, in this paper.
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which is a combination of effects that enjoys a certain notoriety for some of the technical
complications it incurs [11, 12, 21, 20, 2, 3, 7]. On the operational side, we consider effect trees
as Markov decision processes (MDPs), and we define a basic operational preorder based on the
comparison of values of MDPs. On the denotational side, we make use of recently developed
domain-theoretic models of combined nondeterministic and probabilistic choice [20, 3, 7].
On the axiomatic side, we give a simple axiomatisation, similar to axiomatisations in [12, 7].
Our main result is that the operationally, denotationally and axiomatically-defined basic
operational preorders all coincide with each other. In fact, we give this result in two
different versions. The first is for an angelic interpretation of nondeterminism, in which
nondeterministic choices are resolved by a cooperative scheduler. The second is for demonic
nondeterminism, where an antagonistic scheduler is assumed. In each case, our coincidence
theorem suggests the canonicity of the preorder we obtain for the form of nondeterminism in
question, with each of the three methods of definition providing a distinct perspective on it.

In Sections 2 and 3, we review the definition of effect trees and basic operational preorders,
largely following [6]. Our main contribution starts in Sections 4, 5 and 6, which discuss the
operational, denotational and axiomatic approaches to defining basic operational preorders.
The discussion is illustrated using the example of combined nondeterminism and probabilistic
choice. The main coincidence theorem, for this example, is then proved in Section 7. Finally,
in Section 8, we briefly discuss related and further work.

2 Effect trees

The general scenario this paper addresses is that of a programming language whose programs
may perform effects as they compute. In this paper, we assume that the available effects are
specified by an effect signature: a set Σ of operation symbols, each with an associated finite
arity. We call the operations in Σ effect operations. This setting is explicitly that of [13].
More general effect signatures appear in the literature, e.g., allowing parameterised operations
and infinite arities [6, 19]. The technical development in this paper can be generalised to
such more general signatures. Since, however, the main running example considered in this
paper has only binary operations, we restrict ourselves to finite arity operations for the sake
of presentational convenience.

I Example 1 (Signature for combined probabilistic and non-deterministic choice). Consider
a programming language that can perform two effects: probabilistic and nondeterministic
choice. An appropriate signature for such a language is Σpr/nd = {(pr, 2), (or, 2)} containing
two binary operations: nondeterministic choice or, and fair probabilistic choice pr. (As is well
known, in programming languages with general recursion, all computable discrete probability
distributions can be simulated using fair probabilistic choice.)

During the execution of a program with effects, three different situations can arise. Firstly,
the computation process may trigger an effect, represented by some o ∈ Σ. The execution
will then continue along one of the n possible continuation processes given as arguments
to the operation o. Secondly, the execution may terminate, in which case it may produce
a resulting value. Thirdly, the execution may continue forever without terminating and
without invoking any effects. We call this last situation silent nontermination to distinguish
it from noisy nontermination, which occurs when the computation process computes for ever
while performing an infinite sequence of effects along the way.

The global behaviour of such a program is captured by the notion of an effect tree: a
finitely branching tree, whose internal nodes represent effect operations, and whose leaves
represent either termination with a result, or silent nontermination. The branches of the tree
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Figure 1 Two effect trees.

represent potential execution sequences of the program. Trees are allowed to be infinitely deep,
with their infinite branches representing noisy nontermination. Such trees were introduced as
infinitary effect values in [13], and used extensively in [6], where they are called computation
trees. Two example trees, for computations that return natural number values, are drawn
in Figure 1 below. The left-hand tree or(pr(1, 2), 3) represents a program that first makes a
nondeterministic choice and then a potential probabilistic choice, with the choices determining
the resulting number. In the second tree pr(or(1, 3), or(2, 3)), the probabilistic choice is made
first, followed by the relevant nondeterministic choice.

I Definition 2. The set Trees(X) of effect trees with values from the set X is coinductively
defined so that every tree has one of the following forms.

The root of the tree is labelled with an operation o ∈ Σ, and the tree has the form
o(t1, . . . , tn) where n is the arity of o and t1, . . . , tn ∈ Trees(X); or
the tree is a leaf labelled with a value x ∈ X; or
the tree is a leaf labelled with ⊥.

As this is a coinductive definition, Trees(X) contains trees of both finite and infinite depth.
We define a partial order on Trees(X) by t1 v t2 if and only if t2 can be obtained

from t1 by replacing (possibly infinitely many) ⊥-leaves appearing in t1 with arbitrary
replacement trees (rooted where the leaves were located). With this ordering, Trees(X) is an
ω-complete partial order (ωCPO) with least element ⊥. Furthermore, by considering it as a
tree constructor, every operation o ∈ Σ defines a continuous (i.e., ω-continuous) function
o : Trees(X)n → Trees(X), where n is the arity of o. (For notational convenience, we use o
for both operation symbol and function. The ambiguity can be resolved from the context.)

The properties described above state that Trees(X) is a continuous Σ-algebra. In general,
a continuous Σ-algebra is a pointed (i.e., with least element) ωCPO A with associated
continuous functions oA : An → A for every o ∈ Σ of arity n. As morphisms between
continuous Σ-algebras A and B, we consider functions h : A → B that are strict (i.e.,
preserve least element) continuous homomorphisms with respect to the Σ-algebra structure.
We refer to such functions h : A→ B as continuous homomorphisms, leaving the strictness
property implicit. We write ContAlgΣ for the category of continuous Σ-algebras and
continuous homomorphisms. The characterisation of Trees(X) below is standard.

I Proposition 3. Trees(X) is the free continuous Σ-algebra over the set X.

X A

Trees(X)

f

i
f̂
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That is, for every function f : X → A, where A is a continuous Σ-algebra, there exists a
unique continuous homomorphism

f̂ : Trees(X)→ A

such that f = f̂ ◦ i, where i : X → Trees(X) is the function mapping every x ∈ X to the
leaf-tree labelled x.

We use the above proposition to define a substitution operation on trees. For any tree
t ∈ Trees(X), every function f : X → Trees(Y ) determines a tree t[f ] in Trees(Y ) defined by
substitution, viz: t[f ] := f̂(t) .

3 Basic operational preorders

As discussed in Section 1, our interest in effect trees is that they provide a uniform template
for defining contextual preorders for programming languages with algebraic effect operations
specified by signature Σ. As in [6], the crucial data is provided by a preorder 4 on Trees(N),
called the basic operational preorder. In order for the resulting contextual preorder to be well
behaved, we ask for the the basic operational preorder satisfy two properties: admissibility
and compositionality. In this section, we review the definitions of these and related notions.

I Definition 4 (Admissibility). A binary relation R on Trees(X) is admissible if, for every
ascending chain (ti)i≥0 and (t′i)i≥0, we have:

( tiR t′i for all i ) =⇒

⊔
i≥0

ti

 R

⊔
i≥0

t′i

 .

I Definition 5 (Compatibility). A binary relation R on Trees(X) is compatible if, for every
o ∈ Σ of arity n, and for all trees t1, . . . , tn and t′1, . . . , t′n, we have:

( tiR t′i for all i = 1, . . . , n ) =⇒ o(t1, . . . , tn)R o(t′1, . . . , t′n) .

If a compatible relation is a preorder then it is called a precongruence. If it is an equivalence
relation it is called a congruence.

The next two definitions make use of the substitution operation on trees defined at the
end of Section 2.

I Definition 6 (Substitutivity). A binary relation R on Trees(X) is substitutive if, for all
trees t, t′ and {tx}x∈X , we have:

tR t′ =⇒ t[x 7→ tx]R t′[x 7→ tx] .

I Definition 7 (Compositionality). A binary relation R on Trees(X) is compositional if, for
all trees t, t′, {tx}x∈X , and {t′x}x∈X , we have:

( tR t′ and tx R t′x for all x ∈ X ) =⇒ t[x 7→ tx]R t′[x 7→ t′x] .

I Proposition 8. Let 4 be a preorder on Trees(N).
1. If 4 is compositional then it is a substitutive precongruence.
2. If 4 is an admissible substitutive precongruence then it is compositional.
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Proof. We prove statement 2. Suppose 4 is admissible, substitutive and compatible. Suppose
also that t 4 t′ and tn 4 t′n, for all n ∈ N. By substitutivity, we have t[n 7→ tn] 4 t′[n 7→ tn].
We would like to use compatibility to derive that also t′[n 7→ tn] 4 t′[n 7→ t′n], however
this is only possible if t′ is finite. The solution is to use finite approximations (s′i) of
t′ satisfying

⊔
i s
′
i = t′. For each finite tree s′i we have that s′i[n 7→ tn] 4 s′i[n 7→ t′n], by

compatibility. Hence, by admissibility, t′[n 7→ tn] 4 t′[n 7→ t′n], whence t[n 7→ tn] 4 t′[n 7→ t′n]
by transitivity. J

4 Operationally-defined preorders

In this section, we consider our first approach to defining an admissible and compositional
basic operational preorder 4 on Trees(N). We call this method operational. Its characteristic
is that the preorder 4 is directly defined using a mathematical model of the way that an
effect tree in Trees(N) will be executed. There is not much to say in general about this
approach, since such execution models vary enormously from one effect to another. The main
point to emphasise is that there is no general reason for admissibility and compositionality
to hold for such operationally defined preorders. Accordingly, these properties need to be
established on a case-by-case basis.

The operational approach to defining basic preorders is illustrated for several examples of
effects in [6]. The main goal of the section is to demonstrate the approach using a different
example, the signature Σpr/nd = {pr, or} from Example 1, which is of interest because of the
interplay between probabilistic and nondeterministic effects. In this case, trees in Trees(N)
have both probabilistic and nondeterministic branching nodes, as in Figure 1.

It is natural to consider such trees as (countable state) Markov decision processes, with
the leaves representing nodes which either carry an observable value from N, or which
represent nontermination ⊥. Nondeterministic choices may be thought of as being resolved
by an external agent, the scheduler. We model the actions of the scheduler by a function
s : {l, r}∗ → {l, r}. The idea is that a word w ∈ {l, r}∗ represents a finite path of left/right
choices from the root of a tree t ∈ Trees(N). If the computation reaches a nondeterministic
choice at the node indexed by w then it takes the left/right branch according to the value
of s(w). This way of representing choices has some redundancy (in every tree that is not a
complete infinite binary tree, there will be words w that do not index nodes in the tree; if
s(ε) = l then the value of s on words beginning with r is immaterial; the value of s(w) on
words w that index probabilistic nodes in t is irrelevant, etc.), but it is simple and convenient
for future purposes. For any given t ∈ Trees(N), such a function s : {l, r}∗ → {l, r} can be
thought of as a (deterministic) strategy for the scheduler, in which the choice of direction at a
nondeterministic node can respond to the outcomes of probabilistic nodes higher up the tree.

A strategy s and a tree t in combination determine a subtree t � s, defined by removing,
at every nondeterministic node in t with index w, the child tree that is not selected by s(w).
So t � s is a tree that has binary branching at probabilistic nodes, and unary branching
at nondeterministic nodes. It is thus, in effect, a purely probabilistic tree, with leaves in
N ∪ {⊥}, and so may be viewed as a Markov chain, in which the branching nodes are fair
binary choices, determining a subprobability distribution over N. Specifically, each n ∈ N is
assigned the probability that a run of the Markov chain will end at a leaf labelled with n.
This is a subprobability distribution in general because there can be a positive probability of
nontermination (either at a ⊥ leaf, or along an infinite branch).

The angelic interpretation of nondeterminism takes into account the possibility of a
nondeterministic computation achieving a specified goal, given a cooperative scheduler. The
demonic interpretation, models the certainty with which a goal can be achieved, however

CSL 2018
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adversarial the scheduler. This suggests the two basic operational preorders below. In each
case, we consider functions h : N→ [0,∞] assigning desirability weightings to possible results
of a run of the computation. We then define t 4 t′ if, for any h, the ‘expected’ desirability
weighting of t′ exceeds that of t. Here, ‘expected’ is in inverted commas, because we have to
take into account the actions of the scheduler, so this is not just a probabilistic expectation.
In the case of angelic nondeterminism, the scheduler will help us, whereas, under demonic
nondeterminism, it will impede us. Technically this is taken account of by considering
suprema of probabilistic expectations in the angelic case, and infima in the demonic case.

t 4op
pr/ang t

′ ⇔ ∀h : N→ [0,∞] sup
s

Et�s(h) ≤ sup
s

Et′�s(h)

t 4op
pr/dem t′ ⇔ ∀h : N→ [0,∞] inf

s
Et�s(h) ≤ inf

s
Et′�s(h)

Here Et�s(h) means the expectation of the function h under the subprobability distribution on
N induced by the Markov chain t �s. In Markov-decision-process terminology, each preorder
says that the value of the MDP t, for any weighting h, is below the value of of t′ for h. In the
angelic case the value maximises the expectation of h, in the demonic case it minimises it.

I Proposition 9. The preorders 4op
pr/ang and 4op

pr/dem are admissible and compositional.

We outline the proof of this proposition in the case of 4op
pr/dem. The proof for 4op

pr/ang
is easier, largely because the analogue of the lemma below is trivial in the case of angelic
nondeterminism.

I Lemma 10. Consider Trees(N) and [0,+∞] as ωCPOs. Then, for any h : N→ [0,∞], the
value-finding function Fh is continuous:

Fh : t 7→ inf
s

Et�s(h) : Trees(N)→ [0,+∞]

Proof. The set S = {l, r}{l,r}∗ of strategies is a countably-based compact Hausdorff space
under the product topology. (It is Cantor space.) It is easy to see that the function

Gh : (s, t) 7→ Et�s(h) : S × Trees(N)→ [0,+∞]

is continuous. Essentially, it follows that Fh is continuous because it is defined from Gh by
taking an infimum over a compact set. This can be made precise using, e.g., the general
machinery in Section 7.3 of [16]. For completeness, we give a self-contained argument.

Suppose (ti) is an ascending chain of trees. Because S is compact, there is si ∈ S with
infs Gh(s, ti) = Gh(si, ti), and we can then extract a convergent subsequence (sai

) of (si)
such that sai → s∞ in S. Then:

sup
i

inf
s
Gh(s, ti) = sup

i
Gh(si, ti) = sup

i
Gh(sai , tai) = Gh(s∞,

⊔
i

ti) ≥ inf
s
Gh(s,

⊔
i

ti) ,

where the second equality holds because Gh(si, ti) is an ascending sequence, and the third
by the continuity of Gh. We have shown that supi infs Gh(s, ti) ≥ infs Gh(s,

⊔
i ti), i.e.,

supi Fh(ti) ≥ Fh(
⊔

i ti). Therefore Fh is continuous (since it is obviously monotone). J

The admissibility of 4op
pr/dem follows easily from the lemma. Suppose ti 4op

pr/dem t′i, for
ascending chains (ti) and (t′i). Then Fh(ti) ≤ Fh(t′i), for all i and h. By the lemma,
Fh(
⊔

i ti) ≤ Fh(
⊔

i t
′
i), for all h. So indeed

⊔
i ti 4

op
pr/dem

⊔
i t
′
i.

For compositionality, by Proposition 8, it suffices to show that 4op
pr/dem is a substitutive

precongruence. The compatibility properties of a precongruence are easily shown. Sub-
stitutivity follows from the lemma below.
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I Lemma 11. Suppose t and {tn}n∈N are trees in Trees(N) then, for any weighting h,

inf
s

Et[n 7→tn]�s(h) = inf
s

Et�s(ĥ) where ĥ(n) = inf
s

Etn�s(h) .

This lemma is proved first for finite trees, by induction on their height. It is then extended
to infinite trees by expressing them as suprema of finite trees, and applying Lemma 10.

We end this section by observing that a natural attempt to simplify the definitions of
4op
pr/ang and4

op
pr/dem does not work. Instead of considering arbitrary weightings h : N→ [0,∞],

one might restrict to functions h : N→ {0, 1}, which can be viewed as specifying goal subsets
H ⊆ N. Proceeding analogously to above, we compare suprema of probabilities of landing in
H in the angelic case, and infima in the demonic case. For both the angelic and demonic
versions, the desired compositionality property fails.

I Proposition 12. Neither of the formulas below defines a compositional relation t 4 t′.

∀H ⊆ N sup
s

Pt�s(H) ≤ sup
s

Pt′�s(H)

∀H ⊆ N inf
s

Pt�s(H) ≤ inf
s

Pt′�s(H)

Proof. We use the two trees in Figure 1, representing the expressions A = 3 or(1 pr 2) and
B = (3 or 1) pr(3 or 2). It is easily checked that, for every subset H ⊆ {1, 2, 3}, it holds that
sups PA�s(H) = sups PB�s(H) and infs PA�s(H) = infs PB�s(H). Thus A is equivalent to
B under both preorders.

However, one can build a family {t1, t2, t3} such that A[i 7→ ti] = t3 or(t1 pr t2) = C is
not equivalent to B[i 7→ ti] = (t3 or t1) pr(t3 or t2) = D, which contradicts substitutivity. Let
t1 = 0 pr(0 pr(0 pr(0 pr 1))), t2 = 1 and t3 = 0 pr(0 pr(0 pr 1)). The distinguishing factor will be
the probability associated with the subset {1}.

A simple calculation shows that sups PC�s({1}) = 9/16 6= 5/8 = sups PD�s({1}). Simil-
arly infs PC�s({1}) = 1/4 6= 3/16 = infs PD�s({1}). This contradicts the substitutivity and
hence also the compositionality of both preorders. J

The necessity of using quantitative properties to obtain a compositional preorder is
consistent with a general need for quantitative concepts that can be found in the literature on
probabilistic computation. For example, in [8, 9], quantitative logics are required to obtain
compositional reasoning methods. Similarly, in [10], quantitative observations are needed to
distinguish non-bisimilar processes combining probabilistic and nondeterministic choice.

5 Denotationally-defined preorders

Our second approach to defining an admissible and compositional basic denotational preorder
4 on Trees(N) is to make use of established constructions from domain theory. Under this
approach, admissibility and compositionality of the defined preorder 4 hold for general
reasons. Since this approach essentially amounts to giving a denotational semantics to effect
trees, we call it the denotational method of defining a basic operational preorder.

In order to define a basic operational preorder using the denotational method, one
needs to merely provide a continuous Σ-algebra D (see Section 2), together with a function
j : N → D. Define J·K : Trees(N) → D to be the unique continuous homomorphism that
makes the diagram below commute.

N D

Trees(N)

j

i
J·K
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The map J·K : Trees(N)→ D is used to induce the basic operational preorder 4D from the
partial order relation on the ωCPO D.

t 4D t′ ⇔ JtK v Jt′K .

I Proposition 13. The relation 4D is admissible pregongruence.

The proof is immediate: admissibility follows from the continuity of J·K, and compatibility
because J·K is a homomorphism.

In order to obtain substitutivity, hence compositionality, a further property is required.

I Definition 14 (Factorisation property). The map j : N→ D is said to have the factorisation
property if, for every function f : N→ D, there exists a continuous homomorphism hf : D → D

such that f = hf ◦ j.

N D D
j

f

hf

I Proposition 15. If j : N → D has the factorisation property then the relation 4D is
substitutive, hence it is an admissible compositional precongruence.

Proof. Suppose σ : N→ Trees(N) is any substitution. Let σ̂ : Trees(N)→ Trees(N) be the
continuous homomorphism such that σ̂ ◦ i = σ. Consider the map g := J·K ◦ σ̂ ◦ i : N→ D.
By the factorisation property, there exists hg : D → D such that g = hg ◦ j. Expanding this,
and using the definition of J·K, we have:

J·K ◦ σ̂ ◦ i = hg ◦ j = hg ◦ J·K ◦ i .

It then follows from the uniqueness property of Proposition 3 that

J·K ◦ σ̂ = hg ◦ J·K , (3)

because both maps are continuous homomorphisms.
Now, for substitutivity, suppose that t 4D t′, i.e., JtK ≤ Jt′K. Then hg(JtK) ≤ hg(Jt′K)

by monotonicity. That is Jσ̂(t)K ≤ Jσ̂(t′)K, by (3). This says that Jt[σ]K ≤ Jt′[σ]K. That is
t[σ] 4D t′[σ], as required. J

In practice, it is usually not necessary to prove the factorisation property directly. Instead
it holds as a consequence of the continuous algebra D and map j : N→ D being derived from
a suitable monad. The next result establishes general conditions under which this holds.

I Proposition 16. Let S be a category with a faithful functor U : S→ Set. Suppose also that
S has an object N such that UN = N, and every hom set S(N,X) is mapped bijectively by U to
Set(N, UX). Suppose also that (T, η, µ) is a monad on S with the following properties: there
is a continuous Σ-algebra structure on UTN ; and, for every map f : N → TN , the induced
function Uf∗, where f∗ : TN → TN is the Kleisli lifting, is a continuous homomorphism.
Then defining D to be the continuous Σ-algebra on UTN , and j to be Uη : N → UTN , it
follows that j has the factorisation property.

We omit the easy proof. Although the statement of the proposition is verbose, the result is
relatively easy to apply in practice, as the examples we consider next will illustrate.

In the remainder of the section, we return to our main example, and again define basic
operational preorders for the combination of probabilistic choice and nondeterminism (both
angelic and demonic), but this time we use the denotational method. Accordingly, we call
the defined preorders 4den

pr/ang and 4den
pr/dem
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We use the powerdomains combining probabilistic choice and nondeterminism defined
in [7, §3.4], although our setting is simpler because we only need to apply them to sets. The
basic idea of these constructions is that a computation with probabilistic and nondeterministic
choice is modelled as a set of subprobability distributions, where the set collects the possible
nondeterministic outcomes, each of which is probabilistic in nature. As is standard, the sets
relevant to angelic nondeterminism are the closed sets in the Scott topology, whereas those
relevant to demonic nondeterminism are the compact upper-closed sets, see [18]. Due to
the combination with probabilistic choice, sets are further required to be convex; see, for
example, the discussion in [7].

Let V≤1X be the ωCPO of (discrete) subprobability distributions on a set X. We write
HV≤1X for the ωCPO of nonempty Scott-closed convex subsets of V≤1X ordered by subset
inclusion ⊆. We write SV≤1X for the ωCPO of nonempty Scott-compact convex upper-closed
subsets of V≤1X ordered by reverse inclusion ⊇. The ωCPOs HV≤1X and SV≤1X are both
continuous algebras for Σpr/nd. In both cases, the operations are defined by:

or(A,B) = conv(A ∪B) pr(A,B) = {1
2a+ 1

2b | a ∈ A, b ∈ B} ,

where conv is the convex closure operation. We remark that these straightforward uniform
definitions are possible because of the simple structure of the domains HV≤1X and SV≤1X,
over a set X. For the more general lower and upper ‘Kegelspitze’ considered in [7], additional
order-theoretic and topological closure operations need to be applied.

To apply the above in the angelic case, we use the fact that HV≤1X is the free Kegelspitze
join semilattice over a set X [7, Corollary 3.15] (where the result is proved more generally
for domains). It follows that HV≤1 is a monad on Set itself satisfying the conditions of
Proposition 16. Thus defining Dpr/ang = HV≤1 N, and j(n) =↓δ(n) (where δ(n) is the Dirac
probability distribution that assigns probability 1 to n and 0 to all other numbers, and
↓x is the down-closure {y | y ≤ x}), the induced J·Kpr/ang : Trees(N) → Dpr/ang defines an
admissible and compositional preorder

t 4den
pr/ang t

′ ⇔ JtKpr/ang ≤ Jt′Kpr/ang .

Similarly, in the demonic case, we use [7, Corollary 3.16], which characterises SV≤1X

as the free Kegelspitze meet semilattice over X. Again SV≤1 is a monad on Set to which
Proposition 16 applies. In this case, we define Dpr/dem = SV≤1 N, and j(n) = {δ(n)}. Then
the induced J·Kpr/dem : Trees(N)→ Dpr/dem defines an admissible and compositional preorder

t 4den
pr/dem t′ ⇔ JtKpr/dem ≤ Jt′Kpr/dem .

6 Axiomatically-defined preorders

In this section, we look at the definition of basic operational preorders by axiomatising
properties of the operations in the effect signature Σ. Since we are defining a preorder, it
is appropriate for the axiomatisation to involve inequalities specifying desired properties
of the operational preorder. As the technical framework for this, we allow axiomatisations
involving infinitary Horn-clauses of inequalities between infinitary terms. This provides a
flexible general setting for axiomatising admissible and compositional preorders on Trees(N).

Let Vars be a set of countably many distinct variables. By an expression, we mean a tree
e ∈ Trees(Vars). The use of trees incorporates infinitary non-well-founded terms alongside
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the usual finite algebraic terms. By an inequality we mean a statement e1 ≤ e2, where e1, e2
are expressions. By an (infinitary) Horn clause we mean an implication of the form:(∧

i∈I

ei ≤ e′i

)
=⇒ e ≤ e′ , (4)

An effect theory T is a set of Horn clauses.
A precongruence4 on Trees(X) is said to satisfy a Horn clause (4) if, for every environment

ρ : Vars→ Trees(X), the implication below holds (recall the notation for tree substitution
from Section 2).(∧

i∈I

ei[ρ] 4 e′i[ρ]
)

=⇒ e[ρ] 4 e′[ρ] .

We say that a precongruence 4 is a model of a Horn clause theory T if it satisfies every Horn
clause in T . We consider models as subsets of Trees(X) × Trees(X), partially ordered by
inclusion. Note that models are precongruences by assumption.

I Proposition 17. Every Horn clause theory T has a smallest admissible model

4T ⊆ Trees(X)× Trees(X) ,

for any set X. The model 4T is substitutive. In the case that X = N, the smallest admissible
model is thus an admissible compositional preorder.

Proof. It is easily seen that the intersection of any set of admissible models is itself an
admissible model. Thus the intersection of the set of all admissible models is the required
smallest admissible model 4T . For substitutivity, define

t 4S t
′ ⇔ ∀σ : X → Trees(X). t[σ] 4T t′[σ] . (5)

Using the substitution σ(x) = x, we see that 4S ⊆ 4T . Conversely, it is easily shown
that the relation 4S is itself an admissible model of T . Thus 4T ⊆ 4S . Since 4T and 4S

coincide, (5) asserts the substitutivity of 4T . The statement about compositionality now
follows from Proposition 8. J

Given the proposition, we can use any effect theory to define an admissible and composi-
tional basic operational preorder, namely the smallest admissible model over N. We now
apply this method to our running example of combined nondeterminism and probabilistic
choice. The axioms are given in Figure 2.

The axioms include a special axiom for ⊥, which is legitimate since ⊥ is a tree, hence an
expression. The axioms for probability include three standard equalities (each of which is given
officially as two inequalities), and one Horn approximation axiom, Appr, which is separated
out for the sake of Proposition 19 below. The axioms for nondeterminism are split into a
neutral list, followed by further axioms for angelic and demonic nondeterminism respectively.
Finally, there is a distributivity axiom that relates probabilstic and nondeterministic choice.
Our two effect theories of interest are:

Tpr/ang=Bot,Prob,Appr,Nondet,Ang,Dist

Tpr/dem=Bot,Prob,Appr,Nondet,Dem,Dist .
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Bot: ⊥ ≤ x
Prob: x prx = x, x pr y = y prx, (x pr y) pr (z prw) = (x pr z) pr (y prw)
Appr: x pr y ≤ y =⇒ x ≤ y
Nondet: x orx = x, x or y = y orx, x or (y or z) = (x or y) or z
Ang: x or y ≥ x
Dem: x or y ≤ x
Dist: x pr (y or z) = (x pr y) or (x pr z)

Figure 2 Horn theory for mixed probability and non determinism.

We then define 4ax
pr/ang as the smallest admissible model of Tpr/ang over N, and 4ax

pr/dem as
the smallest admissible model of Tpr/dem. By Proposition 17, both these basic operational
preorders are admissible and compositional.

To end the section, we observe that the Horn-clause axiom in Figure 2 can be replaced
with an equational axiom, albeit one involving an infinitary expression.

I Definition 18. Let t be a tree. For each n ∈ N∪{∞}, we define a tree (1−2−n)t inductively
by (1−2−0)t = ⊥ and (1−2−(n+1))t = t pr (1−2−n)t. The tree (1−2−∞)t is defined as⊔

n(1−2−n)t.

I Proposition 19. For any effect theory containing the Bot and Prob axioms, an admissible
model satisfies the Appr axiom if and only if it satisfies the equation (1−2−∞)x = x.

Proof. We first derive (1− 2−∞)x = x, from the axioms with Appr. It is clear that
(1−2−n)x ≤ x for every n <∞, and therefore (1−2−∞)x ≤ x by admissibility. We also have
x pr(1−2−n)x ≤ (1−2−(n+1))x, and so, again by admissibility, x pr(1−2−∞)x ≤ (1−2−∞)x.
Whence, by the Horn axiom, x ≤ (1−2−∞)x. We have thus derived (1−2−∞)x = x.

For the converse, we assume (1−2−∞)x = x and derive Appr. Suppose x pr y ≤ y. Then
also x pr (x pr y) ≤ y, and x pr (x pr (x pr y)) ≤ y, etc. So also x pr⊥ ≤ y, and x pr (x pr⊥) ≤ y,
and x pr (x pr (x pr⊥)) ≤ y, etc. That is, (1−2−n)x ≤ y, for every n <∞. By admissibility,
(1−2−∞)x ≤ y. Whence, by the assumed axiom, x ≤ y as required. J

7 The coincidence theorem

Our main theorem is that our operational, denotational and axiomatic preorders for combined
probability and nondeterminism all coincide, in both the angelic and demonic cases.

I Theorem 20 (Coincidence theorem).
1. The three preorders 4op

pr/ang, 4
den
pr/ang and 4ax

pr/ang, for mixed probability and angelic
nondeterminism, coincide.

2. Similarly, the preorders 4op
pr/dem, 4den

pr/dem and 4ax
pr/dem, for mixed probability and demonic

nondeterminism, coincide.
We outline the proof of the theorem in the demonic case, which we split into three lemmas.
The proof for the angelic case is similar.

I Lemma 21. 4ax
pr/dem ⊆ 4

op
pr/dem .

Proof. It is easily checked that 4op
pr/dem satsfies the axioms of Tpr/dem. Since 4op

pr/dem is
admissible and 4ax is the smallest admissible model, 4ax

pr/dem ⊆4
op
pr/dem . J
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We remark on the following aspect of the above result. The distributivity axiom Dist of
Figure 2 is sometimes discussed as expressing that nondeterministic choices are resolved
before probabilistic ones; see, e.g., [12, 7]. Such statements need careful interpretation.
The definition of 4op

pr/dem, which is based on implementing nondeterministic schedulers as
strategies for MDPs, explicitly allows the scheduler’s choices to take account of the outcomes
of probabilistic choices that precede it. Nevertheless, the distributivity axiom is sound.

I Lemma 22. 4op
pr/dem = 4den

pr/dem .

Proof. We make use of the functional representation of SV≤1 N from [7] (see also [3]). For
any topological space X, we write L(X) for the space of all lower semicontinuous functions
from X to [0,∞] (i.e., functions that are continuous with respect to the Scott topology on
[0,∞]), and we endow L(X) itself with the Scott topology. The space D′ = L(L(N)) carries
a continuous Σpr/nd-algebra structure

(F orG)(f) = min(F (f), G(f)) (F prG)(f) = 1
2F (f) + 1

2G(f) .

(There is another Σpr/nd-algebra structure, relevant to angelic nondeterminism, in which
min is replaced with max.) Define j′ : N→ D′ by j′(n)(f) = f(n). This induces J·K′pr/dem :
Trees(N)→ D′ satisfying J·K′pr/dem◦i = j′, as in Section 5. We show that JtK′pr/dem(h) = Fh(t),
where Fh is defined as in Lemma 10. For this, the function t 7→ (h 7→ Fh(t)) is easily shown
to be a Σpr/nd-algebra homomorphism satisfying Fh(i(n)) = j′(n). Moreover, it is continuous
by Lemma 10. Thus it indeed coincides with J·K′pr/dem. By the definition of Fh, if follows
that that t 4op

pr/dem t′ if and only if JtK′pr/dem ≤ Jt′K′pr/dem .
Corollary 4.7 of [7] provides a functional representation of SV≤1X inside L(L(X)). In

the case X = N, consider the function

Λ : A 7→
(
f 7→ inf

p∈A
Ep f

)
: SV≤1 N → D′ .

It is shown in [7] that Λ is a continuous Σpr/nd-algebra homomorphism, and also an order
embedding (i.e., Λ(A) ≤ Λ(B) implies A ⊇ B). By the uniqueness property of Proposition 3,
it thus holds that Λ ◦ J·Kpr/dem = J·K′pr/dem. We therefore have

t 4op
pr/dem t′ ⇔ JtK′pr/dem ≤ Jt′K′pr/dem ⇔ JtKpr/dem ≤ Jt′Kpr/dem ⇔ t 4den

pr/dem t′ ,

where the middle equivalence holds because Λ is an order embedding. J

I Lemma 23. 4den
pr/dem ⊆ 4

ax
pr/dem .

Proof. The proof proceeds in three steps.
1. Prove that both preorders coincide on probability trees (i.e., trees without or nodes).
2. Prove the inclusion of preorders for trees with a finite number of or nodes.
3. Use finite approximations and admissibility to conclude the general case.

We omit discussion of the first step, which is comparatively straightforward, cf. [4].
For step 2, suppose t 4den

pr/dem t′ where t, t′ are trees with finitely many or nodes. For each
of t, t′, we use the distributivity axiom to rewrite the tree as an or-combination of finitely
many (possibly infinite) probability trees. We then establish the following.
(a) If for every probability tree t′i in t′ there exists a corresponding tree ti in t such that

ti 4den
pr/dem t′i, then we have that t 4ax

pr/dem t′, using the Dem axiom, and step 1 above.
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(b) The tree t is equivalent in both preorders to t or k, where k = λ1t1 + · · ·+ λntn is any
tree representing a convex combination of the probability trees of t. The tree k is defined
using infinite combinations of pr nodes to assign the correct weight to each ti.

(c) Making direct use of the definition of SV≤1 N, it follows from t 4den
pr/dem t′ that, for

every probability tree t′i of t′, there is a convex combination ki := λ1t1 + · · ·+ λntn of
probability trees of t, such that ki 4den

pr/dem t′i.
To complete the argument for step 2, the tree t′ has the form t′1 or . . . or t′m. By (c), there
exist corresponding k1, . . . , km. By (b), t is equivalent to t or k1 or . . . or km. It now follows
from (a) that t 4ax

pr/dem t′, by the property of the kj given by (c).
For step 3, suppose t 4den

pr/dem t′, where t, t′ are arbitrary. Take approximating sequences
t =

⊔
i ti and t′ =

⊔
i t
′
i, where both ascending sequences are composed of finite trees.

We use Definition 18 to further restrict the approximations of t. Using the finiteness
of ti, we have J(1−2−n)tiKpr/dem � JtiKpr/dem in the way-below relation on SV≤1N, via the
explicit characterisation of this relation in [7]. Also, ((1−2−i)ti) is an ascending sequence of
finite trees with

⊔
i(1−2−i)ti = (1−2−∞)t

For every i, we have J(1−2−i)tiKpr/dem � JtiKpr/dem ≤ JtKpr/dem ≤ Jt′Kpr/dem. That is
J(1−2−i)tiKpr/dem � Jt′Kpr/dem. Since Jt′Kpr/dem =

⊔
Jt′iKpr/dem, it follows from the way-below

property that, for every i, J(1−2−i)tiKpr/dem ≤ Jt′ji
Kpr/dem for some ji, where the sequence

(ji) can be assumed strictly ascending. So, by step 2 above, (1−2−i)ti 4ax
pr/dem t′ji

, for every
i. Whence by admissibility,

⊔
i(1−2−i)ti 4ax

pr/dem
⊔

i t
′
ji
; i.e., (1−2−∞)t 4ax

pr/dem t′. Thus
t 4ax

pr/dem t′, by Proposition 19. J

8 Related and future work

The results in this paper concern three methods of defining basic operational preorders on
effect trees, which we claim to be a useful abstraction for defining contextual preorder for
programming languages with algebraic effects. This has been verified for simple call-by-
name [6] and call-by-value3 languages, but needs further substantiation.

The axiomatic approach to defining basic operational preorders in Section 6 is close in
spirit to the algebraic axiomatisation of effects of Plotkin and Power [14], but with a different
focus. In [14], (in)equational axiomatisations are required in order to determine a free-algebra
monad modelling denotational equality of programs. Such axiomatisations have also been
used to combine effects [5], and to induce a logic of effects [15]; but they have not hitherto
been explicated as a method for defining contextual preorder/equivalence. In this paper, we
have used infinitary Horn clause axioms between infinitary terms for this purpose, with the
notion of admissible model playing an important role.

The main coincidence theorem in Section 7 has some precursors in the literature. The
characterisations of HV≤1D and SV≤1D as free Kegelspitze in [7] can be viewed as complete-
ness theorems for inequational axiomatisations with respect to domains D. In the special
case D = N, this is implied by our results, for it can be derived from Lemma 23 that the
partial-order quotients of Trees(N) by 4ax

pr/ang and 4ax
pr/dem are isomorphic to HV≤1N and

SV≤1N . Another related completeness result is given in [12], where inequational axioms for
a simple process algebra with nondeterministic and probabilistic choice are proved complete
with respect to a domain-theoretic semantics. Translated into our setting, this process
algebra corresponds to regular trees in a signature that combines the operations or, pr with
an additional prefix operation and zero constant. In [12], the semantics uses the convex
powerdomain, rather than the upper S and lower H that we consider. In the present paper,
we have not considered convex powerdomains and the associated neutral (as opposed to
angelic or demonic) nondeterminism. However, it would be a natural extension to do so.
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The main limitation we see of the present paper is the restriction throughout to admissible
basic operational preorders. The admissibility condition plays a fundamental role in almost
everything we do. It is, however, violated by some natural operational preorders; for example,
for countable demonic nondeterminism. It is an open question how to incorporate such more
general preorders into our theory.
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