
Safety, Absoluteness, and Computability
Arnon Avron
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
aa@post.tau.ac.il

Shahar Lev
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
shaharle@post.tau.ac.il

Nissan Levi
School of Computer Science, Tel Aviv University
Tel Aviv, Israel
nisnis.levi@gmail.com

Abstract
The semantic notion of dependent safety is a common generalization of the notion of absoluteness
used in set theory and the notion of domain independence used in database theory for charac-
terizing safe queries. This notion has been used in previous works to provide a unified theory of
constructions and operations as they are used in different branches of mathematics and computer
science, including set theory, computability theory, and database theory. In this paper we provide
a complete syntactic characterization of general first-order dependent safety. We also show that
this syntactic safety relation can be used for characterizing the set of strictly decidable relations
on the natural numbers, as well as for characterizing rudimentary set theory and absoluteness of
formulas within it.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Dependent Safety, Computability, Absoluteness, Decidability, Domain
Independence

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.8

1 Introduction

The semantic notion of dependent safety is a common generalization of the notion of
absoluteness used in set theory ([14, 9]) and the notion of domain independence used in
database theory for characterizing safe queries ([1, 20]). It has been introduced in [3] and
used there to provide a unified theory of constructions and operations as they are used in
different branches of mathematics and computer science, including set theory, computability
theory, and database theory. The notion is based on the following two basic ideas (taken
from logic programming and database theory):

From an abstract logical point of view, the focus of a general theory of computations
should be on functions of the form:

λy1, . . . , yk.{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)}

where S is a structure for some first-order signature σ, ϕ is some formula of σ, and
{{x1, . . . , xn}, {y1, . . . , yk}} is a partition of the set Fv(ϕ) of the free variables of ϕ. Here
the tuple 〈y1, . . . , yk〉 provides the input, while the output is the set of answers to the
resulting query.

© Arnon Avron, Shahar Lev, and Nissan Levi;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aa@post.tau.ac.il
mailto:shaharle@post.tau.ac.il
mailto:nisnis.levi@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Safety, Absoluteness, and Computability

An allowable query should be safe in the sense that the answer to it does not depend
on the exact domain of S, but only on the values of the parameters {y1, . . . , yk} and the
part of S which is relevant to them and to the query, under certain conditions concerning
the language and the structures that are taken as relevant to the query.

Examples.
1. In every computerized system, what is taken as the type of natural numbers is actually

only some finite initial segment of the full set of natural numbers. Therefore a reasonable
query should be one that has the same answer in all implementations in which this initial
segment includes the inputs to the query and the natural numbers mentioned in it.

2. Query languages for database theory allow only domain independent queries, that is:
queries for which the corresponding answer would be the same in all databases which
have the same scheme and exactly the same tables for it.

The above two principles were translated in [3, 4, 5, 6] into precise definitions. Those works
(especially [3]) also naturally lead to the following two theses concerning the development of
a general theory of decidability and computability in arbitrary structures:

The study of decidability of relations should be a part of a more general study of
absoluteness of formulas and queries;
The study of computability/constructibility should be a part of a more general study of
dependent safety of formulas and queries. (We call this type of safety ‘dependent’ because
it is a property of queries which might contain parameters.)

A significant step in this program of developing general theory of dependent safety,
absoluteness, and computability was made in [3, 5], where a syntactic framework for these
notions was developed. The main virtues of that framework are its generality and universality:
it is based on few basic simple syntactic principles, that can be used in what seem to be very
different and unrelated areas. The main result of this paper is that it is actually complete for
general first-order dependent safety and general first-order absoluteness. This explains its
generality, and why its principles were independently discovered in different areas. 1

With the exception of the relatively simple case of databases, the above mentioned general
syntactic principles may of course be insufficient in more complex particular cases. Still, we
show that they suffice also in the case of the arithmetics of the natural numbers, while in
the especially important case of set theory our syntactic characterization of absoluteness is
equivalent to the usual syntactic approximation that is currently in use.

The structure of the rest of this paper is as follows. Section 2 we review (an improvement
of) the framework developed in [3], including all the necessary definitions. In Section 3
we prove the completeness of our syntactic approximation of general first-order dependent
safety, while in Section 4 we provide a direct syntactic approximation of general first-order
absoluteness. (The latter is a very important special case of the former.) In Section 5 we
give a syntactic characterization of absoluteness in the structure N of the natural numbers.
Finally, in Section 6 we study absoluteness in rudimentary set theory, using a language that
includes abstract set terms. We show that while the use of such terms involves a proper
extension of our syntactic dependent safety, this is not true for syntactic absoluteness.

1 The principles were originally identified as generalizations of principles used in database theory. As far
as we know, this is a rare case in which ideas and principles originally taken from computer science are
applied for understanding purely mathematical theories like set theories and number theory.

A. Avron, S. Lev, and N. Levi 8:3

2 Preliminaries

Throughout this paper, σ is a first-order signature with equality, and no function symbols
(except for constants). Fv(ϕ) and Bv(ϕ) respectively denote the set of free variables and the
set of bound variables of ϕ. The notation ϕ(z1, . . . , zk) means that Fv(ϕ) = {z1, . . . , zk}.

2.1 Basic Definitions
I Definition 1. Let S1 and S2 be two structures for σ. S1 is a weak substructure of
S2 (notation: S1 ⊆σ S2) if the domain of S1 is a subset of the domain of S2, and the
interpretations in S1 and S2 of the constants of σ are identical.

I Definition 2. Let S1 ⊆σ S2, where S1 and S2 are structures for σ. A formula of
σ ϕ(x1, . . . , xn, y1, . . . , ym) is safe for S1 and S2 with respect to {x1, . . . , xn} (notation:
ϕ �S1;S2 {x1, . . . , xn}), if for all b1 . . . , bm ∈ S1:

{−→a ∈ Sn2 | S2 |= ϕ(−→a ,
−→
b)} = {−→a ∈ Sn1 | S1 |= ϕ(−→a ,

−→
b })

In other words, ϕ is safe for S1 and S2 with respect to {x1, . . . , xn} if by viewing
y1, . . . , ym as parameters, and assigning elements from S1 to these parameters, we get a
query in x1, . . . , xn having the same answers in S1 and S2.

I Definition 3. A safety-signature is a pair (σ, F), where σ is an ordinary first-order signature
with equality and no function symbols, and F is a function which assigns to every n-ary
predicate symbol of σ a subset of the powerset of {1, . . . , n}, so that F (=) is {{1}, {2}}.

I Definition 4. Let (σ, F) be a safety-signature, and let S1, S2 be structures for σ. S2 is
called a (σ, F)−extension of S1 (and S1 is a (σ, F)−substructure of S2) if S1 ⊆σ S2 and
p(x1, . . . , xn) �S1;S2 {xi1 , . . . , xik} whenever p is an n-ary predicate of σ, x1, . . . , xn are n
distinct variables, and {i1, . . . , ik} ∈ F (p).

I Definition 5. Let (σ, F) be a safety-signature, S a structure for σ, and ϕ a formula of σ.
1. ϕ is (S, F)−safe w.r.t. X (notation: ϕ �(S,F) X) if ϕ �S′;S X whenever S is a

(σ, F)−extension of S′. ϕ is (S, F)−absolute if ϕ �(S,F) ∅.
2. ϕ is (σ, F)−safe w.r.t. X (ϕ �(σ,F) X) if it is (S, F)−safe w.r.t. X for every structure S

for σ. ϕ is (σ, F)−absolute if ϕ �(σ,F) ∅.

I Note 6. The reason that we have demanded F (=) to be {{1}, {2}} (or {{1}, {2}, ∅}, which
is equivalent) is that x1 = x2 is always safe w.r.t. both {x1} and {x2}, but usually not w.r.t.
{x1, x2}.

I Note 7. If ϕ �(σ,F) X and Z ⊆ X, then ϕ �(σ,F) Z. In particular: if ϕ �(σ,F) X for some
X then ϕ is (σ, F)-absolute. The same applies to (S, F)−safety and to (S, F)−absoluteness.

I Note 8. If F (p) is nonempty for every p in σ, then by Note 7 S1 is a substructure of S2
(in the usual sense of model theory) whenever S2 is a (σ, F)-extension of S1.

2.2 Examples
2.2.1 Computability Theory
Several applications of dependent safety to the theory of computability and decidability have
been made in [3]. Here is one of them.

Define the safety-signature (σN , FN) as follows:

CSL 2018

8:4 Safety, Absoluteness, and Computability

σN is the first-order signature which includes the constant 0, the binary predicate ≤, and
the ternary relations P+, P×.
FN (≤) = {{1}}, FN (P+) = FN (P×) = {∅}.

The standard structure N for σN has the set N of natural numbers as its domain, with
the usual interpretations of 0 and ≤, and the (graphs of the) operations + and × on N

(viewed as ternary relations on N) as the interpretations of P+ and P×, respectively. It is
easy to see that N is a (σN , FN)-extension of a structure S for σN iff the domain of S is an
initial segment of N (where the interpretations of the relation symbols are the corresponding
reductions of the interpretations of those symbols in N). Thus ϕ �(N ,FN) X iff the query
{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)} is “reasonable” in the sense explained
in example 1 above (where X = {x1, . . . , xn}). Using this observation, it was proved in [3]
that a relation R on N is recursively enumerable iff R is definable by a formula of the form
∃y1, . . . , ynψ, where the formula ψ is (σN , FN)-absolute.

2.2.2 Set Theory
Let σZF = {∈}, FZF (∈) = {{1}}. A structure S2 for σZF is a (σZF , FZF)−extension of S1
iff S2 is an extension of S1, and x1 ∈ x2 �S1;S2 {x1}. The latter condition means that S1 is a
transitive substructure of S2. Therefore ϕ �(σZF ,FZF) ∅ iff the following holds whenever S1 is
a transitive substructure of S2: S1 |= ϕ ⇔ S2 |= ϕ. Hence a formula is (σZF , FZF)-absolute
iff it is absolute in the usual sense of set theory. (See e.g. [14].)

Other applications to set theories of dependent safety in general, and of �(σZF ,FZF) in
particular, have been made in [5] and [4]. In [5] it is suggested that an abstract set term
{x | ϕ} denotes a predicatively acceptable set if ϕ �(σZF ,FZF) {x}. In [4] the relation
�(σZF ,FZF) is used as the basis for purely logical characterizations of the comprehension
schemas allowed in various set theories (including ZF).

2.2.3 Databases
From a logical point of view, a database of scheme D = {P1, . . . , Pn} is just a given set of
finite interpretations of P1, . . . , Pn. A corresponding query language is usually an ordinary
first-order language which is based on a signature σ with equality such that σ contains D, but
no function symbols. A query is called domain independent ([1, 20]) if its answer is the same in
all interpretations in which P1, , . . . , , Pn are given by the database, while the interpretations
of all other predicate symbols (like < or ≤) and of the constants are absolute (and externally
given). It can easily be seen that a formula ϕ is domain independent iff ϕ �(σ,F) Fv(ϕ) for
the function F defined by: F (Q) = {{1, . . . , nQ}} in case Q ∈ {P1, . . . , Pn} (where nQ is the
arity of Q), while F (Q) = {∅} otherwise.

2.2.4 Querying the Web
In [15] the web is modeled as an ordinary database augmented with three more special relations
(together with some other, which for simplicity we ignore): N(id, title, . . .), C(node, value),
L(source, destination, . . .). The intuitive interpretations of these relations are the following:

The relation N contains the Web objects which are identified by a Uniform Resource
Locator (URL). id represents the URL and is a key.
The meaning of C is that the string which is represented by its second argument occurs
within the body of the document in the URL which is represented by its first argument.
The relation L holds between nodes source and destination if there is a hypertext link
from the first to the second.

A. Avron, S. Lev, and N. Levi 8:5

The question investigated in [15] is: what queries should be taken as safe, if we assume that
what is practically possible in the case of N and L is to list all their tuples which correspond
to a given first argument, while C is only assumed to be decidable. It is not difficult to see
that the notion of safety given there for this framework is equivalent to (σweb, Fweb)-safe in
our sense, where {L,N,C} ⊆ σweb, and F is defined like in ordinary databases, except that
F (L) = {2, , . . . , ,m} (where m is the arity of L), F (N) = {2, , . . . , , k} (where k is the arity
of N), and F (C) = {∅}.

2.3 The Corresponding Syntactic Relation
In [10] it was proved that the property of domain independence in databases is undecidable.
In [3] it was shown that the property of (σ, F)-absoluteness is also in general undecidable.
This means that in order to use the relation �(σ,F) in practice we need a decidable syntactic
approximation. The one that was used in [3, 4, 5] is presented in the next definition. It was
inspired by the recursive definition of syntactic safety given in [20], and generalizes it in a
sense explained below.2

I Definition 9. Given a safety-signature (σ, F), we recursively define the relation �s(σ,F)
between formulas of σ and sets of variables as follows:
1. p(t1, . . . , tn) �s(σ,F) X in case p is an n-ary predicate symbol of σ, and there is I ∈ F (p)

such that:
a. For every x ∈ X there is i ∈ I such that x = ti.
b. X ∩ Fv(tj) = ∅ for every j ∈ {1, . . . , n}\I.

2. ¬ϕ �s(σ,F) ∅ if ϕ �s(σ,F) ∅.
3. ϕ ∨ ψ �s(σ,F) X if ϕ �s(σ,F) X and ψ �s(σ,F) X

4. ϕ∧ψ �s(σ,F) X∪Y if ϕ �s(σ,F) X, ψ �s(σ,F) Y , and either Fv(ϕ)∩Y = ∅ or Fv(ψ)∩X = ∅.
5. ∃y.ϕ �s(σ,F) X\{y} if y ∈ X and ϕ �s(σ,F) X.

I Theorem 10 ([3]). �s(σ,F) is sound: if ϕ �s(σ,F) {x1, . . . , xn} then ϕ �(σ,F) {x1, . . . , xn}

I Note 11. In what follows ∀x1 . . . ∀xn.ϕ→ ψ as an abbreviation for ¬∃x1 . . . ∃xn.ϕ ∧ ¬ψ.
Using items 2,4, and 5 from Definition 9, this implies that ∀x1 . . . ∀xn.ϕ → ψ �s(σ,F) ∅ if
ϕ �s(σ,F) {x1, . . . , xn} and ψ �s(σ,F) ∅. We shall use this fact freely.

I Note 12. It follows from Definition 9 and the fact that F (=) is {{1}, {2}} that x =
t �s(σ,F) {x} and t = x �s(σ,F) {x} in case x /∈ Fv(t), and t = s �s(σ,F) ∅ for every t, s.

Examples.

1. The set of formulas ϕ such that ϕ �s(σN ,FN) ∅ includes all formulas in the well-known set
of arithmetical ∆0-formulas (also called “bounded formulas” or “σ0-formulas” in [17]).
In the context of σN these are the formulas in which all quantifications are of the form
∃x ≤ y (or ∀x ≤ y, by Note 11), where x and y are distinct variables.

2. Similarly, the set of formulas ϕ such that ϕ �s(σZF ,FZF) ∅ is an extension of the set of set-
theoretical ∆0 formulas ([14]).3 However, in this case not only this special case of syntactic
dependent safety is important. In fact, if ϕ(x1, . . . , xn, y1, . . . , yk) �s(σZF ,FZF) {x1, . . . , xn}
then the function λy1, . . . , yk.{〈x1, . . . , xn〉 | ϕ} is rudimentary. (Rudimentary functions

2 Other closely related works in database theory are e.g. [16], [19], and [18].
3 In the context of σZF ∆0-formulas (again also called “bounded formulas”) are the formulas in which all

quantifications are of the form ∃x ∈ y (or ∀x ∈ y, by Note 11), where x and y are variables.

CSL 2018

8:6 Safety, Absoluteness, and Computability

were independently introduced by Gandy in [12] and by Jensen in [13]. See also [9].) In
particular: if ϕ(x1, . . . , xn, y1, . . . , yk) �s(σZF ,FZF) {x1, . . . , xn} then the function λy1 ∈
HF , . . . , yk ∈ HF .{〈x1, . . . , xn〉 ∈ HFn | HF |= ϕ(x1, . . . , xn, y1, . . . , yk)} (where HF is
the set of hereditarily finite sets) is a computable function from HFk to HF . (We shall
return to this example in Section 6.)

3. Let D, σ, and F be like in Section 2.2.3. Then ϕ �s(σ,F) Fv(ϕ) for any formula ϕ which
is syntactically safe according to the definition in [20].

4. ϕ �s(σweb,Fweb) Fv(ϕ) for any formula ϕ which is safe according to the “Safe Web Calculus”
given in [15] as a syntactic approximation for the class of (σweb, Fweb)-safe formulas.

I Note 13. It is easy to see that if ϕ �s(σ,F) X and Y ⊆ X then ϕ �s(σ,F) Y . In particular,
if ϕ �s(σ,F) X then ϕ �s(σ,F) ∅.

3 The General Completeness Theorem

Our main goal in this section is to prove an appropriate converse to Theorem 10.

I Notation 14. ϕ ≡ ψ if ϕ and ψ are logically equivalent, and Fv(ϕ) = Fv(ψ).

I Lemma 15. Let (σ, F) be a safety-signature. Let ϕ and ψ be two formulas of σ such that
Y ⊆ Fv(ϕ) ∩ Fv(ψ). If ϕ and ψ are logically equivalent, then ϕ �(σ,F) Y iff ψ �(σ,F) Y . In
particular: if ϕ ≡ ψ then for every Y it holds that ϕ �(σ,F) Y iff ψ �(σ,F) Y .

Proof. Immediate from the definitions. J

I Theorem 16. Let (σ, F) be a safety-signature such that σ includes a constant. Then for
every ϕ and Y , ϕ �(σ,F) Y iff there exists ψ such that ψ �s(σ,F) Y and ϕ ≡ ψ.

Proof. We begin with some notations. If S is a structure for σ, and v is an assignment
in S, then S, v |= ϕ denotes that ϕ is satisfied in S by the assignment v. T `t ϕ denotes
that S, v |= ϕ whenever S, v |= ψ for every ψ ∈ T . If x̄ = 〈x1, . . . , xm〉 is a finite list of
distinct variables, and ā ∈ Sm, then we denote by x̄ := ā some assignment v in S such that
v(xi) = ai for every 1 ≤ i ≤ m. If Fv(ϕ) = {x1, . . . , xm} and ā ∈ Sm, then S |= ϕ(ā) means
that S, x̄ := ā |= ϕ.

Let (σ, F) be a safety-signature.

I Lemma 17. Let (σ̂, F̂) be the safety-signature such that σ̂ is σ without the predicates p
for which F (p) = ∅ and F̂ is the restriction of F to predicates of σ̂. If ϕ �(σ,F) Y then there
exists a formula ϕ̂ of σ̂ such that ϕ̂ �(σ̂,F̂) Y and ϕ ≡ ϕ̂.

Proof. Let S1 and S2 be two structures for σ that have the same domain and the same
interpretations for the constants of σ and the predicates of σ̂. Then S1 and S2 are (σ, F)-
substructures of one another, and so S1, v |= ϕ iff S2, v |= ϕ for every assignment v in their
common domain. Therefore Beth definability theorem implies that there exists a formula ϕ̂
of σ̂ such that ϕ ≡ ϕ̂. By Lemma 15, ϕ̂ �(σ,F) Y and so ϕ̂ �(σ̂,F̂) Y . J

I Lemma 18. Let S1, S2, S3 be structures for σ such that S1 is a substructure of S2, S2 is a
substructure of S3, and S1 is a (σ, F)-substructure of S3. Then S1 is a (σ, F)-substructure
of S2.

Proof. Let p be a n-ary predicate of σ, and let I ∈ F (p). Suppose that a1, . . . , an ∈ S2 and
ai ∈ S1 for every i ∈ {1, . . . , n}\I.

A. Avron, S. Lev, and N. Levi 8:7

Assume S2 |= p(ā). Since S2 is a substructure of S3 then S3 |= p(ā). Since S1 is a
(σ, F)-substructure of S3, ā ∈ Sn1 and S1 |= p(ā).
Assume ā ∈ Sn1 and S1 |= p(ā). Since S1 is a substructure of S2 then S2 |= p(ā). J

I Lemma 19. For a structure S for σ and ā ∈ Sm, let α(σ,F)[S, ā] be the substructure of S
whose domain is the set of all b ∈ S for which there exists a formula θ(x1, . . . , xm, z) of σ
(where x1, . . . , xm, z are m+1 distinct variables) such that θ(x̄, z) �s(σ,F) {z} and S |= θ(ā, b).
Then α(σ,F)[S, ā] is a (σ, F)-substructure of S.

Proof. First note that α(σ,F)[S, ā] is indeed a well-defined substructure of S. This follows
from the facts that σ contains no function symbols, and that for every constant c in σ,
the formula c = z of σ satisfies c = z �s(σ,F) {z}, assuring that α(σ,F)[S, ā] contains all the
interpretations in S of the constants of σ. (In particular: α(σ,F)[S, ā] 6= ∅.)4

Now suppose that p is a n-ary predicate of σ, I ∈ F (p), b̄ ∈ Sn, and bj ∈ α(σ,F)[S, ā] for
every j ∈ {1, . . . , n}\I.

Assume bi ∈ α(σ,F)[S, ā] for every i ∈ I and α(σ,F)[S, ā] |= p(b̄). Since α(σ,F)[S, ā] is a
substructure of S, we get that S |= p(b̄).
Assume S |= p(b̄). Let x1, . . . , xm, y1, . . . , yn, z be m + n + 1 distinct variables. Let
j ∈ {1, . . . , n}\I. Since we assume that bj ∈ α(σ,F)[S, ā], the definition of α(σ,F)[S, ā]
implies that there exists a formula θj(x̄, yj) of σ such that θj(x̄, yj) �s(σ,F) {yj} and
S |= θj(ā, bj). Define the following formulas of σ:

ξ(x̄, ȳ) :

 ∧
j∈{1,...,n}\I

θj(x̄, yj)

 ∧ p(ȳ)

µi(x̄, z) : ∃ȳ[ξ(x̄, ȳ) ∧ z = yi] (i ∈ I)

Now we know that:∧
j∈{1,...,n}\I

θj(x̄, yj) �s(σ,F)
{
yj | j ∈ {1, . . . , n}\I

}
p(ȳ) �s(σ,F) {yi | i ∈ I}

It follows that ξ(x̄, ȳ) �s(σ,F) {y1, . . . yn}. Moreover, S |= ξ(ā, b̄). Thus µi(x̄, z) �s(σ,F) {z}
and S |= µi(ā, bi) for every i ∈ I. By definition of α(σ,F)[S, ā], bi ∈ α(σ,F) for every i ∈ I.
Since α(σ,F)[S, ā] is a substructure of S then α(σ,F)[S, ā] |= p(b̄). J

I Definition 20. Let ϕ and ψ(x1, . . . , xm, z) be two formulas of σ such that ϕ contains no
bound instances of x1, . . . , xm. Reψ(x̄,z)[ϕ] is the formula obtained by recursively replacing
in ϕ all subformulas of the forms ∃wθ with ∃w.ψ(x̄, w) ∧ θ.

I Lemma 21. Assume that F (p) 6= ∅ for every predicate p of σ. Let ϕ and ψ(x1, . . . , xm, z) be
two formulas of σ such that ϕ contains no bound instances of x1, . . . , xm, and ψ(x̄, z) �s(σ,F)
{z}. Then Reψ(x̄,z)[ϕ] �s(σ,F) ∅.

Proof. The proof is by induction on the structure of ϕ:
1. Since F (p) 6= ∅ for every predicate p of σ, θ �s(σ,F) ∅ for every atomic formula θ of σ (see

Note 7).

4 This is the place in the proof of Theorem 16 where we use the assumption that σ includes a constant.

CSL 2018

8:8 Safety, Absoluteness, and Computability

2. By clauses 3,4,5 of Definition 9, θ �s(σ,F) ∅ for every boolean combination θ of formulas
θ1, . . . , θk of σ such that θi �s(σ,F) ∅ for every 1 ≤ i ≤ k.

3. By clause 6 of Definition 9 ∃w.ψ(x̄, w) ∧ θ �s(σ,F) ∅ whenever θ �s(σ,F) ∅. J

End of the proof of Theorem 16

By Theorem 10 and Lemma 15, it suffices to prove that if ϕ �(σ,F) Y then there exists a
formula ψ of σ such that ψ �s(σ,F) Y and ϕ ≡ ψ. Moreover, by Lemma 17 we may assume
that σ contains no predicate p for which F (p) = ∅.

Let x1, . . . , xm, y1, . . . , yn, z be m+ n+ 1 distinct variables, and let ϕ(x̄, ȳ) be a formula
of σ such that ϕ(x̄, ȳ) �(σ,F) {y1, . . . , yn}. Without a loss in generality, we may assume that
ϕ contains no bound instances of x1, . . . , xm. Let σq be obtained from σ by the addition of
a new (m+ 1)-ary predicate symbol q. Define in σq:

ψ′(x̄, ȳ) := Req(x̄,z)[ϕ(x̄, ȳ)] ∧
n∧
i=1

q(x̄, yi)

Let T be the set of all formulas of σq of the form ∀z[θ(x̄, z)→ q(x̄, z)] where θ(x̄, z) �s(σ,F) {z}
(and so θ is in σ). We will prove that T `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)).

Let S be a structure for σq and let ā be a tuple in Sm such that S, x̄ := ā |= T . Let S3
be the structure for σ obtained from S by restricting it to σ. Let S2 be the substructure
of S3 whose domain is the set of all b ∈ S such that S |= q(ā, b). Let S1 be the structure
α(σ,F)[S3, ā]. By definition of T and the fact that S, x̄ := ā |= T , S1 is a substructure of
S2. By Lemmas 19 and 18, S1 is a (σ, F)-substructure of both S2 and S3. In addition,
ϕ(x̄, ȳ) �(σ,F) {y1, . . . , yn} and ā ∈ Sm1 . (The latter can be justified by the fact that for
every 1 ≤ i ≤ m, the formula xi = z of σ satisfies xi = z �s(σ,F) {z}.) Therefore, for every
b̄ ∈ Sn3 :

S3 |= ϕ(ā, b̄) ⇐⇒ b̄ ∈ Sn1 ∧ S1 |= ϕ(ā, b̄)

S3 |= ϕ(ā, b̄) ⇐⇒ b̄ ∈ Sn2 ∧ S2 |= ϕ(ā, b̄)

Since ϕ(x̄, ȳ) is a formula of σ (since it does not contain the predicate q), we get that for
every b̄ ∈ Sn3 , S |= ϕ(ā, b̄) iff S3 |= ϕ(ā, b̄). By relativization and definition of S2, we get that
for every b̄ ∈ Sn3 , b̄ ∈ Sn2 ∧ S2 |= ϕ(ā, b̄) iff S |= ψ′(ā, b̄). By transitivity, we get that for every
b̄ ∈ S3

n, S |= ϕ(ā, b̄) iff S |= ψ′(ā, b̄). Because S3 and S have the same domain, we get that
S, x̄ := ā |= ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)).

We proved that T `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ)). By compactness, there exists a finite subset
T1 of T such that:

(∗) T1 `t ∀ȳ(ϕ(x̄, ȳ)↔ ψ′(x̄, ȳ))

Suppose T1 = {∀z[θi(x̄, z) → q(x̄, z)] | 1 ≤ i ≤ n}, and let µ(x̄, z) be the disjunction of
θ1(x̄, z), . . . , θn(x̄, z). Then µ is a formula of σ such that µ(x̄, z) �s(σ,F) {z}. Obtain the set of
formulas T2 of σ and the formula ψ(x̄, ȳ) of σ from T1 and ψ′ respectively by replacing every
atom of the form q(x̄, z) in them by µ(x̄, z). Since classical first-order logic is structural (that
is: its consequence relation is closed under allowed substitutions of formulas for predicates
symbols), (∗) implies that T2 `t ∀ȳ(ϕ(x̄, ȳ) ↔ ψ(x̄, ȳ)). Since the definition of µ entails
that all formulas in T2 are logically valid, this implies that ϕ ≡ ψ. Moreover, ψ(x̄, ȳ) is
Reµ(x̄,z)[ϕ(x̄, ȳ)] ∧

n∧
i=1

µ(x̄, yi). Hence Lemma 21 entails that ψ(x̄, ȳ) �s(σ,F) {y1, . . . , yn}

(relying on earlier assumption that F (p) 6= ∅ for every predicate p in σ). J

A. Avron, S. Lev, and N. Levi 8:9

I Note 22. Theorem 16 is not always correct as is in case σ contains no constant. Take for
example the case where σ is empty. (So the language has ‘=’ as its sole predicate symbol,
and no constants or function symbols.) It is easy to prove that there is no formula ψ of
this language such that ψ �s(σ,F) Fv(ψ). Hence there is no ψ in this language such that
ψ ≡ x 6= x and ψ �s(σ,F) {x}, even though obviously x 6= x �(σ,F) {x} (where F (=) is
{{1}, {2}}). Still, x 6= x is logically equivalent to some formula ψ such that ψ �s(σ,F) {x}
and x ∈ Fv(ψ) (e.g. ψ := x = y ∧ x 6= x). It is indeed easy to infer from Theorem 16 that in
general, if σ contains no constant and ϕ �(σ,F) X then there is a formula ψ such that ψ is
logically equivalent to ϕ, ψ �s(σ,F) {x}, and Fv(ϕ) ⊆ Fv(ψ).

4 Characterization of General Absoluteness

As we saw in the first section, while in database theory the main interest is in formulas which
are domain-independent (i.e. formulas which are safe with respect to their full set of free
variables), in formal number theory (and in computability theory) and in set theory the main
interest has been in absolute formulas. 5 Now in the previous section we have given a general
syntactic characterization of absoluteness: Given a safety signature (σ, F), a formula ϕ is
(σ, F)-absolute iff there exists a formulas ψ such that ϕ ≡ ψ, and ϕ �s(σ,F) ∅. However, this
characterization of the property of absoluteness is based in an essential way on the relation
�s(σ,F) between formulas and sets of variables. Therefore in order to check whether a certain
formula ϕ is absolute using this characterization, one should check on the way with respect
to what sets of variables are the subformulas of ϕ safe. In contrast, in formal number theory
and in set theory a direct syntactic approximation of absoluteness has been used in the form
of what is called in both ∆0-formulas. In this section we generalize the notion of ∆0-formulas
to arbitrary safety signatures, and use the generalized notion for providing a direct syntactic
characterization of (σ, F)-absoluteness. Note that in order to use this characterization one
needs not know anything about the more general binary relation �s(σ,F).

I Notation 23. For a formula ϕ and a set of variables Z = {z1, . . . , zk}, ∃Z .ϕ denotes the
formula ∃z1, . . .∃zk.ϕ, and ∀Z .ϕ denotes the formula ∀z1, . . .∀zk.ϕ.

I Definition 24. Let (σ, F) be a safety signature. The class ∆(σ,F) of formulas6 is recursively
defined as follows:
1. p(t1, . . . , tn) ∈ ∆(σ,F) in case p is an n-ary predicate symbol of σ, and F (p) 6= ∅.
2. If ϕ,ψ ∈ ∆(σ,F) then so is any boolean combination of them.
3. ∃Z .ϕ1 ∧ ϕ2 ∈ ∆(σ,F) and ∀Z .ϕ1 → ϕ2 ∈ ∆(σ,F) in case ϕ2 ∈ ∆(σ,F), ϕ1 = p(t1, . . . , tn),

where p is an n-ary predicate of σ other than =, and ϕ1 �s(σ,F) Z, that is: there is
I ∈ F (p) such that:
a. For every z ∈ Z there is i ∈ I such that z = ti.
b. Z ∩ Fv(tj) = ∅ for every j ∈ {1, . . . , n}\I.

Examples

∆(σZF ,FZF) is exactly the class ∆0 used in set theory. Similarly, ∆(σN ,FN) is equivalent to
the class ∆0 used in formal number theory. (See the first two examples in Section 2.3.)

5 Actually, absolute formulas may be of interest for databases too, since they can be used for effectively
decidable yes-or-no queries. See [3].

6 This is a proper extension of the class GF of guarded formulas ([2]), in case F is the particular function
which assigns the powerset of {1, ..., n} to every n-ary primitive predicate R of σ.

CSL 2018

8:10 Safety, Absoluteness, and Computability

I Theorem 25. ϕ �s(σ,F) ∅ iff there exists a formula ϕ′ ∈ ∆(σ,F) such that ϕ ≡ ϕ′.

Proof. Obviously, if ϕ′ ∈ ∆(σ,F) then ϕ′ �s(σ,F) ∅. Hence the condition is sufficient. In order
to prove that it is also necessary, we need the following lemma:

I Lemma 26. Let �∗(σ,F) be defined like �s(σ,F), except that the clause for conjunction is
replaced by:

If ϕ1 �∗(σ,F) Y1, ϕ2 �∗(σ,F) Y2, Fv(ϕ1)∩ Y2 = ∅ and ϕ1 is an atomic formula or Y1 = ∅, then
ϕ1 ∧ ϕ2 �∗(σ,F) Y1 ∪ Y2.

Then for every formula ϕ, ϕ �s(σ,F) Y iff there is a formula ϕ′ such that ϕ′ �∗(σ,F) Y and
ϕ ≡ ϕ′.

Proof. Obviously, if ϕ′ �∗(σ,F) Y then ϕ′ �s(σ,F) Y . Hence the condition is sufficient. In
order to prove that it is also necessary, it suffices to show that up to logical equivalence,
�∗(σ,F) abides the condition concerning ∧ used in the definition of �s(σ,F). So assume e.g.
that ϕ1 �∗(σ,F) Y1, ϕ2 �∗(σ,F) Y2 and Fv(ϕ1) ∩ Y2 = ∅. We prove the existence of a formula
ϕ′ such that ϕ1 ∧ ϕ2 ≡ ϕ′ and ϕ′ �∗(σ,F) Y1 ∪ Y2. The proof is by induction on the structure
of ϕ1:

Assume ϕ1 is an atomic formula. Then ϕ1 ∧ ϕ2 �∗(σ,F) Y1 ∪ Y2 by the new conjunction
safety clause.
Assume ϕ1 is the formula ψ1 ∨ ψ2 where ψ1 �∗(σ,F) Y1 and ψ2 �∗(σ,F) Y1. Since Fv(ϕ1) =
Fv(ψ1) ∪ Fv(ψ2), we know that Fv(ψ1) ∩ Y2 = Fv(ψ2) ∩ Y2 = ∅. Then, by induction
assumption, there exist formulas θ1 and θ2 such that ψ1∧ϕ2 ≡ θ1, ψ2∧ϕ2 ≡ θ2, θ1 �∗(σ,F)
Y1 ∪ Y2 and θ2 �∗(σ,F) Y1 ∪ Y2. Therefore ϕ1 ∧ ϕ2 ≡ θ1 ∨ θ2 and θ1 ∨ θ2 �∗(σ,F) Y1 ∪ Y2.
Assume ϕ1 is the formula ψ1 ∧ ψ2 where ψ1 �∗(σ,F) Z1, ψ2 �∗(σ,F) Z2, Fv(ψ1) ∩ Z2 = ∅,
Y1 = Z1 ∪ Z2 and ψ1 is an atomic formula or Z1 = ∅, Since Fv(ψ2) ∩ Y2 = ∅, we
get by induction assumption the existence of a formula θ such that ψ2 ∧ ϕ2 ≡ θ and
θ �∗(σ,F) Z2 ∪ Y2. Since Fv(ψ1) ∩ (Z2 ∪ Y2) = ∅, we get that ϕ1 ∧ ϕ2 ≡ ψ1 ∧ θ and
ψ ∧ θ �∗(σ,F) Y1 ∪ Y2.
Assume ϕ1 is the formula ¬ψ where ψ �∗(σ,F) ∅. Then Y1 = ∅ and then ϕ1 ∧ ϕ2 �∗(σ,F)
Y1 ∪ Y2 by the new conjunction safety clause.
Assume ϕ1 = ∃zψ where ψ �∗(σ,F) Y1 ∪ {z} and z /∈ Y1. In addition, assume w.l.o.g. that
z /∈ Fv(ϕ2). Since Fv(ψ) ∩ Y2 = ∅, we get by induction assumption the existence of a
formula θ such that ψ ∧ ϕ2 ≡ θ and θ �∗(σ,F) Y1 ∪ Y2 ∪ {z}. Then ϕ1 ∧ ϕ2 ≡ ∃zθ and
∃zθ �∗(σ,F) Y1 ∪ Y2.

This completes the induction. J

End of the proof of Theorem 25

We show the necessity of the condition by proving a stronger claim: For every formula ϕ
such that ϕ �s(σ,F) Y there exists a formula ϕ′ ∈ ∆(σ,F) such that ∃Y ϕ ≡ ϕ′. By Lemma 26,
we only need to prove the latter under the assumption that ϕ �∗(σ,F) Y . The proof in this
case is by induction on the structure of ϕ:

Assume ϕ is atomic. If Y = ∅ then ϕ ∈ ∆(σ,F). Otherwise, choosing y ∈ Y , we get
y = y �(σ,F) ∅, ∃Y (ϕ ∧ y = y) ∈ ∆(σ,F) and ∃Y ϕ ≡ ∃Y (ϕ ∧ y = y).
Assume ϕ is the formula ψ1 ∨ ψ2 where ψ1 �∗(σ,F) Y and ψ2 �∗(σ,F) Y . By induction
assumption, there exists formulas θ1 ∈ ∆(σ,F) and θ2 ∈ ∆(σ,F) such that ∃Y ψ1 ≡ θ1 and
∃Y ψ2 ≡ θ2. Then θ1 ∨ θ2 ∈ ∆(σ,F) and ∃Y ϕ ≡ θ1 ∨ θ2.

A. Avron, S. Lev, and N. Levi 8:11

Assume ϕ is ψ1 ∧ ψ2 where ψ1 �∗(σ,F) Y1, ψ2 �∗(σ,F) Y2, Fv(ψ1) ∩ Y2 = ∅, Y = Y1 ∪ Y2
and ψ1 is an atomic formula or Y1 = ∅. By induction assumption, there exists a
formula θ2 ∈ ∆(σ,F) such that ∃Y2ψ2 ≡ θ2. If Y1 = ∅ then, by induction assumption,
there exists a formula θ1 ∈ ∆(σ,F) such that ψ1 ≡ θ1 and so θ1 ∧ θ2 ∈ ∆(σ,F) and
∃Y ϕ ≡ θ1 ∧ θ2. Otherwise, if Y1 6= ∅ then ψ1 is an atomic formula, ∃Y1(ψ1 ∧ θ2) ∈ ∆(σ,F)
and ∃Y ϕ ≡ ∃Y1(ψ1 ∧ θ2).
Assume ϕ is the formula ¬ψ where ψ �∗(σ,F) ∅. Then Y = ∅ and, by induction assumption,
there exists a formula θ ∈ ∆(σ,F) such that ψ ≡ θ and so ¬θ ∈ ∆(σ,F) and ϕ ≡ ¬θ.
Assume ϕ = ∃zψ where ψ �∗(σ,F) Y ∪ {z} and z /∈ Y . By induction assumption, there
exists a formula θ ∈ ∆(σ,F) such that ∃Y ϕ ≡ ∃Y ∪{z}.ψ ≡ θ.

By Note 11, this completes the proof. J

5 Characterization of Absoluteness in N

Theorem 25 is about general (σ, F)- absoluteness, and so it is not applicable to the notion of
(S, F)-absoluteness, where S is a structure for σ. In this section we prove a similar theorem
for one particular, but very important, case of (S, F)-absoluteness: (N , σN)-absoluteness.

I Note 27. Recall that in Section 2.2.1 it was noted that by a result of [3], relation R on
N is recursively enumerable iff R is definable by a formula of the form ∃y1, . . . , ynψ, where
the formula ψ is (σN , FN)-absolute. It was further observed there that every relation on
N that is defined by a (N , FN)-absolute formula is decidable, and that there are decidable
relations on N that are not definable by any formula ϕ such that ϕ �s(σN ,FN) ∅. It was left
open whether every decidable relation on N is definable by a (σN , FN)-absolute formula,
and whether every relation which is definable by such a formula is already definable by a
formula ϕ such that ϕ �s(σN ,FN) ∅. In view of the above-mentioned observations, the next
theorem implies that the answer to the first question is negative, while the answer to the
second is positive.

I Theorem 28. A formula ϕ such that Fv(ϕ) 6= ∅ is (N , σN)-absolute iff there is an
arithmetical bounded formula7 ϕ′ such that ϕ is equivalent in N to ϕ′.

Proof. We assume without loss of generality that for every formula ψ it holds that Fv(ψ) ∩
Bv(ψ) = ∅, and that any two variables that appear in ψ to the right of two different
occurrences of quantifiers are different. For k ∈ N we denote by Nk the structure with
domain {0, 1, . . . , k}, and the interpretations of the relation symbols are the corresponding
reductions of the interpretations of those symbols in N . For an assignment v, a variable u,
and a natural value n, we denote v[u := n] the assignment that agree with v on all variables
except u, and assigns the value n to u.

Given a formula ϕ and a set {x1, . . . , xk} of variables such that {x1, . . . , xk}∩Bv(ϕ) = ∅,
we denote by ϕ≤x1,...,xk the formula Reψ(x̄,z)[ϕ] (Definition 20), where ψ(x̄, z) is z ≤ x1 ∨
. . . ∨ z ≤ xk. The proof of the theorem is based on the following three lemmas:

I Lemma 29. ϕ≤x1,...,xk is logically equivalent to a bounded formula for every formula ϕ.

Proof. This follows immediately from the definitions, and the fact that ∃z.(z ≤ x1∨ . . .∨z ≤
xk) ∧ ψ is logically equivalent to the formula ∃z ≤ x1.ψ ∧ . . . ∧ ∃z ≤ xk.ψ. J

7 See first example in Section 2.3.

CSL 2018

8:12 Safety, Absoluteness, and Computability

I Lemma 30. Let ϕ be a formula, let {y, x1, . . . , xk} be a set of variables s.t. Bv(ϕ) ∩
{y, x1, . . . , xk} = ∅, and let v be an assignment s.t. v(y) ≤ max(v(x1), . . . , v(xk)). Then the
following holds

N , v � ϕ≤x1,...,xk iff N , v � ϕ≤y,x1,...,xk

Proof. We prove it by a structural induction on ϕ. The only non-trivial case is when ϕ is
of the form ∃z.ψ. In this case ϕ≤x1,...,xk is ∃z.(z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤x1,...,xk . Hence
N , v � ϕ≤x1,...,xk iff (*) there exists n ∈ N such that:

N , v[z := n] � (z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤x1,...,xk

Obviously, v′(y) ≤ max(v′(x1), . . . , v′(xk)) for every assignment v′ that agrees with v on
{y, x1, . . . , xk}. Hence the induction hypothesis for ψ implies that for any such v′:

N , v′ � ψ≤x1,...,xk iff N , v′ � ψ≤y,x1,...,xk . (1)

Also for any such v′, N , v′ � z ≤ y ∨ z ≤ x1 ∨ . . . ∨ z ≤ xk iff N , v′ � z ≤ x1 ∨ . . . ∨ z ≤ xk
(because z 6∈ Bv(ϕ), and so z 6∈ {y, x1, . . . , xn}). This observation and 1 imply that (*) holds
iff there exists n ∈ N such that:

N , v[z := n] � (z ≤ y ∨ z ≤ x1 ∨ . . . ∨ z ≤ xk) ∧ ψ≤y,x1,...,xk

And this is equivalent to: N , v � ϕ≤y,x1,...,xk . J

I Lemma 31. Let {x1, . . . , xk} be a non-empty set of variables, let ϕ be a formula such that
Fv(ϕ) ⊆ {x1, . . . , xk}, and let v be an assignment. Denote by m̃ := max(v(x1), . . . , v(xk)).
Then:

Nm̃, v � ϕ iff N , v � ϕ≤x1,...,xk (2)

Proof. By a structural induction on ϕ. Again the only non-trivial case is when ϕ is of the
form ∃z.ψ. So let v be an assignment, and assume that Nm̃, v � ∃y.ψ. It follows that there
exists n ∈ N , 0 ≤ n ≤ m̃, s.t. Nm̃, v[y := n] � ψ. By the induction hypothesis for ψ and
{y, x1, . . . , xk}, it holds that N , v[y := n] � ψ≤y,x1,...,xk . Denote the assignment v[y := n] by
v′. Since v′(y) = n ≤ m̃ = max(v′(x1), . . . , v′(xk)), N , v[y := n] � ψ≤x1,...,xk by Lemma 30.
Hence N , v � ∃y.(y ≤ x1 ∨ . . .∨ y ≤ xk)∧ψ≤x1,...,xk , that is: N , v � ϕ≤x1,...,xk . To prove the
converse we just repeat the argument in reverse order: Assume that N , v � ϕ≤x1,...,xk . This
means that N , v � ∃y.(y ≤ x1 ∨ . . .∨ y ≤ xk)∧ψ≤x1,...,xk . It follows that there is 0 ≤ n ≤ m̃
s.t. N , v[y := n] � ψ≤x1,...,xk . Using Lemma 30, it follows that N , v[y := n] � ψ≤y,x1,...,xk .
Therefore the induction hypothesis and the fact that m̃ := max(v(x1), . . . , v(xk)) together
imply that Nm̃, v[y := n] � ψ. Hence Nm̃, v � ϕ. J

End of the proof of Theorem 28

Suppose that ϕ �(N ,FN) ∅, and let Fv(ϕ) = {x1, . . . , xk} where k ≥ 1. Consider the formula
ϕ′ = ϕ≤x1,...,xk . (ϕ′ �sN ∅ by Lemma 29.) We show that

{n̄ ∈ Nk | N , x̄ := n̄ � ϕ} = {n̄ ∈ Nk | N , x̄ := n̄ � ϕ≤x1,...,xk}

Let 〈n1, . . . , nk〉 ∈ Nk, and let v be an assignment that assigns ni to xi for every 1 ≤ i ≤ k.
Since ϕ �(N ,FN) ∅, N , v � ϕ iff Nmax(n1,...,nk), v � ϕ. By Lemma 31 Nmax(n1,...,nk), v � ϕ iff
N , v � ϕ≤x1,...,xk , and the claim follows. J

A. Avron, S. Lev, and N. Levi 8:13

6 Absoluteness in Rudimentary Set Theory

To complete the picture concerning absoluteness, we return in this section to the area in
which this notion has first been introduced: set theory. In Sections 2.2.2 and 2.3 (second
example) we have noted that the notion of (σZF , FZF)-absoluteness is identical to Gödel’s
original notion of absoluteness, and that {ϕ | ϕ �s(σZF ,FZF) ∅} is a natural extension of the
set of ∆0-formulas in the language of σZF . However, in order to fully exploit the power
of the idea of dependent safety in the framework of set theory, we need to use a language
which is stronger (and more natural) than the official language of ZF . The main feature
of the stronger language, LRST , is that it employs a rich class of set terms of the form
{x | ϕ}. Of course, not every formula ϕ can be used in such a term. The basic idea in [5]
was that from a predicative point of view, one should allow only formulas which are safe
with respect to {x}. Since safety is a semantic notion, again what is used instead in [5] is a
formal approximation �RST . �RST is basically the natural extension of �s(σZF ,FZF) to the
richer language. However, the definition of that very language depends in turn on that of
�RST . Accordingly, the sets of terms and formulas of LRST , and the relation �RST , are
defined together by a simultaneous induction:

I Definition 32. The language LRST is defined as follows:
Terms:

1. Every variable is a term.
2. If x is a variable, and ϕ is a formula such that ϕ �RST {x}, then {x | ϕ} is a term

(and Fv({x | ϕ}) = Fv(ϕ)− {x}).
Formulas:

1. If t, s are terms than t = s and t ∈ s are atomic formulas.
2. If ϕ and ψ are formulas, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), and ∃xϕ are formulas.

The safety relation �RST :
1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x ∈ x, x = t, t = x, x ∈ t}, and x 6∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅ or X ∩ Fv(ψ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

I Theorem 33 ([5]). Every term of LRST with n free variables explicitly defines an n-ary
rudimentary function, and every rudimentary function is defined by some term of LRST .

The two most basic formal set theories in the language LRST are described next.

I Definition 34.
1. RSTm is the first-order theory with equality in the language LRST 8 which has the

following axioms:
Extensionality: ∀z(z ∈ x↔ z ∈ y)→ x = y

Comprehension: ∀x(x ∈ {x | ϕ} ↔ ϕ) if ϕ �RST {x}.
2. RST is the system obtained from RSTm by the addition of the following schema:

∈-induction: (∀x(∀y(y ∈ x→ ϕ{y/x})→ ϕ))→ ∀xϕ

8 LRST has richer classes of terms than those allowed in orthodox first-order systems. In particular: a
variable can be bound in them within a term. The notion of a term being free for substitution should
be extended accordingly. Otherwise the rules/axioms concerning the quantifiers, terms, and equality
remain unchanged.

CSL 2018

8:14 Safety, Absoluteness, and Computability

I Note 35. The use of ∈-induction seems to be predicatively justified. Therefore RST is the
basic system used in [5]. However, for the results below we use just one very weak corollary
of it: ∀x.x 6∈ x. (It is needed for the new clause x ∈ x �RST {x} in Definition 32.)

I Note 36. RST (or even just RSTm) serves in [5], [6] and [7] as the basis of computational
set theories. By this we mean a theory whose set of closed terms suffices for defining its
minimal model, and can be used to make explicit the potential computational content of set
theories (first suggested and partially demonstrated in [8]). On the other hand, such theories
also suffice (as is shown in [6] and [7]) for developing large portions of what was called by
Feferman in [11] ‘scientifically applicable mathematics’.

I Note 37. Despite the fact that the definition of �RST uses almost exactly the same
principles that underlie that of �s(σZF ,FZF) (with the slight addition that x ∈ x �RST {x},
while we only have x ∈ x �s(σZF ,FZF) ∅), the use of abstract set terms induces a significantly
stronger safety relation on the basic language of σZF . The reason is that the fact that
x = t �RST {x} is equivalent in RSTm to the following principle:

If ϕ �RST {y} then ∀y(y ∈ x↔ ϕ) �RST {x} if x 6∈ Fv(ϕ).
(It is not difficult to show that the addition of this clause indeed suffices for getting a system
in the language of ZF which is equivalent to RST .) Nevertheless, the next theorem and its
corollary imply that when it comes to absoluteness, the addition of the abstract set terms
does not provide extra expressive power.

I Theorem 38. Let ψ be a ∆0 formula of σZF (that is, without abstract set terms).
1. If x is a variable, and t is a term which is free for x in ψ, then ψ{t/x} is equivalent in

RST to a ∆0-formula of σZF .
2. If ϕ �RST {x1, . . . , xn} then the formula ∃x1 . . . xn(ϕ ∧ ψ) is equivalent in RST to a

∆0-formula of σZF .

Proof. By a simultaneous induction on the complexity of t and ϕ.
If t is a variable then the claim is obvious.
Suppose t is {y | ϕ}, where ϕ �RST {y}. We prove the claim for t by an internal induction
on the complexity of ψ.

If x is not free in ψ then the claim is obvious.
If ψ is x ∈ x then ψ{t/x} is equivalent in RST to the formula ∃x ∈ x.x ∈ x.
If ψ is x = x then ψ{t/x} is equivalent in RST to the formula ¬∃x ∈ x.x ∈ x.
Suppose ψ is z ∈ x, where z is different from x. We may assume that z is not bound
in ϕ. Then ψ{t/x} is equivalent in RST to ϕ{z/y}. Since ϕ �RST ∅, ϕ is equivalent
in RST to a ∆0-formula by the induction hypothesis. Hence so does ϕ{z/y}.
Suppose ψ is z = x or x = z, where z is a variable different from x. We may assume
that z is not y. Then ψ{t/x} is equivalent in RST to (∀y ∈ z.ϕ) ∧ ¬∃y(ϕ ∧ y 6∈ z).
Since ϕ �RST {y} and ϕ �RST ∅, ϕ and ∃y(ϕ ∧ y 6∈ z) are equivalent in RST to
∆0-formulas by the external induction hypothesis for ϕ. It follows that so is ψ{t/x}.
Suppose ψ is x ∈ z, where z is a variable different from x. Let w be a fresh variable.
Then ψ{t/x} is logically equivalent to ∃w ∈ z.w = t. By the previous case, w = t is
equivalent in RST to a ∆0 formula. Hence so is ψ{t/x}.
If ψ is ¬ψ1 or ψ1 ∧ ψ2, or ψ1 ∨ ψ2, then the claim for ψ follows from the induction
hypothesis for ψ1 and ψ2.
If ψ is of the form ∃z ∈ w.ψ1, where both w and z are different from x, then the claim
for ψ is immediate from the internal induction hypothesis for ψ1.

A. Avron, S. Lev, and N. Levi 8:15

Suppose ψ is of the form ∃z ∈ x.ψ1 (where z is different from x). Since t is free for
x in ψ, z does not occur free in ϕ, and we may assume that it does not occur in ϕ
at all. Then ψ{t/x} is equivalent in RST to ∃z(ϕ{z/y} ∧ ψ1{t/x}). Since z does not
occur in ϕ and ϕ �RST {y}, also ϕ{z/y} �RST {z}. Hence by the external induction
hypothesis for ϕ and the internal induction hypothesis for ψ1, ψ{t/x} is equivalent in
RST to a ∆0 formula.

Suppose ϕ is atomic (and so ϕ �RST ∅). Then ϕ is either t1 ∈ t2 or t1 = t2 for some
terms t1 and t2. Since x ∈ y and x = y are ∆0-formulas, it follows by applying the
induction hypotheses for t1 and t2 that ϕ is equivalent to a ∆0-formula. Hence ϕ ∧ ψ is
equivalent to a ∆0-formula whenever ψ is.
Suppose that ϕ is of the form x ∈ x, where x is a variable, Then ϕ �RST {x}, and so we
have to prove that ∃x ∈ x.ψ is equivalent to a ∆0-formula. This is obvious.
Suppose that ϕ is of the form x ∈ t, where x 6∈ Fv(t). Since ϕ �RST {x} in this case, we
have to prove that for every ∆0-formula ψ, ∃x(x ∈ t ∧ ψ) is equivalent to a ∆0-formula.
This follows from the induction hypothesis for t, since the last formula is θ{t/z}, where z
is a fresh variable, and θ is the ∆0-formula ∃x(x ∈ z) ∧ ψ (note that since x 6∈ Fv(t), t is
free for z in θ).
Suppose that ϕ is of the form x = t or t = x, where x is not free in t. Since ϕ �RST {x}
in this case, we have to prove that for every ∆0-formula ψ, ∃x(x = t ∧ ψ) is equivalent
to a ∆0-formula. By changing bound variables, we may assume that t is free for x in ψ.
This and the fact that x 6∈ Fv(t) together imply that ∃x(x = t∧ψ) is logically equivalent
to ψ{t/x}. This formula, in turn, is equivalent in RST to a ∆0-formula by our induction
hypothesis for t.
Suppose ϕ is ¬ϕ1, where ϕ1 �RST ∅ (and so ¬ϕ1 �RST ∅). By induction hypothesis for
ϕ, ϕ is equivalent in RST to a ∆0-formula. Hence so is ¬ϕ ∧ ψ for every ∆0-formula ψ.
Suppose ϕ is ϕ1 ∨ ϕ2, where ϕ1 �RST {x1, . . . , xn} and ϕ2 �RST {x1, . . . , xn} (and so
ϕ �RST {x1, . . . , xn}). Then ∃x1 . . . xk(ϕ ∧ ψ) is logically equivalent to ∃x1 . . . xk(ϕ1 ∧
ψ) ∨ ∃x1 . . . xk(ϕ2 ∧ ψ). Hence the induction hypothesis for ϕ1 and ϕ2 entails that
∃x1 . . . xk(ϕ ∧ ψ) is equivalent in RST to a ∆0-formula whenever ψ is.
Suppose ϕ is ϕ1 ∧ ϕ2, ϕ1 �RST {x1, . . . , xn}, ϕ2 �RST {y1, . . . , yk}, {y1, . . . , yk} ∩
Fv(ϕ1) = ∅ (so ϕ �RST {x1, . . . , xn, y1, . . . , yk}). Then ∃x1 . . . xny1 . . . yk(ϕ ∧ ψ) is
equivalent to ∃x1 . . . xn(ϕ1 ∧ ∃y1 . . . yk(ϕ2 ∧ ψ)). By applying the induction hypothesis
twice, we get that ∃x1 . . . yk(ϕ ∧ ψ) is equivalent in RST to a ∆0-formula whenever ψ is.
Suppose ϕ is ∃yϕ1 where ϕ1 �RST {x1, . . . , xn, y}. Let ψ be a ∆0-formula. Then
∃x1 . . . xn(ϕ ∧ ψ) is logically equivalent to the formula ∃x1 . . . xnz(ϕ1{z/y} ∧ ψ), where
z is a fresh variable. Since ϕ1{z/y} �RST {x1, . . . , xn, z}, the induction hypothesis
implies that ∃x1 . . . xnz(ϕ1{z/y} ∧ ψ) is equivalent in RST to a ∆0-formula. Hence so is
∃x1 . . . xn(ϕ ∧ ψ). J

I Corollary 39. If ϕ �RST ∅ then ϕ is equivalent in RST to a ∆0-formula of σZF .

I Note 40. On the other hand, if X 6= ∅, then it can happen that ϕ �RST X, but θ 6�RST X,
where θ is the ∆0-formula to which ϕ is equivalent according to the construction given in
the last proof. Thus if ϕ is x = {y}, then θ is the y ∈ x∧ ∀z ∈ x.z = y, so θ 6�RST {x}, even
though ϕ �RST {x}. This problem cannot be solved by adding to the definition of �RST
the clause mentioned in Note 37, because ∀y(y ∈ x↔ ϕ) is not necessarily a ∆0-formula in
case ϕ is. From the above theorem it follows that it is equivalent in RST to a ∆0-formula θ,
but then again there seems to be no guarantee that θ �RST {x}.

CSL 2018

8:16 Safety, Absoluteness, and Computability

7 Conclusion and Further Research

We have shown that the syntactic framework developed in [3, 5] for the semantic notions
of dependent safety and absoluteness is complete in the case of general first-order logic in
languages without function symbols. Therefore it promises to be rather adequate for the
general theory of constructibility, decidability, and computability envisaged in [3]. The next
stages of this research program will involve the following goals:
1. Extending the general theory of dependent safety for languages with function symbols.
2. The completeness result given in this paper is with respect to the class of all structures

for a given signature. However, frequently we are mainly interested only with a subclass
of that class. two particularly important cases for which an extension of the general
theory developed here is needed are:
a. The class of finite models.
b. The class of the models of some given theory.

3. For computability theory we might need to restrict our attention to specific central
structures. Thus in section (5) we characterized the absolute formulas of the important
structure (N , FN). It is not clear whether the same can be done for other basic important
structures, like the structure of hereditarily finite sets HF = (HF, 〈∈〉) (where ∈ has its
usual meaning, and x ∈ y is safe with respect to {x}).

4. Providing concrete applications of our results in specific areas. This includes:
Database theory (e.g. Datalog extended with arithmetic).
MKM (Mathematical Knowledge Management), in particular: the formalization of
scientifically applicable mathematics in a type-free, predicative setting ([5]).

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of

predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.
3 A. Avron. Constructibility and decidability versus domain independence and absoluteness.

Theoretical Computer Science, 394:144–158, 2008.
4 A. Avron. A framework for formalizing set theories based on the use of static set terms. In

A. Avron, N. Dershowitz, and A. Rabinovich, editors, Pillars of Computer Science, volume
4800 of LNCS, pages 87–106. Springer, 2008.

5 A. Avron. A new approach to predicative set theory. In R. Schindler, editor, Ways of Proof
Theory, onto series in mathematical logic, pages 31–63. onto verlag, 2010.

6 A. Avron and L. Cohen. Formalizing scientifically applicable mathematics in a definitional
framework. Journal of Formalized Reasoning, 9(1):53–70, 2016.

7 A. Avron and L. Cohen. A minimal computational theory of a minimal computational
universe. In Proc. of LFCS 2018, pages 37–54, 2018.

8 D. Cantone, E. Omodeo, and A. Policriti. Set theory for computing: from decision proced-
ures to declarative programming with sets. Springer, 2001.

9 K. J. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, 1984.
10 R. A. Di Paola. The recursive unsolvability of the decision problem for the class of definite

formulas. J. ACM, 16:324–327, 1969.
11 S. Feferman. Why a little bit goes a long way: Logical foundations of scientifically applicable

mathematics. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science
Association, pages 442–455, 1992.

12 R. O. Gandy. Set-theoretic functions for elementary syntax. In Axiomatic set theory, Part
2, pages 103–126. AMS, Providence, Rhode Island, 1974.

A. Avron, S. Lev, and N. Levi 8:17

13 R. B. Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical
Logic, 4:229–308, 1972.

14 K. Kunen. Set Theory, An Introduction to Independence Proofs. North-Holland, 1980.
15 A. O. Mendelzon and T. Milo. Formal models of web queries. In Proceedings of the Sixteenth

ACM Symposium on Principles of Database Systems, pages 134–143, 1997.
16 R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive horn clauses with

infinite relations. In ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
San Diego, 1987.

17 R. M. Smullyan. The Incompleteness Theorems. Oxford University Press, 1992.
18 R. Topor. Safe database queries with arithmetic relations. In Proceedings of the 14th

Australian Computer Science Conference, pages 1–13, Sydney, 1991.
19 Rodney W. Topor. Domain-independent formulas and databases. Theoretical Computer

Science, 52(3):281–306, 1987.
20 J.D. Ullman. Principles of Database and Knowledge-base Systems. Computer Science Press,

1988.

CSL 2018

	Introduction
	Preliminaries
	Basic Definitions
	Examples
	Computability Theory
	Set Theory
	Databases
	Querying the Web

	The Corresponding Syntactic Relation

	The General Completeness Theorem
	Characterization of General Absoluteness
	Characterization of Absoluteness in N
	Absoluteness in Rudimentary Set Theory
	Conclusion and Further Research

