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Abstract
Several type systems have been proposed to statically control the time complexity of lambda-
calculus programs and characterize complexity classes such as FPTIME or FEXPTIME. A first
line of research stems from linear logic and restricted versions of its !-modality controlling duplica-
tion. A second approach relies on the idea of tracking the size increase between input and output,
and together with a restricted recursion scheme, to deduce time complexity bounds. However
both approaches suffer from limitations : either a limited intensional expressivity, or linearity
restrictions. In the present work we incorporate both approaches into a common type system, in
order to overcome their respective constraints. Our system is based on elementary linear logic
combined with linear size types, called sEAL, and leads to characterizations of the complexity
classes FPTIME and 2k-FEXPTIME, for k >= 0.

2012 ACM Subject Classification Theory of computation → Lambda calculus, Theory of com-
putation→ Linear logic, Theory of computation→ Turing machines, Software and its engineering
→ Functional languages

Keywords and phrases Implicit computational complexity, λ-calculus, linear logic, type systems,
polynomial time complexity, size types

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.9

Related Version Combining Linear Logic and Size Types for Implicit Complexity (Long Version),
Patrick Baillot, Ghyselen Alexis, https://hal.archives-ouvertes.fr/hal-01687224, 2018

1 Introduction

Controlling the time complexity of programs is a crucial aspect of program development.
Complexity analysis can be performed on the overall final program and some automatic
techniques have been devised for this purpose. However, if the program does not meet our
expected complexity bound it might not be easy to track which subprograms are responsible
for the poor performance and how they should be rewritten in order to improve the global
time bound. Can one instead investigate some methodologies to program while staying
in a given complexity class? Can one carry such program construction without having to
deal with explicit annotations for time bounds? These are some of the questions that have
been explored by implicit computational complexity, a line of research which defines calculi
and logical systems corresponding to various complexity classes, such as FP, FEXPTIME,
FLOGSPACE . . .

A first success in implicit complexity was the recursion-theoretic characterization of FP [9].
This work on safe recursion leads to languages for polynomial time [18], for oracle functionals
or for probabilistic computation [13, 25]. Among the other different approaches of implicit
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9:2 Combining Linear Logic and Size Types for Implicit Complexity

complexity one can mention two important threads of work. The first one is issued from linear
logic, which provides a decomposition of intuitionistic logic with a modality, !, accounting for
duplication. By designing variants of linear logic with weak versions of the ! modality one
obtains systems corresponding to different complexity classes, like light linear logic (LLL)
for the class FP [15] and elementary linear logic (ELL) for the classes k-FEXPTIME, for
k ≥ 0. [15, 2, 14]. These logical systems can be seen as type systems for some variants of
lambda-calculi. A key feature of these systems, and the main ingredient for proving their
complexity properties, is that they induce a stratification of the typed program into levels.
We will thus refer to them as level-based systems. Their advantage is that they deal with a
higher-order language, and that they are also compatible with polymorphism. Unfortunately
from a programming point of view they have a critical drawback: only few and very specific
programs are actually typable, because the restrictions imposed to recursion by typing
are in fact very strong... A second thread of work relies on the idea of tracking the size
increase between the input and the output of a program. This approach is well illustrated by
Hofmann’s Non-size-increasing (NSI) type system [19] : here the types carry information
about the input/output size difference, and the recursion is restricted in such a way that
typed programs admit polynomial time complexity. An important advantage with respect
to LLL is that the system is algorithmically more expressive, that is to say that far more
programs are typable. This has triggered a fertile research line on type-based complexity
analysis using ideas of amortized cost analysis [20, 17, 16]. Some aspects of higher-order have
been adressed [22] but note that this approach deals with complexity analysis and not with
the characterization of complexity classes. In particular it does not suggest disciplines to
program within a given complexity class. A similar idea is also explored by the line of work
on quasi-interpretations [10, 4], with a slightly different angle : here the kind of dependence
between input and output size can be more general but the analysis is more of a semantic
nature and in particular no type system is provided to derive quasi-interpretations. The
type system d`T of [3] can be thought of as playing this role of describing the dependence
between input and output size, and it allows to derive time complexity bounds, even though
these are not limited to polynomial bounds. Altogether we will refer to these approaches
as size-based systems. However they also have a limitation: characterizations of complexity
classes have not been obtained for full-fledged higher-order languages, but only for linear
higher-order languages, that is to say languages in which functional arguments have to be
used at most once (as in [19, 4]).

Problematic and methodology. So on the one hand level-based systems manage higher-
order but have a poor expressivity, and on the other hand sized-based systems have a
good expressivity but do not characterize complexity classes within a general higher-order
language. . . On both sides some attempts have been made to repair these shortcomings but
only with limited success: in [6] for instance LLL is extended to a language with recursive
definitions, but the main expressivity problem remains; in [4] quasi-interpretations are defined
for a higher-order language, but with a linearity condition on functional arguments. The goal
of the present work is precisely to improve this situation by reconciliating the level-based
and the size-based approaches. From a practical point of view we want to design a system
which would bring together the advantages of the two approaches. From a fundamental point
of view we want to understand how the levels and the input/output size dependencies are
correlated, and for instance if one of these two characteristics subsumes the other one.

One way to bridge these two approaches could be to start with a level-based system such
as LLL, and try to extend it with more typing rules so as to integrate in it some size-based
features. However a technical difficulty for that is that the complexity bounds for LLL and
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variants of this system are usually obtained by following specific term reduction strategies
such as the level-by-level strategy. Enriching the system while keeping the validity of such
reduction strategies turns out to be very intricate. For instance this has been done in [6]
for dealing with recursive definitions with pattern-matching, but at the price of technical
and cumbersome reasonings on the reduction sequences. Our methodology to overcome this
difficulty in the present work will be to choose a variant of linear logic for which we can
prove the complexity bound by using a measure which decreases for any reduction step. So
in this case there is no need for specific reduction strategy, and the system is more robust to
extensions. For that purpose we use elementary linear logic (ELL), and more precisely the
elementary lambda-calculus studied in [24].

Our language. Let us recall that ELL is essentially obtained from linear logic by dropping
the two axioms !A( A and !A(!!A for the ! functor (the co-unit and co-multiplication of
the comonad). Basically, if we consider the family of types W (!iW (where W is a type for
binary words), the larger the integer i, the more computational power we get... This results in
a system that can characterize the classes k-FEXPTIME, for k ≥ 0 [2]. The paper [24] gives
a reformulation of the principles of ELL in an extended lambda-calculus with constructions
for !. It also incorporates other features (references and multithreading) which we will not
be interested in here. Our idea will be to enrich the elementary lambda-calculus by a kind of
bootstrapping, consisting in adding more terms to the “basic” type W ( W. For instance we
can think of giving to this type enough terms for representing all polynomial time functions.
The way we implement this idea is by using a second language. We believe that several
equivalent choices could be made for this second language, and here we adopt for simplicity
a variant of the language d`T from [3], a descendant of previous work on linear dependent
types [23]. This language is a linear version of system T, that is to say a lambda-calculus
with recursion, with types annotated with size expressions. Actually the type system of our
second language can be thought of as a linear cousin of sized types [21, 1] and we call it
s`T. So on the whole our global language can be viewed as a kind of two-layer system, the
lower one used for tuning first-order intensional expressivity, and the upper one for dealing
with higher-order computation and non-linear use of functional arguments. We will call it
sEAL, for sized Elementary affine logic typed λ-calculus. We do not include polymorphism
in sEAL for the simplicity of exposition, but we are convinced that our results could be
adapted to the polymorphic extension.

Roadmap. We will first define the language s`T of sized linear types and investigate its
properties (Sect. 2). Then we will recall the elementary lambda-calculus, define our enriched
calculus sEAL, describe some examples of programs and study the reduction properties of
this calculus (Sect. 3). After that we will establish the complexity results (Sect. 4).

2 Presentation of s`T and Control of the Reduction Procedure

We present s`T which is a linear λ-calculus with constructors for base types and a constructor
for high-order primitive recursion. Types are enriched with a polynomial index describing
the size of the value represented by a term, and this index imposes a restriction on recursions.
With this, we are able to derive a weight on terms in order to control the number of reduction
steps.

CSL 2018



9:4 Combining Linear Logic and Size Types for Implicit Complexity

if(V, V ′) tt → V (λx.t) V → t[V/x]
if(V, V ′) ff → V ′ let x⊗ y = V ⊗ V ′ in t → t[V/x][V ′/y]

ifn(V, V ′) zero → V ′ ifn(V, V ′) succ(W ) → V W

itern(V, V ′) zero → V ′ itern(V, V ′) succ(W ) → itern(V, V V ′) W
ifw(V0, V1, V

′) ε → V ′ ifw(V0, V1, V
′) si(W ) → Vi W

iterw(V0, V1, V
′) ε → V ′ iterw(V0, V1, V

′) si(W ) → iterw(V0, V1, Vi V
′) W

Figure 1 Base rules for s`T.

2.1 Syntax of s`T and Type System
I Definition 1 (Substitution). For an object t with a notion of free variable and substitution
we write t[t′/x] the term t in which free occurrences of x have been replaced by t′.

Terms. Terms and values of s`T are defined by the following grammars :
t := x | λx.t | t t′ | t⊗ t′ | let x⊗ y = t in t′ | zero | succ(t) | ifn(t, t′) | itern(V, t) | ε

| s0(t) | s1(t) | ifw(t0, t1, t′) | iterw(V0, V1, t) | tt | ff | if(t, t′)
V := x | λx.t | V ⊗ V ′ | zero | succ(V ) | ifn(V, V ′) | itern(V, V ′) | ε | s0(V ) | s1(V )

| ifw(V0, V1, V
′) | iterw(V0, V1, V

′) | tt | ff | if(V, V ′)
We define free variables and free occurrences as usual and we work up to α-renaming.

In the following, we will often use the notation si to regroup the cases s0 and s1. Here, we
choose the alphabet {0, 1} for simplification, but we could have taken any finite alphabet Σ
and in this case, the constructors ifw and iterw would need a term for each letter.

The definitions of the constructors will be more explicit with their reductions rules and
their types. For intuition, the constructor ifn(t, t′) can be seen as λn.match n with succ(n′)
7→ t n′ | 0 7→ t′, and the constructor itern(V, t) is such that itern(V, t) n→∗ V n t, if n is
the coding of the integer n, that is succn(zero).

Reductions. Base reductions in s`T are given by the rules described in Figure 1.
Note that in the iterw rule, the order in which we apply the steps functions is the reverse

of the one for iterators we see usually. In particular, it does not correspond to the reduction
defined in [3]. This is not a problem since we can compute the mirror of a word and the
subject reduction is easier to prove with this definition. Those base reductions can be applied
in contexts C defined by the following grammar : C := [] | C t | V C | C ⊗ t | t ⊗ C |
let x ⊗ y = C in t | succ(C) | ifn(C, t) | ifn(t, C) | itern(V,C) | si(C) | ifw(C, t, t′) |
ifw(t, C, t′) | ifw(t, t′, C) | iterw(V0, V1, C) | if(C, t) | if(t, C).

Linear Types with Sizes. Base types are given by the following grammar :
U := WI | NI | B I, J, · · · := a | n ∈ N∗ | I + J | I · J
N∗ is the set of non-zero integers. I represents an index and a represents an index variable.

We define for indexes the notions of free variables and free occurrences in the usual way and
we work up to renaming of variables. We also define the substitution of a free variable in
an index in the usual way. Then, we can generalize substitution to types, with for example
NI [J/a] = NI[J/a].

The intended meaning is that closed values of type NI (resp. WI) will be integers (resp.
words) of size (resp. length) at most I.

I Definition 2 (Order on Indexes). For two indexes I and J , we say that I ≤ J if for any
valuation φ mapping free variables of I and J to non-zero integers, we have Iφ ≤ Jφ. Iφ is I
where free variables have been replaced by their value in φ, thus Iφ is a non-zero integer.
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We now consider that if I ≤ J and J ≤ I then I = J (ie we take the quotient set for the
equivalence relation). Remark that by definition of indexes, we always have 1 ≤ I. For two
indexes I and J , we say that I < J if for any valuation φ mapping free variables of I and J
to non-zero integers, we have Iφ < Jφ. This is not equivalent to I ≤ J and I 6= J , as we can
see with a ≤ a · b.

Here we only consider polynomial indexes. This is a severe restriction w.r.t. linear
dependent types, used for example in [12, 3], in which indexes can use any set of functions
described by some rewrite rules. But in the present setting this is sufficient because we only
want s`T to characterize polynomial time computation.

I Definition 3. Types are given by the grammar D,E, · · · := U | D ( D′ | D ⊗D′

We define a subtyping order @ on types given by the following rules :
B @ B and if I ≤ J then NI @ NJ and WI @ WJ .
D1 ( D′1 @ D2 ( D′2 iff D2 @ D1 and D′1 @ D′2.
D1 ⊗D′1 @ D2 ⊗D′2 iff D1 @ D2 and D′1 @ D′2.

I Definition 4 (Contexts). Variables contexts are denoted Γ, with the shape Γ = x1 :
D1, . . . , xn : Dn. We say that Γ @ Γ′ when Γ and Γ′ have exactly the same variables, and
for x : D in Γ and x : D′ in Γ′ we have D @ D′. Ground variables contexts, denoted dΓ,
are variables contexts in which all types are base types. We write Γ = Γ′, dΓ to denote the
decomposition of Γ into a ground variable context dΓ and a variable context Γ′ in which
types are non-base types. For a variable context without base types, we note Γ = Γ1,Γ2
when Γ is the concatenation of Γ1 and Γ2, and Γ1 and Γ2 do not have any common variables.

We denote proofs as π C Γ ` t : D and we define an index ω(π) called the weight for such a
proof. The idea is that the weight will be an upper-bound for the number of reduction steps
of t. Note that since ω(π) is an index, this bound can depend of some index variables. The
rules for those proofs are described by Figure 2. The rules for words and booleans can be
found in the appendix 6.1, they can be deduced from the rules for integers. Observe that this
system enforces a linear usage of variables of non-base types (see e.g. the rule for application
in Fig. 2). Note that in the rule for itern described in Figure 2, the index variable a must
be a fresh variable.

Example in s`T. We sketch here the multiplication in s`T, other examples can be found in
the appendix 6.3. The multiplication can be written mult = λx.itern(λy.add x y, zero) :
NI ( NJ ( NI·J , if we are given the term add : NI ( NJ ( NI+J .

x : NI , y : NI·a ` add x y : NI·a+I

x : NI ` λy.add x y : NI·a ( NI·a[a+ 1/a] x : NI ` zero : NI

x : NI ` itern(λy.add x y, zero) : NJ ( NI·J

2.2 Subject Reduction and Upper Bound
In order to prove the subject reduction for s`T and that the weight is a bound on the
number of reduction steps of a term, we give some important intermediate lemmas. Other
lemmas can be found in the appendix 6.2, and more details are available in [7], as for
other sections in this paper. First, we show that values are indeed linked to normal
forms. In particular, this theorem shows that a value of type integer is indeed of the form
succ(succ(. . . (succ(zero)) . . . )). This imposes that in this call-by-value calculus, when an
argument is of type N, it is the encoding of an integer.

CSL 2018
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D @ D′
πC

Γ, x : D ` x : D′
ω(π) = 1

σ C Γ, x : D ` t : D′
πC

Γ ` λx.t : D ( D′
ω(π) = 1 + ω(σ)

σ1 C Γ1, dΓ ` t : D′ ( D σ2 C Γ2, dΓ ` t′ : D′
πC

Γ1,Γ2, dΓ ` t t′ : D
ω(π) = ω(σ1) + ω(σ2)

σ2 C Γ2, dΓ ` t′ : D′ σ1 C Γ1, dΓ ` t : D
πC

Γ1,Γ2, dΓ ` t⊗ t′ : D ⊗D′
ω(π) = ω(σ1) + ω(σ2) + 1

σ2 C Γ2, dΓ, x : D, y : D′ ` t′ : D′′ σ1 C Γ1, dΓ ` t : D ⊗D′
πC

Γ1,Γ2, dΓ ` let x⊗ y = t in t′ : D′′
ω(π) = ω(σ1) + ω(σ2)

πC
Γ ` zero : NI ω(π) = 0

J + 1 ≤ I σ C Γ ` t : NJ

πC
Γ ` succ(t) : NI

ω(π) = ω(σ)

σ1 C Γ1, dΓ ` t : NI ( D σ2 C Γ2, dΓ ` t′ : D
πC

Γ1,Γ2, dΓ ` ifn(t, t′) : NI ( D
ω(π) = ω(σ1) + ω(σ2) + 1

D @ E E[I/a] @ F

σ1 C dΓ ` V : D ( D[a+ 1/a]
E @ E[a+ 1/a]

σ2 C Γ, dΓ ` t : D[1/a]
πC

Γ, dΓ ` itern(V, t) : NI ( F

ω(π) = I + ω(σ2) + I · ω(σ1)[I/a]

Figure 2 Type system for s`T.

I Theorem 5. Let t be a term in s`T, if t is closed and has a typing derivation ` t : D then
t is normal if and only if t is a value V.

Another important lemma is the one for subtyping.

I Lemma 6 (Subtyping). If π C Γ ` t : D then for all Γ′, D′ such that D @ D′ and Γ′ @ Γ,
we have a proof π′ C Γ′ ` t : D′ with ω(π′) ≤ ω(π)

This lemma shows that we do not need an explicit rule for subtyping and subtyping does
not harm the upper bound derived from typing. Moreover, this lemma is important in order
to substitute variables, since the axiom rule allows subtyping.

We can now express the subject-reduction of the calculus and the fact that the weight of
a proof strictly decreases during a reduction.

I Theorem 7. Let τ C Γ ` t0 : D, and t0 → t1, then there is a proof τ ′ C Γ ` t1 : D such
that ω(τ ′) < ω(τ).

The proof of this theorem can be found in [7]. The main difficulty is to prove the statement
for base reductions. Base reductions that induce a substitution, like the usual β reduction,
are proved by a substitution lemma. The other interesting cases are the rules for iterators.
For such a rule, the subject reduction is given by a good use of the fresh variable given in
the typing rule.

As the indexes can only define polynomials, the weight of a sequent can only be a
polynomial on the index variables. And so, in s`T, we can only define terms that work in
time polynomial in their inputs.



P. Baillot and A. Ghyselen 9:7

Polynomial Indexes and Degree. For the following section on the elementary affine logic,
we need to define a notion of degree of indexes and explicit some properties of this notion.

I Definition 8. The indexes can be seen as multi-variables polynomials, and we can define
the degree of an index I by induction on I.

• ∀n ∈ N∗, d(n) = 0 • For an index variable a, d(a) = 1
• d(I + J) = max(d(I), d(J)) • d(I · J) = d(I) + d(J).

This definition of degree is primordial for the control of reductions in sEAL, that we
present in the following section.

3 Elementary Affine Logic and Sizes

We work on an elementary affine lambda calculus based on [24] without multithreading and
side-effects, that we present here. In order to solve the problem of intensional expressivity
of this calculus, we enrich it with constructors for integers, words and booleans, and some
iterators on those types following the usual constraint on iteration in elementary affine logic
(EAL). Then, using the fact that the proof of correctness in [24] is robust enough to support
functions computable in polynomial time with type N ( N (see Section 6.4 in the appendix),
we enrich EAL with the polynomial time calculus defined previously. We call this new
language sEAL (EAL with sizes). More precisely, we add the possibility to use first-order
s`T terms in this calculus in order to work on those base types, particularly we can then do
controlled iterations for those types. We then adapt the measure used in [24] to sEAL to
find an upper-bound on the number of reductions for a term.

3.1 An EAL-Calculus
First, let us present a λ-calculus for the elementary affine logic. In this calculus, any sequence
of reduction terminates in elementary time. The keystone of this proof is the use of the
modality “!”, called bang, inspired by linear logic. In order to have this bound, there are
some restrictions in the calculus like linearity (or affinity if we allow weakening) and an
important notion linked with the “!” is used, the depth. We follow the presentation from [24]
and we encode the usual restrictions in a type system.

Syntax. Terms are given by the grammar: M := x | λx.M |M M ′ |!M | let !x = M in M ′

The constructor let !x = M in M ′ binds the variable x in M ′. We define as usual the
notion of free variables, free occurrences and substitution.
The semantic of this calculus is given by the two following rules

(λx.M) M ′ →M [M ′/x] let !x =!M in M ′ →M ′[M/x].
Those rules can be applied in any contexts.

Type System. We add to this calculus a polymorphic type system that also restrains the
possible terms we can write. Types are given by the grammar T := α | T ( T ′ |!T | ∀α.T

I Definition 9 (Contexts). Linear variables contexts are denoted Γ, with the shape Γ =
x1 : T1, . . . , xn : Tn. We write Γ1,Γ2 the disjoint union between Γ1 and Γ2. Global variables
contexts are denoted ∆, with the shape ∆ = x1 : T1, . . . , xn : Tn, y1 : [T ′1], . . . yn : [T ′m]. We
say that [T] is a discharged type, as we could see in light linear logic [15, 26]. When we need
to separate the discharged types from the others, we will write ∆ = ∆′′, [∆′]. In this case, if
[∆′] = y1 : [T ′1], . . . , ym : [T ′m], then we note ∆′ = y1 : T ′1, . . . , ym : T ′m.

CSL 2018
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(Lin Ax)
Γ, x : T | ∆ ` x : T

(Glob Ax)
Γ | ∆, x : T ` x : T

Γ, x : T | ∆ `M : T ′
(λ)

Γ | ∆ ` λx.M : T ( T ′
Γ | ∆ `M : T ′ ( T Γ′ | ∆ `M ′ : T ′

(App)
Γ,Γ′ | ∆ `M M ′ : T

∅ | ∆ `M : T
(! Intro)

Γ | ∆′, [∆] `!M : !T
Γ′ | ∆ `M : !T Γ | ∆, x : [T ] `M ′ : T ′

(! Elim)
Γ,Γ′ | ∆ ` let !x = M in M ′ : T ′

Γ | ∆ `M : T α fresh in Γ, ∆
(∀ Intro)

Γ | ∆ `M : ∀α.T
Γ | ∆ `M : ∀α.T

(∀ Elim)
Γ | ∆ `M : T [T ′/α]

Figure 3 Type system for the EAL-calculus.

Typing judgments have the shape Γ | ∆ `M : T .
The rules are given in Figure 3. Observe that all the rules are multiplicative for Γ, and

the “! Intro” rule erases linear contexts, non-discharged types and transforms discharged
types into usual types. With this, we can see that some restrictions appears in a typed term.
First, in λx.M , x occurs at most once in M , and moreover, there is no “! Intro” rule behind
the axiom rule for x. Then, in let !x = M in M ′, x can be duplicated, but there is exactly
one “! Intro” rule behind each axiom rule for x. For example, with this type system, we can
not type terms like λx.!x, λf, x.f (f x) or let !x = M in x.

With this type system, we obtain as a consequence of the results exposed in [24] that
any sequence of reductions of a typed term terminates in elementary time. This proof relies
on the notion of depth linked with the modality “!” and a measure on terms bounding the
number of reduction for this term. We will adapt those two notions in the following part on
sEAL, but for now, let us present some terms and encoding in this EAL-calculus.

Examples of Terms in EAL and Church Integers. First, a useful term proving the functori-
ality of ! : fonct = λf, x.let !g = f in let !y = x in !(g y) : ∀α, α′.!(α( α′) (!α(!α′.

Integers can be encoded in this calculus, using the type N = ∀α.!(α ( α) (!(α ( α).
For example, 3 is described by the term 3 = λf.let !g = f in !(λx.g (g (g x))) : N.

With this encoding, addition and multiplication can be defined, with type N ( N ( N.
add = λn,m, f.let !f ′ = f in let !g = n !f ′ in let !h = m !f ′ in !(λx.h (g x))
mult = λn,m, f.let !g = f in n(m !g)

And finally, one can also define an iterator using integers.
iter = λf, x, n.fonct (n f) x : ∀α.!(α ( α) (!α ( N (!α with iter !M !M ′ n →∗
!(Mn M ′).

Intensional Expressivity. Those examples show that this calculus suffers from limitation.
First, we need to work with Church integers, because of a lack of data structure. Furthermore,
we need to be careful with the modality, and this can be sometimes a bit tricky, as one can
remark with the addition. And finally if we want to do an iteration, we are forced to work
with types with bangs. This implies that each time we need to use an iteration, we are forced
to add a bang in the final type. Typically this prevents from iterating a function which
has itself been defined by iteration. It has been proved [5] that polynomial and exponential
complexity classes can be characterized in this calculus, by fixing types. For example, with
a type for words W and booleans B we have that !W (!!B characterizes polynomial time
computation. However, because of the restrictions mentioned above some natural polynomial
time programs cannot be typed with the type !W (!!B. We say that this calculus has a
limited intensional expressivity. One goal of this paper is to try to lessen this problem, and
for that, we now present an enriched version of this calculus, sEAL, using the language s`T.
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3.2 Syntax and Type System for sEAL
Notation. Let us first give some notations on terms and vectors.

I Definition 10 (Applications). For an object with a notion of application M and an integer
n, we write MnM ′ to denote n applications of M to M ′. In particular, M0M ′ = M ′

We also define for a word w, given objects Ma for all letter a, MwM ′. This is defined by
induction on words with M εM ′ = M ′ and Maw′M ′ = Ma (Mw′M ′)

I Definition 11 (Vectors). In the following we will work with vectors of Nn+1, for n ∈
N. We introduce here some notations on those vectors. We usually denote vectors by
µ = (µ(0), . . . , µ(n)). When there is no ambiguity with the value of n, for 0 ≤ k ≤ n,
we note 1k the vector µ with µ(k) = 1 and ∀i, 0 ≤ i ≤ n, i 6= k, µ(i) = 0. We extend
this notation for k > n. In this case, 1k is the zero-vector. Let µ0 ∈ Nn+1 and µ1 ∈
Nm+1. We denote µ = (µ0, µ1) ∈ Nm+n+2 the vector with ∀i, 0 ≤ i ≤ n, µ(i) = µ0(i)
and ∀i, 0 ≤ i ≤ m,µ(i + n + 1) = µ1(i). Let µ0, µ1 ∈ Nn+1. We write µ0 ≤ µ1 when
∀i, 0 ≤ i ≤ n, µ0(i) ≤ µ1(i). And we write µ0 < µ1 when µ0 ≤ µ1 and µ0 6= µ1. We also
write µ0 ≤lex µ1 for the lexicographic order on vectors. For k ∈ N, when there is no ambiguity
with the value of n, we write k̃ the vector µ such that ∀i, 0 ≤ i ≤ n, µ(i) = k.

Terms and Reductions. Terms of sEAL are defined by the following grammar :
M := x | λx.M |M M ′ |!M | let !x = M in M ′ |M ⊗M ′ | let x⊗ y = M in M ′

| zero | succ(M) | ifn(M,M ′) | iter!
N (M,M ′) | tt | ff | if(M,M ′) | ε | s0(M) | s1(M)

| ifw(M0,M1,M) | iter!
W (M0,M1,M) | [λxn . . . x1.t](M1, . . . ,Mn)

Note that the t used in [λxn . . . x1.t](M1, . . . ,Mn) refers to terms defined in s`T. This
notation means that we call the function t defined in s`T with arguments M1, . . . ,Mn.
Moreover, n can be any integer, even 0. Constructors for iterations directly follow from the
ones we can define usually in EAL for Church integers or Church words, as we could see
in the previous section on EAL. Once again, we often write si to denote s0 or s1, and the
choice of the alphabet {0, 1} is arbitrary, we could have used any finite alphabet. As usual,
we work up to α-isomorphism and we do not explicit the renaming of variables.

I Definition 12 (Base type values). We note v for base type values, defined by the grammar
v := zero | succ(v) | ε | si(v) | tt | ff.

In particular, if n is an integer and w is a binary word, we note n for the base value
succn(zero), and w = w1 · · ·wn for the base value sw1(. . . swn(ε) . . . ). We define the size
|v| of v by |zero| = |ε| = |tt| = |ff| = 1 and |succ(v)| = |si(v)| = 1 + |v|.

Base reductions are defined by the rules given in Figure 4. Note that for some of these
rules, for example the last one, v can denote either the s`T term or the sEAL term.

Those reductions can be extended to any contexts, and so we have M → M ′ if there
is a context C and a base reduction M0 → M ′0 such that M = C(M0) and M ′ = C(M ′0).
However, the scope of those contexts does not allow context reduction in s`T. For reduction
in s`T, we use the last reduction rule.

Types. Types are usual types for intuitionistic linear logic enriched with some base types
for booleans, integers and words. Base types are given by the grammar : A := B | N |W.
Types are given by the grammar : T := A | T ( T ′ |!T | T ⊗ T ′

I Definition 13 (Contexts and Type System). Linear variables contexts are denoted Γ and
global variables contexts are denoted ∆. They are defined in the same way as in the previous
part on the EAL-calculus. Typing judgments have the usual shape of dual contexts judgments
π C Γ | ∆ `M : T . For such a proof π, and i ∈ N, we define a weight ωi(π) ∈ N.
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(λx.M) M ′ →M [M ′/x] let !x =!M in M ′ →M ′[M/x]
let x⊗ y = M ⊗M ′ in N → N [M/x][M ′/y] ifn(M,M ′) zero →M ′

ifn(M,M ′) succ(N) →M N iter!
N (!M, !M ′) n →!(Mn M ′)

ifw(M0,M1,M) ε →M ifw(M0,M1,M) si(N) →Mi N

iter!
W (!M0, !M1, !M ′) w →!(Mw M ′) if(M,M ′) tt →M

if(M,M ′) ff →M ′ if t→ t′ in s`T, [t]() → [t′]()
[λxn . . . x1.t](M1, . . . ,Mn−1, v) → [λxn−1 . . . x1.t[v/xn]](M1, . . . ,Mn−1)

[v]() → v

Figure 4 Base rules for sEAL.

πC
Γ, x : T | ∆ ` x : T µn(π) = 10

πC
Γ | ∆, x : T ` x : T µn(π) = 10

σ C Γ, x : T | ∆ `M : T ′
πC

Γ | ∆ ` λx.M : T ( T ′
µn(π) = µn(σ) + 10

σ C Γ | ∆ `M : T ′ ( T τ C Γ′ | ∆ `M ′ : T ′
πC

Γ,Γ′ | ∆ `M M ′ : T
µn(π) = µn(σ) + µn(τ) + 10

σ C ∅ | ∆ `M : T
πC

Γ | ∆′, [∆] `!M : !T
µn(π) = (1, µn−1(σ))

σ C Γ′ | ∆ `M : !T τ C Γ | ∆, x : [T ] `M ′ : T ′
πC

Γ,Γ′ | ∆ ` let !x = M in M ′ : T ′
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ | ∆ `M : T τ C Γ′ | ∆ `M ′ : T ′
πC

Γ,Γ′ | ∆ `M ⊗M ′ : T ⊗ T ′
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ′ | ∆ `M : T ⊗ T ′ τ C Γ, x : T, y : T ′ | ∆ `M ′ : T ′′
πC

Γ,Γ′ | ∆ ` let x⊗ y = M in M ′ : T ′′
µn(π) = µn(σ) + µn(τ) + 10

Figure 5 Type and measure for generic constructors in sEAL.

I Definition 14 (Measure and Depth). For all k, n ∈ N, we note µkn(π) = (ωk(π), . . . , ωn(π)),
with the convention that if k > n, then µkn(π) is the null-vector. We write µn(π) to denote
the vector µ0

n(π). In the definitions given in the type system, instead of defining ωi(π) for all
i, we define µn(π) for all n, from which one can recover the weights. We will often call µn(π)
the measure of the proof π. The depth of a proof (or a typed term) is the greatest integer i
such that ωi(π) 6= 0. It is always defined for any proof.

The idea behind the definition of measure is to show that with a reduction step, this
measure strictly decreases for the lexicographic order and we can control the growing of the
weights. The rules are given on Figures 5, 6 and 7, and the rules for words and booleans can
be found in the appendix 6.5.

The rules given in figure 5 represent the usual constructors in EAL. Those rules impose
some restrictions in the use of variables similar to the one described in the previous section
on classical EAL. Remark that the constructors for base types values such as zero and
succ given in Figure 6 influence the weight only in position 1 and not 0 like the others
constructors.

For the rule given by Figure 7, some explanations are necessary. The premise for t is
a proof τ in s`T. In this proof, we add on each base types Ai an index, more precisely an
index variable ai. There is here an abuse of notation, since in s`T there is no indexes on the
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πC
Γ | ∆ ` zero : N µn(π) = 11

σ C Γ | ∆ `M : N
πC

Γ | ∆ ` succ(M) : N
µn(π) = µn(σ) + 11

σ C Γ | ∆ `M : N ( T τ C Γ′ | ∆ `M ′ : T
πC

Γ,Γ′ | ∆ ` ifn(M,M ′) : N ( T
µn(π) = µn(σ) + µn(τ) + 10

σ C Γ | ∆ `M : !(T ( T ) τ C Γ′ | ∆ `M ′ : !T
πC

Γ,Γ′ | ∆ ` iter!
N (M,M ′) : N (!T

µn(π) = µn(σ) + µn(τ) + 10

Figure 6 Type and measure for constructors on integers in sEAL.

∀i, (1 ≤ i ≤ k), σi C Γi | ∆ ` Mi : Ai τ C x1 : Aa1
1 , . . . , xk : Aakk `s`T t : AI

πC
Γ,Γ1, . . . ,Γk | ∆ ` [λxk . . . x1.t](M1, . . . ,Mk) : A

µn(π) =
k∑
i=1

µn(σi) + k(d(ω(τ) + I) + 1) · 10 + ((ω(τ) + I)[1/b1] · · · [1/bl] + 1) · 11

where {b1, . . . , bl} = FV (ω(τ)) ∪ FV (I).

Figure 7 Typing rule and measure for the s`T call in sEAL.

boolean type B. So when Ai = B, we just do not put any index on the type B. The same
goes for the type A, if A is the boolean type B, then there is no index I, and we just replace
in the measure I by 1. The previous section gives us a weight ω(τ) for this proof in s`T. Let
us now comment on the definition of µn(π). The degrees of ω(τ) and I influence the weight
at position 0, and their values when all free variables are replaced by 1 influence the weight
at position 1. Having the degree at position 0 will allow us the replacement of the arguments
xi by their values given by Mi, and the measure at position 1 will allow us to bound the
number of reductions in s`T and the size of the output. Furthermore, when k = 0, the term
[t]() influences only the weight at position 1, as constructors for base types.

3.3 Example: Testing Satisfiability of a Propositional Formula
Some examples of sEAL terms, like towers of exponentials, can be found in the appendix
6.6. We sketch here the construction of a term for deciding the SAT problem. Some other
examples are given in the appendix, like testing the satisfiability of quantified boolean
formulas (QBFk) and deciding the subset-sum problem.

The term for SAT has type N⊗W (!B and given a formula on conjunctive normal form
encoded in the type N⊗W, it checks its satisfiability. The modality in front of the output !B
shows that we used a non-polynomial computation, or more precisely an iteration in EAL,
as expected of a term for satisfiability.

We encode formula in conjunctive normal form in the type N ⊗W, representing the
number of distinct variables in the formula and the encoding of the formula by a word on
the alphabet Σ = {0, 1,#, |}. A literal is represented by the number of the corresponding
variable written in binary and the first bit determines if the literal is positive or negative.
Then # and | are used as separator for literals and clauses.

For example, the formula (x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x1) ∧ (x2 ∨ x0 ∨ x3) is represented
by 4⊗ |#11#10#110|#111#00#01|#010#10#011

Intermediate terms in s`T. For the sake of simplicity, we sometimes omit to describe all
terms in ifw or iterw , especially for the letters # and |, when they are not important.
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First, we can easily define a term occa : WI ( NI that gives the number of occurrences of
a ∈ Σ in a word. In the appendix 6.3, some important terms are defined. We have a term
Cbinarytounary : NI ( WJ ( NI such that Cbinarytounary n w computes the minimum
between n and the unary representation of the binary integer w. We also have a term that
gives the nth bit (from right) of a binary word as a boolean nth : WI ( NI ( B. And
finally, we have a term Extracta : WI ( WI ⊗WI that separates a word w = w0aw1 in
w0 ⊗ w1 such that w1 does not contain any a. This function will allow us to extract the last
clause/literal of a word representing a formula.

A valuation is represented by a binary word with a length equal to the number of variable,
such that the nth bit of the word represents the boolean associated to the nth variable.

We define a term ClausetoBool : NI ( WJ ( WK ( B such that, given the number of
variables, a valuation and a word representing a clause, this term outputs the truth value of
this clause using the valuation.
ClausetoBool = λn,wv, wc. let w ⊗ b = itern(λw′ ⊗ b′.let w0 ⊗ w1 = Extract# w′ in
w0 ⊗ (or b′ (LittoBool n wv w1)), wc ⊗ ff) (occ#wc) in b

With LittoBool : NI ( WJ ( WK ( B converting a literal into the boolean given by
the valuation : LittoBool = λn,wv, wl.ifw(λw′.nth wv (Cbinarytounary n w′),
λw′.not (nth wv (Cbinarytounary n w′)), ff) wl.

With this we can check if a clause is true given a certain valuation. We can define in the
same way a term FormulatoBool : NI ( WJ ( WK ( B.

Testing all different valuations. Now all we have to do is to test this term with all possible
valuations. If n is the number of variables, all possible valuations are described by all the
binary integer from 0 to 2n − 1. Then we only need to use the iterator in s`Twith base
type-inputs in order to check if one valuation satisfies the formula. We use a constructor for
iteration defined in the appendix 6.3 : REC(V, t) n→∗ V n− 1 (V n− 2 (. . . (V zero t) . . . )).
We can then give the term for SAT :
SAT = λn⊗ w.let !r = iter!

N (!(λn0 ⊗ n1.succ(n0)⊗ [double](n1)), !(0⊗ 1)) n in
let !wf = coerc w in !(let n⊗ exp = r in [λn, exp,wf .
REC(λval, b.or b (FormulatoBool n (Cunarytobinary n val) wf ), ff) exp](n, exp,wf )).

The first iteration computes both 2n and a copy of n. This technique is important as it
shows that the linearity of EAL for base variables is not too constraining for the iteration. In
the last line the term is a big “or” on the term FormulatoBool applied to different valuations.
And with that we have SAT : N⊗W (!B.

3.4 Subject Reduction and Measure

In this section, we show that we can bound the number of reduction steps of a typed term
using the measure. This is done by showing that a reduction preserves some properties
on the measure, and then give an explicit integer bound that will strictly decrease after a
reduction. This proof uses the same logic as the one from [24]. The relation R defined in the
following is a generalization of the usual requirements exposed in elementary linear logic in
order to control reductions.

Let us first express substitution lemmas for sEAL. There are 3 cases to consider, linear
variables and discharged and non-discharged global variables.

I Lemma 15 (Linear Substitution). If πCΓ1, x : T ′ | ∆ `M : T and σCΓ2 | ∆ `M ′ : T ′ then
we have a proof π′CΓ1,Γ2 | ∆ `M [M ′/x] : T . Moreover, for all n, µn(π′) ≤ µn(π) +µn(σ).
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The proof comes from the fact that rules are multiplicative for Γ, and so x only appears
in one of the premises for each rule. Thus the proof σ is used only once in the new proof π′.

I Lemma 16 (General substitution). If π C Γ | ∆, x : T ′ ` M : T and σ C ∅ | ∆ ` M ′ : T ′
and the number of occurrences of x in M is less than K, then we have a proof π′ C Γ | ∆ `
M [M ′/x] : T . Moreover, for all n, µn(π′) ≤ µn(π) +K · µn(σ).

This time, the non-linearity of the variable x induces a duplication of the proof σ, that’s
why the measure µn(σ) is also duplicated.

I Lemma 17 (Discharged substitution lemma). If π C Γ | ∆′, [∆], x : [T ′] ` M : T and
σ C ∅ | ∆ `M ′ : T ′ then we have a proof π′ C Γ | ∆′, [∆] `M [M ′/x] : T . Moreover, for all
n, µn(π′) ≤ (ω0(π), (µ1

n(π) + ω1(π) · µn−1(σ))).

The proof of this lemma relies directly on the previous one. Indeed, a variable with a
discharged type can be used only after crossing a (!-Intro) rule, and then the upper bound
on µn(π′) comes from the previous lemma since the number of occurrences of x in M is less
than ω1(π).

Then, let us give two important definition, tα and R, in order to derive the upper bound
on the number of reduction in sEAL.

I Definition 18 (tα). We define a family of tower functions tα(x1, . . . , xn) on vectors of
integers by induction on n, where we assume α ≥ 1 and xi ≥ 2 for all i :

tα() = 0 and tα(x1, . . . , xn) = (α · xn)2tα(x1,...,xn−1) for n ≥ 1

I Definition 19 (R). We define a relation on vectors denoted R. Intuitively, we want
R(µ, µ′) to express the fact that a proof of measure µ has been reduced to a proof of measure
µ′. Let µ, µ′ ∈ Nn+1. We have R(µ, µ′) if and only if :
1. µ ≥ 2̃ and µ′ ≥ 2̃.
2. µ′ <lex µ. Thus, we write µ = (ω0, . . . , ωn) and µ′ = (ω0, . . . , ωi0−1, ω

′
i0
, . . . , ω′n), with

ωi0 > ω′i0 .
3. There exists d ∈ N, 1 ≤ d ≤ (ωi0 − ω′i0) such that ∀j > i0, ω

′
j ≤ ωj · (ωi0+1)d−1

The first condition with 2̃, that can also be seen in the definition of tα, makes calculation
easier, since with this condition, exponentials and multiplications conserve the strict order
between integers. This does not harm the proof, since we can simply add 2̃ to each vector
we will consider. We can then connect those two definitions :

I Theorem 20. Let µ, µ′ ∈ Nn+1 and α ≥ n, α ≥ 1. If R(µ, µ′) then tα(µ′) < tα(µ)

It shows that if we want to ensure that a certain integer defined with tα strictly decreases
for a reduction, it is sufficient to work with the relation R.

We can now state the subject reduction of sEAL and we show that the measure allows
us to construct a bound on the number of reductions.

I Theorem 21. Let τ C Γ | ∆ ` M0 : T and M0 → M1. Let α be an integer equal
or greater than the depth of τ . Then there is a proof τ ′ C Γ | ∆ ` M1 : T such that
R(µα(τ) + 2̃, µα(τ ′) + 2̃). Moreover, the depth of τ ′ is smaller than the depth of τ .

The proof uses the substitution lemma for reductions in which substitution appears, and
for the others constructors, one can see that the measure given in the type system for sEAL is
following this idea of the relation R, e.g., in the reduction [λxn . . . x1.t](M1, . . . ,Mn−1, v)
→ [λxn−1 . . . x1.t[v/xn]](M1, . . . ,Mn−1) , the degree that appears at position 0 is here to
compensate the growing of the measure at position 1. Now using the previous results, we
can easily conclude our bound on the number of reductions.
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I Theorem 22. Let π C Γ | ∆ `M : T . Denote α = max(depth(π), 1), then tα(µα(π) + 2̃)
is a bound on the number of reductions from M .

4 Complexity Results: Characterization of 2k-EXP and 2k-FEXP

Now that we have proved the preceding theorem, we have obtained a bound on the number of
reduction steps from a term. More precisely, this bound shows that between two consecutive
weights ωi+1 and ωi, there is a difference of 2 in the height of the tower of exponentials. This
will allow us to give a characterization of the classes 2k-EXP for k ≥ 0, and each modality “!”
in the type of a term will induce a difference of 2 in the height of the tower of exponentials.
With exactly the same method, we also have a characterization of the classes 2k-FEXP for
k ≥ 0.

Restricted Reductions and Values. First, we show that the precedent bound on the number
of reductions in Theorem 22 can be improved. Indeed, if we restrict the possible reductions,
we obtain a more precise bound.

I Definition 23 (Reductions up to a Certain Depth). For i ∈ N, we define the i-reductions,
that we note →i :
∀i ≥ 1, [t]()→i [t′]() if t→ t′ in s`T. Moreover, [v]()→i v
For the other base reductions M →M ′, we have ∀i ∈ N,M →i M

′

For all i ∈ N, if M →i M
′ then !M →i+1!M ′

For all others constructors, the index i stays the same. For example for the application,
we have for all i ∈ N, if M →i M

′ then M N →i M
′ N .

Now, we can find a more precise measure to bound the number of i-reductions. The proof is
very similar to the proof of theorem 21 and 22.

I Lemma 24. Let i ∈ N, τ C Γ | ∆ ` M0 : T and M0 →i M1. Then there is a proof
τ ′ C Γ | ∆ `M1 : T such that R(µi(τ) + 2̃, µi(τ ′) + 2̃)

I Theorem 25. Let π C Γ | ∆ `M : T and α = max(i, 1). Then tα(µi(π) + 2̃) is a bound
on the number of i-reductions from M .

I Definition 26 (Values Associated to Restricted Reductions). We give the form of closed
normal terms for i-reductions. For that, we define for all i ∈ N, closed i-values V i by the
following grammar :

V 0 := M

∀i ≥ 1, V i := λx.M |!V i−1 | V i0 ⊗ V i1 | zero | succ(V i) | ifn(V i0 , V i1 ) | iter!
N (V i0 , V i1 ) |

tt | ff | if(V i0 , V i1 ) | ε | si(V i) | ifw(V i0 , V i1 , V i2 ) | iter!
W (V i0 , V i1 , V i2 ).

We can then prove the following lemma:

I Lemma 27. Let M be a term. If M is closed and has a typing derivation then, for all
i ∈ N, if M is normal for i-reductions then M is a i-value V i.

The proof can be found in [7]. From the previous results, we now have that, from a typed
term M , we can reach the normal form for i-reductions for M in less than ti(µi(π) + 2̃)
reductions, and this form is an i-value.
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A Characterization of 2k-EXP. Now, we sketch how the type !W (!k+1B can characterize
the class 2k-EXP for k ≥ 0. Recall that 2xk is defined by 2x0 = x and 2xk+1 = 22xk . The class
k-EXP is the class of problem solvable by a Turing machine that works in time 2p(n)

k on an
entry of size n, where p is a polynomial. First we show that the number of reductions for
such a term is bounded by a tower of exponentials of height 2k.

I Lemma 28. Let π C · | · ` t :!W (!k+1B. Let w be a word of size |w|. We can compute
the result of t !w in less than a 2k-exponential tower in the size of w.

Observe that the result of this computation is of type !k+1B, and a (k + 2)-value of type
!k+1B is exactly of the form !k+1tt or !k+1ff. So it is enough to only consider (k+2)-reductions
to compute the result, by lemma 27. The measure µn of t !w is µn = µn(π) + 2 ·10 + |w| ·12.
By theorem 25, we can bound the number of reductions from t !w by tk+2(µk+2 + 2̃). By
definition, in tk+2(µk+2 + 2̃), we can see that the weight at position 2, where the size of w
appears, is at height 2k. This concludes the proof of lemma 28.
Now we have to prove that we can simulate a Turing-machine in our calculus. This proof
is usual in implicit complexity [5, 2]. A sketch of this proof can be found in the appendix,
section 6.7. With this, using the lemma 28, we obtain the following theorem

I Theorem 29. Terms of type !W (!k+1B characterize the class 2k-EXP.

As explained previously, this theorem can be expanded for the classes 2k-FEXP, that
is the class of function from words to words that can be computed by a one-tape Turing
machine running with a time at most 2p(|w|)

2k on a word w. For a more precise definitions of
such classes, see [5]. This characterization uses the same proof by replacing !W (!k+1B by
!W (!k+1W.

Moreover, in EAL, we can characterize k-EXP with the type !W (!k+1B. The difference
with sEAL can be explained by the fact that in EAL, in the type N ( N we only have
polynomials of degree 1 (polynomials in general have the type !N (!N), whereas in our case,
polynomials have the type N ( N.

5 Conclusion

We believe that our main contribution is to define a new methodology to combine size-based
and level-based type systems, which we have illustrated here with the example of s`T and
EAL, but we think is of more general interest. In the present particular setting of sEAL we
can wonder which enrichment we can add to EAL while keeping the properties, for instance:
new data-types (lists, trees), the possibility to freely duplicate base types . . .We should also
investigate type inference techniques, by drawing inspiration from linear dependent types
[11, 3] and EAL [8]. But more importantly we would like to explore to which other systems
we could apply this methodology:

First can we define a similar system in which we could move up one level of ! and stay
in polynomial time? We conjecture that this could be obtained with EAL but replacing
s`T with a system of indexes of degree at most 1, instead of polynomial indexes. In
this case we believe that the type !W (!!B would correspond to PTIME. An alternative
choice could be to use a Non-size-increasing types system [19] instead of s`T.
Can we define a system in which all levels stay in FPTIME? Beside the condition on
indexes (degree at most 1) we would also need for that purpose to replace EAL with
another level-based system. Light linear logic [15] is a natural candidate, but we would
need to find a measure-based argument for its complexity bound, which is a challenging
objective.
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6 Appendix

6.1 Type System for Words and boolean in s`T

πC
Γ ` ε : WI ω(π) = 0

σ C Γ ` t : WJ J + 1 ≤ I
πC

Γ ` si(t) : WI
ω(π) = ω(σ)

σ1 C Γ1, dΓ ` t1 : WI ( D

σ0 C Γ0, dΓ ` t0 : WI ( D σ C Γ, dΓ ` t′ : D
πC

Γ0,Γ1,Γ, dΓ ` ifw(t0, t1, t′) : WI ( D

ω(π) = ω(σ1) + ω(σ0) + ω(σ) + 1

D @ E E @ E[a+ 1/a]
σ1 C dΓ ` V1 : D ( D[a+ 1/a]
σ0 C dΓ ` V0 : D ( D[a+ 1/a]

E[I/a] @ F

σ C Γ, dΓ ` t : D[1/a]
πC

Γ, dΓ ` iterw(V0, V1, t) : NI ( F

ω(π) = I + ω(σ) + I · (ω(σ1) + ω(σ0))[I/a]

πC
Γ ` tt(or ff) : B ω(π) = 0

σ1 C Γ1, dΓ ` t : D σ2 C Γ2, dΓ ` t′ : D
πC

Γ1,Γ2, dΓ ` if(t, t′) : B ( D
ω(π) = ω(σ1) + ω(σ2) + 1

6.2 Some Intermediate Lemmas for the Subject Reduction
Index Variable Substitution and Subtyping. We give some intermediate lemmas in order
to prove the subject reduction theorem. Some intuition and more detailed proofs can be
found in the technical report [7]

I Lemma 30 (Weakening). Let ∆,Γ be disjoint typing contexts, and π C Γ ` t : D then we
have a proof π′ C Γ,∆ ` t : D with ω(π) = ω(π′).

I Lemma 31 (Index substitution). Let I be an index.
1. Let J1, J2 be indexes such that J1 ≤ J2 then J1[I/a] ≤ J2[I/a]
2. Let D,D′ be types such that D @ D′ then D[I/a] @ D′[I/a]
3. If π C Γ ` t : D then π[I/a] C Γ[I/a] ` t : D[I/a]
4. ω(π[I/a]) = ω(π)[I/a]
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I Lemma 32 (Monotonic index substitution). Take J1, J2 such that J1 ≤ J2.
1. Let I be an index, then I[J1/a] ≤ I[J2/a].
2. For any proof π, ω(π[J1/a]) ≤ ω(π[J2/a]).
3. Let E be a type. If E @ E[a+ 1/a] then E[J1/a] @ E[J2/a] and if E[a+ 1/a] @ E then

E[J2/a] @ E[J1/a]

I Lemma 33. If πC Γ, dΓ ` V : U then we have a proof π′ C dΓ ` V : U with ω(π) = ω(π′).
Moreover, ω(π′) ≤ 1.

Term Substitution Lemma. In order to prove the subject reduction of the calculus, we
explicit what happens during a substitution of a value in a term. There are two cases, first
the substitution of variables with base types, that is to say duplicable variables, and then the
substitution of variables with a non-base type for which the type system imposes linearity.

I Lemma 34 (Value Substitution). If π C Γ1, dΓ, x : D′ ` t : D and σ C Γ2, dΓ ` V : D′ then
we have a proof π′CΓ1,Γ2, dΓ ` t[V/x] : D. Moreover, if D′ is a base type then ω(π′) ≤ ω(π).
Otherwise, ω(π′) ≤ ω(π) + ω(σ).

This is proved by induction on π. For the base type case, we use lemma 33 to show that
Γ2 can be ignored, and then as dΓ is duplicable, the proof is rather direct. For the non-base
case, in multiplicative rules such as application and if , the property holds by the fact that x
only appears in one of the premises, and so ω(σ) appears only once in the total weight.

6.3 Examples in s`T
Reverse of a word, and mirror iterator. We can compute the reverse of a word (a0a1 . . . an
7→ an . . . a1a0) with the term rev = iterw(λw.s0(w), λw.s1(w), ε) : WI ( WI .

Now we define ITERW (V0, V1, t) = λw.(iterw(V0, V1, t)(rev w) that is the iterator on
words with the right order (ITERW (V0, V1, t) si1(si2(. . . sin(ε) . . . ))→∗ Vi1(Vi2(. . . Vin(t) . . . )).
The typing rule we can make for this constructor is exactly the same as the one for iterw.

Iterator with base type argument. We show that for integers we can construct a term
REC(V, t) such that REC(V, t) n→∗ V n− 1 (V n− 2 (. . . (V zero t) . . . )).
REC(V, t) = λn.let x⊗ y = (itern(λr ⊗ n′.(V n′r)⊗ succ(n′), t⊗ zero) n) in x

We can give this constructor a typing rule close to the one for the iteration, with an
additional argument in the step term of type Na. This constructor can also be defined for
words.

Addition for unary words. The addition can be written in s`T. We give a sketch of the
proof tree.

NI+a @ NI+a

x : NI , y : NI+a ` y : NI+a I + a+ 1 ≤ I + a+ 1
x : NI , y : NI+a ` succ(y) : NI+a+1

x : NI ` λy.succ(y) : NI+a ( NI+a[a+ 1/a] . . .
x : NI ` itern(λy.succ(y), x) : NJ ( NI+J

πadd(I, J)C
· ` λx.itern(λy.succ(y), x) : NI ( NJ ( NI+J

add = λx.itern(λy.succ(y), x), πadd(I, J) C · ` add : NI ( NJ ( NI+J . And
the rules give us, for two integers n and m, add n m → itern(λy.succ(y), n) m →∗
(λy.succ(y))m n→∗ n+m. The weight of this term is ωadd(I, J) = 1+J+1+J ·(1+1)[J/a] =
3J + 2
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Addition on binary integers. Now, we define some terms working on integers written in
binary, with type WI . First, we define an addition on binary integers in s`T with a control
on the number of bits. More precisely, we give a term Cadd : NI ( WJ1 ( WJ2 ( WI such
that Cadd n w1 w2 outputs the least significant n bits of the sum w1 + w2. For example,
Cadd 3 101 110 = 011, and Cadd 5 101 110 = 01011. This will usually be used with a n
greater than the expected number of bits, the idea being that those extra 0 can be useful for
some other programs. The term follows the usual idea for addition: the result is computed
bit by bit, and we keep track of the carry. For simplification, we do not give an explicit term
but we show that we have to use conditionals and work on each cases one by one.
Cadd = λn,w1, w2. let c′ ⊗ r′ ⊗ w′1 ⊗ w′2 = itern(λc⊗ r ⊗ w ⊗ w′. match c, w,w′ with
(ff, ε, ε) 7→ ff⊗s0(r)⊗ε⊗ε | . . . | (tt, s1(v), s1(v′)) 7→ tt⊗s1(r)⊗v⊗v′, ff⊗ε⊗ (rev w1)⊗
(rev w2)) n in r.

For the typing of this term, we use in the iteration the type B⊗Wa ⊗WJ1 ⊗WJ2 , with c
representing the carry, r the current result, and w,w′ the binary integers that we read from
right to left.

Unary integers to binary integers. We define a term Cunarytobinary : NI ( NJ ( WI

such that on the input n, n′, this term computes the least n significant bit of the representation
of n′ in binary : Cunarytobinary = λn.itern(λw.Cadd n w (s1(ε)), Cadd n ε ε)

Binary integers to unary integers. We would like a way to compute the unary integer for
a given binary integer. However, this function is exponential in the size of its input, so it
is impossible to write such a function in s`T. Nevertheless, given an additional information
bounding the size of this unary word, we can give a term Cbinarytounary : NI ( WJ ( NI
such that on an input n,w this term computes the minimum between n and the unary
representation of w. First we describe a term min : NI ( NJ ( NI . min = λn, n′.let r0 ⊗
n0 = (itern(λr1 ⊗ n1.ifn(λp.succ(r1)⊗ p, r1 ⊗ zero) n1, zero⊗ n′) n) in r0

In order to type this term, we use in the iteration the type Na ⊗ NJ . Remark that this
term allows us to erase the index J . Now that we have this term, we can define the following
term Cbinarytounary = λn.iterw(λn′.min n (mult n′ 2), λn′.min n succ(mult n′ 2), zero)

Some examples on words. We can define a term that gives the nth bit (from right) of a
binary word as a boolean :
nth = λw, n.ifw(λw′.ff, λw′.tt, ff) ((itern(pred, rev w)) n) : WI ( NI ( B, with
pred : WI ( WI = ifw(λw.w, λw.w, ε).

We can also define a term of type WI ( WI ⊗WI that separates a word w = w0aw1 in
w0 ⊗ w1 such that w1 does not contain any a.
Extracta = λw.let b′ ⊗ w′0 ⊗ w′1 = ITERW (V0, V1, V#, V|, Vε) w in w′0 ⊗ w′1

with Va = λb⊗ w0 ⊗ w1.if(tt⊗ sa(w0)⊗ w1, tt⊗ w0 ⊗ w1) b
∀c 6= a, Vc = λb⊗ w0 ⊗ w1.if(tt⊗ sc(w0)⊗ w1, ff⊗ w0 ⊗ sc(w1)) b
Vε = ff ⊗ ε⊗ ε
For the intuition on this term, the boolean b′ used in the iteration is a boolean that

indicates if we have already read the letter “a” previously.

States. A state is a tensor of boolean for which we can have a match case. More precisely,
for n ∈ N∗, we define by induction the type Bn = B ⊗ Bn−1 with B1 = B. Bn describes
states of size n. In the following, we will ignore the term for the associativity of the tensor.
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In order to precise the decomposition, we will note let xD ⊗ yD′ = t in t′ to explicit the
decomposition when it is ambiguous.

There are 2n base states of size n, given by the 2n possibilities of associating n times tt or
ff. Moreover, there is a constructor to do a match-case on those states, casen(t0n , . . . , t1n).
We will consider in order to simplify the notations that those indexes are the integers from 0
to 2n − 1 written in binary, with 1 referring to tt. We define it by induction, and give the
typing.

For n = 1, case1(t0, t1) = if(t1, t0) and for n ≥ 0 :
casen+1(t0n+1 , . . . , t1n+1) = λs.let s′Bn⊗xB = s in casen(t′0n , . . . , t′1n) s′ with, for all boolean
word i, t′i = if(ti1, ti0) x.

With this definition, by noting i = b1 · · · bn the state and the boolean word, we have
casen(t0n , . . . , t1n) (b1 · · · bn)→∗ casen−1(t0n−1bn , . . . t1n−1bn) (b1 · · · bn−1)→∗ ti

Moreover, we can deduce this rule:
∀i, 0 ≤ i ≤ 2n − 1,Γi, dΓ ` ti : D

Γ0, . . . ,Γ2n−1, dΓ ` casen(t0, . . . , t2n−1) : Bn ( D

6.4 Adding Polynomial Time Functions in EAL
Here we explain very informally how we can add polynomial time functions in the calculus
defined in [24], keeping the same kind of proof relying on the measure.

Suppose given a function f from integers to integers. We define a new constructor f in
the classical EAL-calculus, and a new reduction rule f n→ f(n), saying that f applied to
the encoding of the integer n is reduced to the encoding of the integer f(n). We add a cost
to this reduction, depending on the integer n, that we call Cf (n). We give a typing rule for
this constructor, f has type N ( N.

If this function f is a polynomial time computable function, we can bound the cost
function Cf (n) by a polynomial function (n+ 2)d for a certain d, and we can also bound the
size of f(n) by the cost, and so f(n) ≤ (n + 2)d. Now if we look at the reduction rule, if
we call µ(f) the measure for f , we go from µ(f) + (1, n+ 1) to (0, (n+ 2)d), if we want to
take in consideration the cost, we can add it in the measure, and suppose that in the right
part of the reduction we have the measure (0, 2(n+ 2)d). Now, see that if µ(f) = (d, 1), this
reduction follows the relation R defined in section 3, and with that we can deduce that this
construction works with the measure.

6.5 Type System for Words and Boolean in sEAL

πC
Γ | ∆ ` ε : W µn(π) = 11

σ C Γ | ∆ `M : W
πC

Γ | ∆ ` si(M) : W
µn(π) = µn(σ) + 11

σ1 C Γ1 | ∆ `M1 : W ( T

σ0 C Γ0 | ∆ `M0 : W ( T σ C Γ | ∆ `M ′ : T
πC

Γ0,Γ1,Γ | ∆ ` ifw(M0,M1,M
′) : W ( T

µn(π) = µn(σ0) + µn(σ1) + µn(σ) + 10

σ1 C Γ1 | ∆ `M1 : !(T ( T )
σ0 C Γ0 | ∆ `M0 : !(T ( T ) σ C Γ | ∆ `M : !T

πC
Γ0,Γ1,Γ | ∆ ` iter!

W (M0,M1,M) : W (!T
µn(π) = µn(σ0) + µn(σ1) + µn(σ) + 10

πC
Γ | ∆ ` tt(or ff) : B µn(π) = 11

σ C Γ | ∆ `M : T τ C Γ′ | ∆ `M ′ : T
πC

Γ,Γ′ | ∆ ` if(M,M ′) : B ( T
µn(π) = µn(σ) + µn(τ) + 10
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6.6 Examples in sEAL
We give some examples of terms in sEAL, first some terms we can usually see for the
elementary affine logic, and then we give the term for computing tower of exponentials.

Some general results and notations on sEAL.
For base types A we have the coercion A(!A. For example, for words, this is given by
the term coercw = iter!

W (!(λw′.s0(w′)), !(λw′.s1(w′)), !ε), with coercw w →∗ !w
We write λx⊗ y.M for the term λc.let x⊗ y = c in M .

Polynomials and Tower of Exponentials in sEAL Recall that we defined polynomials in
s`T. With this we can define polynomials in EAL with type N ( N using the s`T call.
Moreover, using the iteration in EAL, we can define a tower of exponential.

We can compute the function k 7→ 22k in sEAL with type N (!N

n : N | · ` n : N x1 : Na1 `s`T mult x1 x1 : Na1·a1

n : N | · ` [λx1.mult x1 x1](n) : N
· | · ` λn.[λx1.mult x1 x1](n) : N ( N
· | · `!(λn.[λx1.mult x1 x1](n)) :!(N ( N) · | · `!2 :!N
· | · ` exp = iter!

N (!λn.[λx1.mult x1 x1](n), !2) : N (!N

With iter!
N (!λn.[λx1.mult x1 x1](n), !2) k →∗!((λn.[λx1.mult x1 x1](n))k 2)→∗!(22k).

For an example of measure, for the subproof
π C · | · ` λn.[λx1.mult x1 x1](n) : N ( N, we have depth(π) = 1 and as the weight for
σ C x1 : Na1 `s`T mult x1 x1 : Na1·a1 is ω(σ) = 4 + a1 + 3a3

1, we can deduce
µ(π) = (1 + 1 + 1 · (d(ω(σ) + a1 · a1) + 1), 1 + (ω(σ) + a1 · a1)[1/a1]) = (6, 10)

If we define, 2x0 = x and 2xk+1 = 22xk , with the use of polynomials, we can represent the
function n 7→ 2P (n)

2k for all k ≥ 0 and polynomial P with a term of type N (!kN.
Some other big examples, such as QBFk and the SUBSET_SUM problem can be found

in the technical report [7]

6.7 Simulation of a Turing Machine in sEAL
The first thing we prove is the existence of a term in s`T to simulate n steps of a deterministic
Turing-machine on a word w. We give here the intuition of the encoding, and a more detailed
explanation on how to work with this encoding can be found in the technical report [7].

Suppose given two variables w : Waw and n : Nan , we note Confb the type Waw+b ⊗ B⊗
Waw+b ⊗ Bq, with q an integer and Bq being q tensors of booleans. This type represents a
configuration on a Turing machine after b steps, with Bq coding the state, and then w0⊗b⊗w1
represents the tape, with b being the position of the head, w0 represents the reverse of the
word before b, and w1 represents the word after b. We can then define multiple term in
s`T with this encoding. First we have a term init such that w : Waw , n : Nan ` init : Conf1
and init computes the initial configuration of the Turing machine. Then, we have a term step

with · ` step : Confb ( Confb+1 that computes the result of the transition function from a
configuration to the next one, and finally we have a term final with · ` final : Confb ( B
verifying if the final configuration is accepted or not. Now that we have that, if we can
compute an integer n bounding the number of steps of a Turing-machine on an entry w, then
we can effectively simulate the Turing-machine in our calculus using a s`T call. The height
of the tower of exponential we can compute in this calculus is closely linked to the difference
of ! modalities between the input and the output. You can see this with the examples in the
appendix 6.6. This shows that, by using a ! modality, we can increase the integer n we can
compute and thus increase the working time of the Turing-machine we want to simulate.

CSL 2018


	Introduction
	Presentation of s ell T and Control of the Reduction Procedure
	Syntax of s ell T and Type System
	Subject Reduction and Upper Bound

	Elementary Affine Logic and Sizes
	An EAL-Calculus
	Syntax and Type System for sEAL
	Example: Testing Satisfiability of a Propositional Formula
	Subject Reduction and Measure

	Complexity Results: Characterization of 2k-EXP and 2k-FEXP
	Conclusion
	Appendix
	Type System for Words and boolean in s ell T
	Some Intermediate Lemmas for the Subject Reduction
	Examples in s ell T
	Adding Polynomial Time Functions in EAL
	Type System for Words and Boolean in sEAL
	Examples in sEAL
	Simulation of a Turing Machine in sEAL


