
Algebraic Operators for Processing Sets of
Temporal Intervals in Relational Databases
Andreas Dohr
University of Bonn, Institute of Computer Science III, Germany
andreas.dohr@uni-bonn.de

Christiane Engels
University of Bonn, Institute of Computer Science III, Germany
engelsc@cs.uni-bonn.de

Andreas Behrend
University of Bonn, Institute of Computer Science III, Germany
behrend@cs.uni-bonn.de

Abstract
The efficient management of temporal data has become increasingly important for many database
applications. Most commercial systems already allow the management of temporal data but the
operational support for processing this data is still rather limited. One particular reason is
that many extension proposals typically require considerable modifications of the underlying
database engine. In this paper, we propose a lightweight solution where temporal operators
are realized using a library of user-defined functions. This way the complexity of temporal
queries can be drastically reduced leading to more readable and less error-prone code without
touching the database system. Our experiments show that the proposed operators significantly
outperform temporal queries formulated in pure SQL. In addition, we investigate the possibility
to incorporate algebraic optimization strategies directly into our operator definitions which allow
for further performance improvements.

2012 ACM Subject Classification Information systems → Database management system en-
gines, Information systems → Information systems applications

Keywords and phrases Temporal Databases, Relational Operators, Situation Calculus

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.11

1 Introduction

The support for temporal data is continuously extended by almost every commercial database
system reflecting its importance for many practical applications. Today’s systems typically
provide an automated version control of the data and mechanisms for fast history access
known as time travel. However, many temporal operations are still implemented within the
application layer because database systems offer no comprehensive support for efficiently
performing operations over temporal data, yet. In particular, the fact that temporal data is
usually represented by means of temporal intervals rather than single time points is usually
neglected and no specific data type like period nor operator support is provided in standard
SQL. Consequently, the task of processing sets of temporal intervals has to be realized by
complex low-level SQL queries or is simply left to tools or applications outside the database.

For querying temporal intervals, the sequenced semantics seems to be the most natural
choice [6]. Formulating sequenced statements over this data in standard SQL, however,
often leads to very complex expressions [9] which are difficult to maintain and can hardly be
optimized by the database system.

© Andreas Dohr, Christiane Engels, and Andreas Behrend;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.dohr@uni-bonn.de
mailto:engelsc@cs.uni-bonn.de
mailto:behrend@cs.uni-bonn.de
https://doi.org/10.4230/LIPIcs.TIME.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Algebraic Operators for Temporal Intervals

As an example, we consider an air traffic scenario in which various events (e.g. changes
of altitude, speed, and heading of an aircraft) are continuously monitored and stored in a
database. If we are interested in the time interval during which a plane was in cruising mode
but did not perform a maneuver, various subintervals have to be computed as a cruising
period may coincide with several maneuver periods. The inherent complexity of the reasoning
becomes even more apparent as soon as more than two conditions are compared this way.
This is due to the fact that all possible sequences of time points have to be covered by the
respective database query as the systems basically support an event-based calculus, only.
Still missing is the possibility to generate sets of input intervals which are processed by
set-oriented operators within the FROM clause. To this end, TABLE functions can be used
which allow for modeling the required many-to-many mapping. As an example, the following
query detects cruising phases without maneuvering for flights operated by Lufthansa using
the table function TDIFF:

SELECT Start,End FROM TABLE (TDIFF(vw_LHcruising,vw_LHmaneuvering)) Period;

The complexity of the query is drastically reduced as all time point comparisons are hidden
in the table function which accesses two views containing cruising and maneuvering phases
of Lufthansa flights, respectively.

In this paper, we discuss the development of a library of such temporal operators which
form the basis for realizing a situation calculus inside a temporal database system. In
particular, our contributions are as follows:

We introduce formal definitions of the most important operators like TUNION, TDIFF,
TSECT, THULL, TCOMPL, or TCROP in a systematic way.
We show the possibility of optimizing sequences of temporal operators similar to algebraic
optimization rules for relational expressions.
We provide an evaluation of various implementation alternatives for temporal operators
showing the feasibility of our proposal.

The paper is organized as follows: After discussing related work in Section 2 we specify a set
of temporal operators and corresponding algebraic optimization rules in Sections 3 and 4.
Different implementations of two selected temporal operators are discussed in Section 5 and
evaluated in Section 6. Finally, we draw a conclusions in Section 7.

2 Related Work

Our work is motivated by the general idea of supporting situation awareness inside a database
system [13]. The workspace manager of Oracle provides the well-known relationship operators
proposed by Allen [2] which can be employed for this purpose. When querying a history
of situations, however, the comparison of sets of intervals is often needed, and Allen’s
operators are not suited anymore [4]. The lack of database support for monitoring the
temporal development of data led to specialized systems such as moving object, data stream
or complex event processing (CEP) systems. Especially CEP appeared to be well-suited for
handling the dynamics of an application. While the employed event-based calculus is useful
for general temporal reasoning over discrete changes, it is not well-suited for modeling the
continuous changes between domain-specific situations represented as anchored temporal
intervals. Even CEP systems with a richer data model for temporal abstractions such as
Microsoft’s StreamInsight [1], Naiad [17] or SEEP [12] are limited with respect to processing
sets of temporal intervals.

As an alternative approach, operational support for processing sets of temporal intervals
has been proposed in [9], [10]. In these works the authors propose to reduce a temporal
operator to its nontemporal counterpart by using two primitives, the temporal normalizer

A. Dohr, C. Engels, and A. Behrend 11:3

for group based operators (e.g. projection, aggregation, union) and the temporal aligner for
tuple based operators (product, joins). This represents an elegant generic approach and even
provides the possibility to use the DBMS optimizer for the resulting nontemporal expressions.
However, rewriting temporal operators this way leads to unspecialized versions which perform
mostly not as efficient as the more specialized table functions proposed in this work. In
addition, several extensions to a relational DBMS kernel have to be implemented in order
to use these temporal features which is problematic for proprietary DBMS. No support for
temporal operations in non-sequenced semantics is provided.

3 Temporal Operators

In this section we present temporal operators for processing sets of temporal intervals which
have been already mentioned in [4]. We extend this work by providing a formal basis for the
specification of these operators from which suitable implementations are derived in Section 5.
We first define temporal operators working on sets of intervals in Section 3.1. Afterwards,
these operators are used to specify temporal operators for period-stamped temporal relations
in Section 3.2. All our proposed operators act on table level, meaning that they have
table-valued in- and/or output. For illustrating our approach, we exemplarily define

three point-based binary operators TUNION, TDIFF, and TSECT,
two point-based unary operators THULL and TCOMPL,
four interval-based unary operators TMIN, TMAX, TFIRST, and TLAST,
and a binary interval-based operator TCROP with its point-based analog TCROPC.

3.1 Interval Operators
In the following we use half-open time intervals I = [I.s, I.e) including the start point I.s and
excluding the end point I.e of interval I. We denote the interval length by I.` := I.e− I.s
for I.e 6=∞ and I.` :=∞ otherwise. For the definition of the point-based operators we use
coalescing of a set of temporal intervals I specified as follows:

Coal(I) := {[I1.s, Ik.e) | ∃ sequence I1 < . . . < Ik ∈ I s.t. Ii.e ∈ Ii+1, 1 ≤ i ≤ k − 1,
and @ I ∈ I s.t. I1.s ∈ int(I) or Ik.e ∈ I},

where I1 < I2 :⇔ I1.s < I2.s ∧ I1.e < I2.e and int(I) := (I.s, I.e) denotes the interior of
interval I. Because of the first condition we only coalesce intervals that are either overlapping
or touching. The second condition ensures that the sequence and therefore the resulting
interval cannot be further extended. An example is shown in Figure 1. Note that this
definition of coalescing is equivalent to the standard definition of temporal coalescing given
for example in [7].

For the binary operators union, difference and intersection we have chosen a point-based
rather than interval-based model (cf. [5]). By using coalescing, we represent the required
timestamps (i.e. minimum requirements) with a maximal interval partition.

I Definition 1 (Operators TUNION, TDIFF, and TSECT). Let I and I ′ be finite sets of
right-open intervals. Then the temporal union of the two interval sets I and I ′ is defined
as TUNION(I, I ′) := Coal(I ∪ I ′) . Their temporal difference is

TDIFF(I, I ′) := Coal({J ⊆ I | I ∈ I,∀I ′ ∈ I ′ : J ∩ I ′ = ∅,
and J is maximal with this property}) ,

and the temporal intersection is given by TSECT(I, I ′) := Coal({I ∩ I ′ | I ∈ I, I ′ ∈ I ′}) .

TIME 2018

11:4 Algebraic Operators for Temporal Intervals

I

I1

I2

I3

IC

I ′

Figure 1 Example of the coalescing operator, IC = Coal({I1, I2, I3}). If there were intervals I or
I ′, the sequences I < I3 and I1 < I2 < I ′ respectively lead to an extended coalesced interval IC .

Temporal union is defined as coalescing of the input interval sets whereas temporal difference
comprises all subintervals of I not covered by I ′ in coalesced form. Similarly, temporal
intersection is defined as the coalesced common time periods of both sets. Note that if
both input sets are coalesced, i.e. Coal(I) = I and Coal(I ′) = I ′, then TSECT(I, I ′) =
{I ∩ I ′ | I ∈ I, I ′ ∈ I ′}, and if I is coalesced, then TDIFF(I, I ′) = {J ⊆ I | I ∈ I, ∀I ′ ∈ I ′ :
J ∩ I ′ = ∅, and J is maximal with this property} [7]. As a last example of point-based
operators, the two unary operators THULL and TCOMPL are defined. A sample application
of all introduced point-based operators is depicted in Figure 2.

I Definition 2 (Operators THULL and TCOMPL). We define the hull of a finite set of
right-open intervals I as the time period enclosed by the given intervals THULL(I) :=
[minI ∈I I.s,maxI ∈I I.e) . The complement of I with respect to its hull is given by
TCOMPL(I) := TDIFF({THULL(I)}, I) .

The list of operators is complemented by four interval-based operators which return the
shortest and longest as well as the first and last set of intervals from I, respectively.

I Definition 3 (Operators TMIN and TMAX). For a finite set of right-open intervals I, we
define the operators TMIN and TMAX returning the shortest respectively longest intervals
of I as TMIN(I) := arg minI ∈I I.` and TMAX(I) := arg maxI ∈I I.` .

I Definition 4 (Operators TFIRST and TLAST). For a finite set of right-open intervals I,
we define the operators TFIRST and TLAST returning the intervals of I having the earliest
start (latest end) point as TFIRST(I) := arg minI ∈I I.s and TLAST(I) := arg maxI ∈I I.e .

Finally, the TCROP operator crops the input intervals with respect to a given interval CR.
This operator is especially useful for viewing a snapshot of some relation, i.e. all Lufthansa
flights performed today. TCROPC is its coalesced analog.

I Definition 5 (TCROP and TCROPC). For a finite set of right-open intervals I and a
non-empty, right-open interval CR we define TCROP(I, CR) := {I ∩ CR | I ∈ I} and
TCROPC(I, CR) := Coal({I ∩ CR | I ∈ I}) .

3.2 Operators for Period-Stamped Relations
In a temporal database tuple, temporal intervals are typically associated with other ’non-
temporal’ attribute values which have to be processed, too. Therefore, the introduced
operators are extended to temporal relations with explicit, non-temporal attributes A and
timestamp T . We consider πB,T (R) for B ⊆ A a subset of the non-temporal attributes of
the relation R. The proposed operators will act on all value equivalent tuples of πB,T (R), i.e.

A. Dohr, C. Engels, and A. Behrend 11:5

I

I ′

I∪
I−
I∩

(a) TUNION I∪, TDIFF I−, and TSECT I∩

I

IH

Ic

(b) THULL IH and TCOMPL Ic

Figure 2 Sample applications of point-based operators for sets of right-open intervals I and I′.

performing temporal aggregation with respect to B. Note that for B = ∅ the operations are
directly performed on the temporal intervals and for B = A value equivalence on relational
level is considered. We denote by Rb̄

T := πT (σB=b̄(R)) the timestamps of all value equivalent
tuples w.r.t. B with value b̄. First, we define the extended coalescing operator w.r.t B ⊆ A:

Coal(R,B) :=
{

(b̄, t) | b̄ ∈ πB(R), t ∈ Coal(Rb̄
T)

}
.

The three point-based operators TUNION, TDIFF, and TSECT for sets of intervals are
extended in the following to relational operators having two period-stamped relations and a
subset B ⊆ A of the non-temporal attributes as input:

I Definition 6. For two period-stamped relations R and S with non-temporal attributes A,
timestamp T , and B ⊆ A we set

TUNION(R,S,B) :=
{

(b̄, t) | b̄ ∈ πB(R ∪ S), t ∈ TUNION(Rb̄
T , S

b̄
T)

}
,

TDIFF(R,S,B) :=
{

(b̄, t) | b̄ ∈ πB(R), t ∈ TDIFF(Rb̄
T , S

b̄
T)

}
,

TSECT(R,S,B) :=
{

(b̄, t) | b̄ ∈ πB(R) ∩ πB(S), t ∈ TSECT(Rb̄
T , S

b̄
T)

}
.

The remaining unary operators on relation level can be directly specified via their interval
equivalent:

I Definition 7. For two period-stamped relations R and S with non-temporal attributes
A, timestamp T , and B ⊆ A we set TOP(R,B) :=

{
(b̄, t) | b̄ ∈ πB(R), t ∈ TOP(Rb̄

T)
}
with

TOP∈ {THULL, TCOMPL, TMIN, TMAX, TFIRST, TLAST}.

Similarly, the operators TCROP and TCROPC are extended:

I Definition 8. For a period-stamped relation R with non-temporal attributes A, timestamp
T , B ⊆ A, CR a non-empty right-open interval, and TOP ∈ {TCROP, TCROPC} we set
TOP(R,B,CR) :=

{
(b̄, t) | b̄ ∈ πB(R), t ∈ TOP(Rb̄

T , CR)
}
.

4 Algebraic Optimization

Similar to the non-temporal relational operators, algebraic optimization can be performed
for our temporal operators. Let’s consider the following example. We are interested in all
flight phases excluding landings performed yesterday by a Southwest Airlines’ aircraft. The
following SQL query employing the TDIFF- and TCROP-operators can be employed:

TIME 2018

11:6 Algebraic Operators for Temporal Intervals

 0.1

 1

 10

 100

!NTA, !TA NTA, !TA !NTA, TA NTA, TA
qu

er
y

tim
e

[s
]

configuration

Figure 3 Performance of selection pushing for non-temporal attributes (NTA) and the timestamp
attribute (TA).

SELECT aircraft, T FROM TABLE
TCROP(TDIFF(flight,landing,{aircraft,airline})),

{aircraft,airline}, yesterday) flight_phases
WHERE airline = ‘Southwest Airlines’

Before calculating the temporal difference it makes sense to evaluate the selection to Southwest
Airlines, i.e. to push the selection. Likewise we might also push the condition that the flight
phase was performed yesterday. As this refers to the timestamp caution is advised. Pushing
the temporal selection in the example using around 1.7 million entries from the dataset
“Airline On-Time Statistics and Delay Causes” [18] considerably reduces the execution time
as depicted in Figure 3. We focus in the following on the formal basis of these kinds of
optimizations and introduce selection pushing as algebraic optimization rule for our temporal
operators.

In [7] the following so called conditional coalescing rule states that selections σT can be
pushed through the coalescing operator acting on value equivalent tuples (i.e. Coal(R,A)
for A := attr(R) in our terminology) if the selection condition c does not contain any
temporal attribute: σT

c (Coal(R,A)) ≡ Coal(σT
c (R,A)) . This rule naturally extends to

B ⊆ A provided that the selection condition refers to attributes in B only. As our operators
are based on coalescing and/or act on value equivalent tuples w.r.t. B this allows us to
push selections – still provided that the selection condition refers to attributes in B only.
Regarding pushing of selections referring to the timestamp T, we studied three kinds of
selection criteria:
1. A restriction on the start point of the timestamp, i.e. T.s ∈ Q for a given right-open

interval Q.
2. A restriction on the end point of the timestamp, i.e. T.e ∈ Q’ for a given right-open

interval Q’.
3. A restriction on the length of the timestamp, i.e. T.` ∈ D for a given right-open interval D.
Furthermore, we distinguished whether the input relations of the operators are in coalesced
form and whether the output relation will be cropped to an interval CR. In the following we
will focus on the three point-based binary operators TUNION, TDIFF and TSECT.

The example in Figure 4 illustrates that due to the coalescing applied in our temporal
operators we cannot simply push selections like those specified above through the operators.
Given a set of right-open intervals I we want to select all intervals of Coal(I) starting in Q.
Naively selecting all intervals of I starting in Q as depicted in Start does not lead to the
solution Res. This is because two of the intervals will be merged during coalescing with
an interval starting before Q violating the selection condition, and the other interval will

A. Dohr, C. Engels, and A. Behrend 11:7

I

Q

Start

Res

Rel

Figure 4 Example of selection pushing for temporal operators. Start comprises all intervals of I
starting in Q, Res contains the result set of σI.s∈Q(Coal(I)), and Rel comprises the intervals of I
relevant to compute Res.

be extended during coalescing with an interval starting after Q, so that only the modified
interval is contained in the result set Res. But the first two intervals of I are not relevant
at all to compute Res because they end before Q starts. Rel comprises the intervals of I
relevant to compute Res.

Generalizing the idea of intervals relevant to compute the result of a selection referring
to the timestamp, we cannot push the selection through the temporal operator, but we
can introduce selections applied before the temporal operator on the basis of the selection
condition in order to reduce the input size of the operator. For the question which intervals
are starting during a specified interval Q over an uncoalesced input only those intervals are
relevant that

start in Q and are therefore possibly part of an interval of the result set,
end in Q (or later) and may extend intervals starting in Q to violate the selection
condition,
or start after Q and may extend intervals starting in Q such that the extended, coalesced
interval is part of the result set.

In particular, intervals ending before Q, i.e. satisfying I.e < Q.s, are not relevant and can
be discarded. This is true for all three operators TUNION, TDIFF, and TSECT giving the
following rule:

In the case of uncoalesced input relations with selection condition T.s ∈ Q, a selec-
tion σT.e≥Q.s may be introduced and pushed through the temporal operator.

For TUNION, it does not make any difference whether the input relations are coalesced or
not, as coalescing is involved anyway. But for TDIFF and TSECT, we can refine the above
rule in cases with coalesced input relations as no further coalescing has to be performed
(cf. Section 3.1). So if R is in coalesced form, we can introduce and push a stronger selection
condition for R through TDIFF(R,S,B), namely σT∩Q6=∅. Similarly, if R or S is coalesced,
we can introduce and push the same selection condition for R or S respectively through
TSECT(R,S,B).

If the output is cropped to an interval CR we can further reduce the input relations.
Again considering the case with uncoalesced input first, we can introduce and push a new
selection σT.s<CR.e. Everything happening after CR.e is irrelevant if the resulting intervals
are cropped to CR even though there were intervals starting in Q. In addition, we can adjust

TIME 2018

11:8 Algebraic Operators for Temporal Intervals

Table 1 Introduced selection conditions in the different settings for the operators TUNION,
TDIFF, and TSECT. Coalesced only refers to relation R in TDIFF(R,S,B) and relations R and S
in TSECT(R,S,B).

Setting T.s ∈ Q T.e ∈ Q′

uncoalesced σT.e≥Q.s σT.s≤Q′.e

coalesced σT∩Q6=∅ σT∩Q′ 6=∅

cropped to CR σT.e≥Q.s σT.s≤Q′.e

+ uncoalesced σT.s<CR.e σT.e>CR.s

cropped to CR σT∩Q6=∅ σT∩Q′ 6=∅

+ coalesced σT∩CR 6=∅ σT∩CR 6=∅

the query interval Q and the crop interval CR according to the following formulas

CR∗.s := max(CR.s,Q.s) and Q∗.e := min(CR.e,Q.e)

as all resulting intervals start in Q and the output is cropped to CR. In the coalesced
case we can again push a stronger selection condition, namely σT∩CR 6=∅ for coalesced R in
TDIFF(R,S,B) and coalesced R or S in TSECT(R,S,B).

A summary of the introduced selection conditions in the different settings for T.s ∈ Q –
as well as those for T.e ∈ Q′ which are exactly inverted – is given in Table 1.

For queries referring to the timestamp length, i.e. T.` ∈ D, we can push selections only
in the coalesced cases of TSECT and R in TDIFF(R,S,B). In these cases the input intervals
can only get shorter when the temporal operator is applied. So only intervals longer than
D.s are relevant and the condition σT.`≥D.s can be introduced and pushed. If in addition the
output gets cropped the selection σT∩CR 6=∅ can be introduced again.

The presented rules for introducing and pushing selections are designed in such a way
that for a combined selection σT.s∈Q∧T.e∈Q′ all suitable selections according to Table 1 can
be introduced and pushed.

5 Implementation

In this section we discuss the implementations of two selected temporal operators. As
examples we choose the temporal union operator (TUNION) and the temporal difference
operator (TDIFF). We present several algorithms to realize the proposed semantics of those
two operators. We implement the TUNION operator using Single Scan, Index Based and
Sorting Based algorithms. The TDIFF operator is implemented by Union First and Sorting
Once algorithms.

To use these implementations, there is no need to modify database systems regarding
parser trees, cost functions, etc. To make the application of temporal operators transparent to
the user in a high degree, we are using Oracle User-Defined Functions [20] for implementation.
The implementation is not limited to Oracle Database products. Using primarily user defined
table functions and basic concepts it is relatively easy to implement the operators in any
common database system. For instance, in Section 6 an implementation in PostgreSQL was
used to compare TUNION and TDIFF with existing temporal operators using Temporal
Postgres [19].

A. Dohr, C. Engels, and A. Behrend 11:9

5.1 Temporal Union
The temporal union operator (TUNION) merges right-open intervals using the concept of
coalescing introduced decades ago ([7], [11], [15]) that do have overlapping relationships
as defined by James F. Allen (i.e. contains, equals, starts, finishes, meets, overlaps) [2].
While the input sets can contain those overlapping relationships the output sets only include
relationships of the kind before or after due to the construction of this operator.

Using an algorithm described in [22] as well as two basic algorithms we present three
implementations for temporal union designed as Oracle User-Defined Functions. Pure
SQL:1992 queries [21] are neither used nor evaluated due to their already shown poor
performance [22].

In contrast to the definition from Section 3, the following implementations use one interval
set as input instead of two sets due to simplicity reasons. The implementation with two
input sets is analogue.

5.1.1 Single Scan
The most efficient algorithm proposed in [22] uses partitioning of data and windowing
functions to coalesce time intervals of equal, nontemporal attributes. The concepts of
windowing functions were introduced in the SQL:2003 standard.

For a table R, containing start and end points of intervals and additional nontemporal
columns, the temporal columns are queried into a temporary table that holds the timestamps
ts, two additional columns named Start_ts and End_ts and columns for the nontemporal
data. For a start point set Start_ts = 1 and End_ts = 0, for an end point set Start_ts = 0
and End_ts = 1.

The temporary table is queried to build differences of the sums of the start and end
points assigned to a certain timestamp. Compute the difference of sums for ts at time ti
and denote it as Current_Total_ts. Compute the difference of sums for ts at time ti−1
and denote this as Previous_Total_ts. For efficient querying order the timestamps and
limit the scope of the analytic windows function. If Current_Total_ts = 0 the number
of start and end points at time ti are equal and ts is an end point of a result interval. If
Previous_Total_ts = 0 the number of start and end points at time ti−1 were equal and
ts is an start point of a result interval. In a last step all those identified timestamps are
combined to create the final result set of coalesced intervals.

5.1.2 Index Based
The index based implementation of the temporal union operator is using built-in indexes
on the start points and end points of given intervals in order to enhance searching for large
intervals overlapping many small intervals. Finding these large intervals the algorithm can
skip processing the smaller intervals contained. Starting with the lowest start point Ii.s, the
algorithm searches for the maximum end point Ik.e that has an start point Ik.s smaller than
the given end point Ii.e. The interval is extended by this endpoint and this extended interval
is used for further exploration of new end points. If none is found, [Ii.s, Ik.e) is stored as
new interval and the start point of a new interval is searched with Il.s > Ik.e. With this new
start point another iteration starts finding a maximum end point. Indexing in this context
is used to support finding the minimal start points and maximal end points. These can be
computed in almost constant time. To keep the implementation simple and compatible with
existing systems, we decided to use traditional b-trees, so that only little changes have to be
applied to an existing database schema.

TIME 2018

11:10 Algebraic Operators for Temporal Intervals

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I1

I2

I3

I4

I5I6

IC1 IC2

a) b)

I.s I.e

2018-3-1 2018-5-31

2018-11-1 2018-11-30

2018-5-1 2018-6-30

2018-2-1 2018-2-28

2018-5-1 2018-9-30

2018-1-1 2018-3-31

d)

IC.s IC.e

2018-1-1 2018-9-30

2018-11-1 2018-11-30

c)

 R.time R.type

2018-1-1 start

2018-2-1 start

2018-2-28 start

2018-3-1 end

2018-3-31 end

2018-5-1 start

2018-5-1 start

2018-5-31 end

2018-6-30 end

2018-9-30 end

2018-11-1 start

2018-11-30 end

Figure 5 TUNION Sorting Algorithm.

5.1.3 Sorting Based
The sorting based algorithm is using a fairly simple approach. It is somehow similar to the
single scan algorithm but does not need SQL:2003 windowing functions. Let I be a set of
right-open intervals (see Figure 5 a). Sort the start and end points of these intervals (b),
hold them in a result set R and assign a type to them (start and end, (c)). After that, sweep
over the sorted result set with a single running counter. By increasing or decreasing the
counter depending on the type of time point one can create all resulting intervals in a single
run (d). The counter is increased if a point with type start is recognized and decreased if
point of type end is recognized. If the counter equals 0, a new result interval can be added to
the results IC . The sorting based TUNION is by default almost independent of the dataset’s
structure. The sorting is applied to all starting and all end points of every interval. Therefore
by having n intervals we have to order 2n time points in logarithmic complexity which results
in a runtime complexity of O(n log(n)).

5.2 Temporal Difference
The temporal difference operator (TDIFF) is used to compute the difference of two sets of
right-open intervals I, I ′. The resulting set of intervals R consists of all intervals created by
the points of the intervals of the first set which are not elements of the intervals of the second
set. We will present two strategies for implementing the temporal difference in this section.

5.2.1 Union First
To implement a Union First algorithm we utilize the already proposed temporal union
operator by applying it on the two input sets I, I ′ separately. Reducing the input sets with
this operator ensures all remaining intervals to be distinct and ordered in their respective
result tables. Now we can move two nested cursors over these remaining intervals and
compare them to get the resulting subintervals R. Comparing the intervals [Ii.s, Ii.e) and
[I ′j .s, I ′j .e), three different relationships can hold.

Ii.e < I ′j .s

The first interval [Ii.s, Ii.e) is before the second [I ′j .s, I ′j .e) not overlapping with it. A
new start point Rk.s = Ii.s in the result intervals of R is created if Rk.s = null holds.
Set Rk.e = Ii.e and move to [Ii+1.s, Ii+1.e).

A. Dohr, C. Engels, and A. Behrend 11:11

Ii.s < I ′j .s =< Ii.e

The two intervals are overlapping or adjacent and the first interval starts before the
second interval start. If Rk.s = null add the start point of the first interval a new result
interval start point, Rk.s = Ij .s, and set Rk.e = I ′j .s. If the end point of the first interval
is after the end point of the second interval, move to the next interval [Rk+1.s, Rk+1.e)
= [null, null). Set [Rk+1.s, Rk+1.e) = [I ′j .e, Ii.e). Move to [I ′j+1.s, I

′
j+1.e).

Ii.s >= I ′j .s

If the end point of the first interval is before or at the end point of the second interval,
no results are created or updated. Move to [Ii+1.s, Ii+1.e). If the end point of the second
interval is after or at the start point of the first interval, the result can be updated:
[Rk.s, Rk.e) = [I ′j .e, Ii.e). If the end point of the second is before the start point of the
first interval, set [Rk.s, Rk.e) = [Ii.e, Ii.s).

5.2.2 Sorting Once

Implementing a Sorting Once algorithm is similar to the TUNION operator based on sorting:
querying the start and end points of the input interval sets, assigning types to the points,
ordering them and sweeping over the ordered points one time only. We query the start
and end points of the two sets of right-open intervals I, I ′ and assign those points to four
different types: start1, start2, end1, end2. To log the occurrence of those types we use
two counters: counter1 is increased if a type start1 is recognized and decreased if the type
is end1; counter2 is increased if a type start2 is recognized and decreased if the type is
end2. Initial values are 0. To avoid creating false intervals when start or end points in I
and I ′ are identical, ordering of types must follow the order I.s, I ′.s, I.e, I ′.e, which can
be accomplished by simply adjusting names of the assigned types: 1start2, 2start1, 3end1,
4end2. In the following, the ordered list of points of I and I ′ is denoted L, the types for
entries are L.t and time points L.p, the resulting interval set is denoted as R. After ordering
L by L.p and L.t, we sweep over L and evaluate by type:

Li.t = 2start1
Start point of an interval from I can be a start point in result intervalRk.s. If counter1 = 0
and counter2 = 0 set Rk.s = Li.p, increment counter1 and i.

Li.t = 1start2
Start point of an interval from I ′ can be an end point in the result interval. If counter2 = 0,
set Tk.e = Li.p. If Rk.s 6= 0, increment k, (create a result) and set Rk.s = 0 and Tk.e = 0.
Finish by incrementing counter2 and i.

Li.t = 4end2
An end point of an interval from I ′ can be start point in the result interval. If counter1 > 0
and counter2 = 1, there is a period in the first input relation that is ended by the end
point of the second. Li.p will be start point of the result interval. Decrement counter2,
increment i.

Li.t = 3end1
An end point of an interval from the I can be an end point in the result interval. If
counter1 = 1, this time points closes a period in I. Li.p will be end point in result
interval, Tk.e = Li.p. IfRk.s 6= 0 increment k, (create a result) and set Rk.s = 0 and
Tk.e = 0. Finish by decrementing counter, incrementing i.

TIME 2018

11:12 Algebraic Operators for Temporal Intervals

 20

 40

 500000 1x106 1.5x106

qu
er

y
tim

e
[s

]

samples

Index
Single scan

Sorting

 2

 5

 8

 40000 80000 120000 160000

qu
er

y
tim

e
[s

]

samples

0.25 ov.
0.50 overlap

0.75 ov.

Figure 6 a) TUNION Comparison. b) TUNION Indexing on Statistical Data.

6 Evaluation

In this section we evaluate the implementations of the two selected temporal operators
discussed in Section 5, TUNION and TDIFF. We use two kinds of datasets, statistically
generated datasets and a real world dataset. In generated data the properties of overlapping
temporal intervals can be adjusted by changing the length or position of intervals. This
enables us to adapt the relationships of the generated intervals, i.e. change the ratio of
overlapping, starting or containing intervals.

The real world dataset “Airline On-Time Statistics and Delay Causes” is provided by the
Bureau of Transportation Statistics [18] and specifies the departure and landing timestamps
of flights in the USA. It consists of roughly eight million entries per year and the flight times
can be observed at a granularity of minutes.

For benchmark purposes we mainly use the commercial product Oracle Database 12c
Standard Edition running on a Windows 7 Professional operating system. In order to compare
our operators to the difference and union described in [9], we reimplemented TUNION and
TDIFF with the open source product PostgreSQL 9.4 on Ubuntu 16.04 operating system (see
Section 6.1.2 and 6.2.3). The software components are all executed on virtual hardware that
has 8 GB of RAM and 3x3.4 GHz CPU cores assigned to and is running on solid state discs.

6.1 Temporal Union
Besides the real world dataset, different generated datasets with single nontemporal attributes
are employed for the evaluation as well. These are comparable to the dataset of flights where
a flight has an assigned flight number as nontemporal attribute and two timestamps for
departure and arrival. The maximum size of input tables is two million samples. The overall
result of comparing the different implementations of the TUNION operator is that sorting
and single scan algorithms have the best overall performance (see Figure 6 a)) whereas the
index-based implementation using basic b-trees performs very poorly.

Using Solid State Discs for evaluation does not affect the measurements significantly.
This is due to the implementation of TUNION using mostly sequential disc reads.

6.1.1 Index vs. Sorting
Obviously, the index-based algorithm is highly dependent on the dataset’s structure by
design. If there are large intervals overlapping smaller ones, the loop searching for maximum
end points of merged intervals is executed fewer times. This is tested by creating statistical
datasets that have different amounts of large intervals compared to the sample size. Figure 6

A. Dohr, C. Engels, and A. Behrend 11:13

 0.2

 0.4

 0.6

 4500 6000 7500 9000 10500

qu
er

y
ti

m
e

[s
]

intervals

WN-ISP(index)

WN-ISP(sort)

DL-SFO(i)

DL-SFO(s)

UA-SAN(i)

UA-SAN(s)

WN-GEG(i)

WN-GEG(s)

UA-PDX(i)

UA-PDX(s)

 0.1

 1

 10

 100

 2000 6000 10000

qu
er

y
tim

e
[s

]

#intervals per table

TUNION
Red. Union N{}

Red. Union N{dap}

Figure 7 a) Index vs. Sorting on Flight Data. b) TUNION vs. Reduced Union.

b) shows the query over this dataset instanced with 200,000 intervals with no nontemporal
attributes and data having 25%, 50% and 75% overlapping intervals.

Additionally, we take a look at the real life dataset ([18]). Airports departing flights
mostly to airports located in short distances have less large flight time intervals than airports,
which are in central regions or hubs with long routes to fly. This results in less overlaps and
thus in higher execution times of indexed TUNION.

Figure 7 a) shows some combinations of airports and airlines queried with indexing and
sorting. In this figure the upper points represent the query time using indexing, and the
lower points show the query times using sorting. The lesser the distance between upper and
lower points is, the more intervals are overlapped by large intervals and the more indexing
approximates sorting.

6.1.2 TUNION vs. Reduced Union

To compare the execution times of [9] where temporal union is reduced to its nontemporal
counterpart by temporal primitives (i.e. split, align, normalize) with our approach we took the
proposed temporal extension for PostgreSQL [19] and reimplemented the TUNION-operator
in this environment [14] as UDFs. Using the known flights dataset, Figure 7 b) shows the
comparison of the sorting-based TUNION and the reduced union based on the normalizer
function. We compared two scenarios N{} and N{dap}, where in the first setting without a
normalization attribute all overlapping intervals have to be split. In the latter the destination
airport is used as normalization attribute which partitions the dataset by ten airports.

The reduced union produces a much larger set of results due to the temporal normalizers
nature, which breaks every interval into disjoint subintervals in order to use standard SQL
union on these subintervals and thus decreasing performance in comparison to sorting
TUNION.

The results are only comparable to a certain degree, since reducing using temporal
primitives and creating a set of very specialized operators do not follow the same approach.
The first approach shows more aspects of generality, given that temporal selection, projection,
aggregation, difference, union, and intersection can be reduced to nontemporal operators using
a small set of temporal primitives. Our approach concedes this generality and focuses on very
special operators with efficient implementations. Regarding the TUNION implementation,
the use of a temporal splitter is not necessary.

TIME 2018

11:14 Algebraic Operators for Temporal Intervals

 5

 10

 15

 100 400 700 1000 1300 1600 1900
qu

er
y

tim
e

[s
]

samples per relation

Union First
Sort Once

Figure 8 TDIFF - Union First vs. Sort Once.

6.2 Temporal Difference
Similar to Section 6.1 we use a real world dataset as well as generated datasets with a sample
size of 500,000 in order to evaluate TDIFF operator variants.

6.2.1 Statistical Data
For the evaluation of TDIFF we first generate a dataset in a way that for every interval
in the first interval set I we assign an interval in the second interval set I ′ that is neither
adjacent nor overlapping. Modulating the position of the intervals of I ′ we then can change
the relationship from 1) I ′i after Ii to 2) Ii overlaps I

′
i to 3) I ′i finishes Ii to 4) I ′i during Ii,

and use these scenarios to compute averages for various sample sizes.
Because of the structure of the Union First algorithm and the nested loop to be executed,

the query time has to be in O(n log(n) +m log(m) + nm) where n is the size of I and m is
the size of I ′. Assuming that both input sets have similar sizes and few overlapping intervals
that can be coalesced in the first step, this implementation performs rather poorly.

In comparison the Sort Once strategy has a much better performance. This is due to
the fact that after the sorting in O(n log(n) +m log(m)) time the algorithm sweeps in linear
O(n+m) time over the ordered time points.

Figure 8 shows the query times of Union First and Sort Once. We are using only 0.5% of
entries of the 500k dataset for visualization purposes. We are discarding the Union First
algorithm further on and evaluate with Sort Once only in the next section.

6.2.2 Real World Dataset
Suppose an airline company wants to get an overview of the landing delays of its flights. The
company is especially interested in when they are happening, and how long those delays are.
The desired delay intervals can be elegantly computed by applying TDIFF(I ′, I) to interval
sets, where I are all flights assigned to that airline from the flight plan and I ′ are the time
intervals of planned departure and and actual landing data. Using this scenario, Figure 9 a)
shows the query times of different airlines in the first quarter of the year 2008 based on the
Sort Once algorithm. The query times on a real world dataset show similarity to those of
generated averaged data we used in the previous section.

6.2.3 TDIFF vs. Reduced Difference
In [9] it is shown how the temporal difference can be reduced to its nontemporal difference
operator. Figure 9 b) shows the comparison of the TDIFF operator and the nontemporal

A. Dohr, C. Engels, and A. Behrend 11:15

 2

 4

 6

 8

 60000 80000 100000 120000 140000

qu
er

y
tim

e
[s

]

flights in Q1/2008

AA

DL
NW

OH

OO

XE

YV

UA
US

 0.1

 1

 10

 100

 2000 6000 10000

qu
er

y
tim

e
[s

]

#intervals per table

TDIFF
Red. Diff. N{}

Red. Diff. N{dap}

Figure 9 a) TDIFF - Sort Once with Flight Data. b) TDIFF vs. Reduced Difference.

difference with normalizer function using the combined generated datasets as well as the
known flights dataset analogue to Section 6.1.2. Likewise, the reduced difference produces
a much larger set of results due to the temporal normalizers nature, which breaks every
interval into disjoint subintervals in order to use standard SQL minus operator on these
subintervals and thus decreasing performance in comparison to TDIFF.

7 Conclusions

In this work we discussed the development of a library of temporal operators for processing
sets of temporal intervals. To this end, we provided the formal description of various operators
and discussed their implementation by means of table functions. The resulting operators
allow to formulate complex temporal queries in an elegant way and open the possibility for
further algebraic optimization. In fact, the provided operators can be seen as a foundation
of a situation calculus necessary for achieving situation-awareness inside a database system.
We have studied and evaluated different algorithms for implementing the operators TUNION
and TDIFF without the need for considerable changes to an existing database schema or even
database kernel. One particular interesting finding is the fact that the index-based algorithm
performed poorly in comparison with the other implementations. However, we assume that
performance can be increased dramatically by using specialized index structures as proposed
in ([3], [8], [16]). Improving existing algorithms of the proposed temporal operators by
implementing specific data structures as well as extending the library of table functions is
subject of future work.

References

1 Mohamed H. Ali, Badrish Chandramouli, Balan Sethu Raman, and Ed Katibah. Spatio-
temporal stream processing in microsoft streaminsight. IEEE Data Eng. Bull., 33(2):69–74,
2010.

2 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

3 Chuan-Heng Ang and Kok-Phuang Tan. The interval b-tree. Information Processing Letters,
53(2):85–89, 1995.

4 Andreas Behrend, Philip Schmiegelt, and Andreas Dohr. Supporting situation awareness
in spatio-temporal databases. Datenbank-Spektrum, 16(3):207–218, 2016.

5 Michael H. Böhlen, Renato Busatto, and Christian S. Jensen. Point-versus interval-based
temporal data models. In Proc. of ICDE, pages 192–200, 1998.

TIME 2018

11:16 Algebraic Operators for Temporal Intervals

6 Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Temporal statement
modifiers. ACM Trans. Database Syst., 25(4):407–456, 2000.

7 Michael H. Böhlen, Richard T. Snodgrass, and Michael D. Soo. Coalescing in temporal
databases. In VLDB 1996, pages 180–191, 1996.

8 Tolga Bozkaya and Z. Meral Özsoyoglu. Indexing valid time intervals. In DEXA 1998,
pages 541–550, 1998.

9 Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. In SIGMOD,
pages 433–444, 2012.

10 Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending the
kernel of a relational DBMS with comprehensive support for sequenced temporal queries.
ACM Trans. Database Syst., 41(4):26:1–26:46, 2016.

11 Curtis E. Dyreson. Temporal coalescing with now, granularity, and incomplete information.
In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, San Diego, California, USA,
June 9-12, 2003, pages 169–180. ACM, 2003. doi:10.1145/872757.872779.

12 Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter R. Piet-
zuch. Integrating scale out and fault tolerance in stream processing using operator state
management. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors,
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2013, New York, NY, USA, June 22-27, 2013, pages 725–736. ACM, 2013. URL:
http://dl.acm.org/citation.cfm?id=2463676, doi:10.1145/2463676.2465282.

13 Dieter Gawlick, Eric S. Chan, Adel Ghoneimy, and Zhen Hua Liu. Mastering situation
awareness: The next big challenge? SIGMOD Record, 44(3):19–24, 2015.

14 The PostgreSQL Global Development Group. PostgreSQL 9.4.12 Documentation, 2017.
[Online; accessed 28-May-2017]. URL: https://www.postgresql.org/docs/9.4/static/
index.html.

15 Christian S. Jensen, James Clifford, Shashi K. Gadia, Arie Segev, and Richard T. Snodgrass.
A glossary of temporal database concepts. SIGMOD Record, 21(3):35–43, 1992.

16 Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing intervals efficiently in
object-relational databases. In VLDB 2000, pages 407–418, 2000.

17 Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: a timely dataflow system. In ACM SIGOPS 2013, pages 439–455,
2013.

18 Bureau of Transportation Statistics. Airline On-Time Statistics and Delay Causes, 2017.
[Online; accessed 7-February-2017]. URL: https://www.transtats.bts.gov.

19 University of Zurich. Temporal PostgreSQL, 2017. [Online; accessed 28-May-2017]. URL:
http://tpg.inf.unibz.it/downloads/postgresql-9.6beta3-temporal.tar.gz.

20 Oracle. Oracle Database 12c Release 2 Online Documentation, 2017. [Online; accessed
7-February-2017]. URL: http://docs.oracle.com/database/122/index.htm.

21 Richard T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann, 1999.

22 Xin Zhou, Fusheng Wang, and Carlo Zaniolo. Efficient temporal coalescing query support
in relational database systems. In DEXA 2006, pages 676–686, 2006.

http://dx.doi.org/10.1145/872757.872779
http://dl.acm.org/citation.cfm?id=2463676
http://dx.doi.org/10.1145/2463676.2465282
https://www.postgresql.org/docs/9.4/static/index.html
https://www.postgresql.org/docs/9.4/static/index.html
https://www.transtats.bts.gov
http://tpg.inf.unibz.it/downloads/postgresql-9.6beta3-temporal.tar.gz
http://docs.oracle.com/database/122/index.htm

	Introduction
	Related Work
	Temporal Operators
	Interval Operators
	Operators for Period-Stamped Relations

	Algebraic Optimization
	Implementation
	Temporal Union
	Single Scan
	Index Based
	Sorting Based

	Temporal Difference
	Union First
	Sorting Once

	Evaluation
	Temporal Union
	Index vs. Sorting
	TUNION vs. Reduced Union

	Temporal Difference
	Statistical Data
	Real World Dataset
	TDIFF vs. Reduced Difference

	Conclusions

