Deciding the Consistency of Branching Time
Interval Networks

Marco Gavanelli

Department of Engineering

University of Ferrara, Italy

marco.gavanelli@unife.it
https://orcid.org/0000-0001-7433-5899

Alessandro Passantino

Department of Mathematics and Computer Science
University of Ferrara, Italy
alessandr.passantino@student.unife.it

Guido Sciavicco
Department of Mathematics and Computer Science
University of Ferrara, Italy

guido.sciavicco@unife.it
https://orcid.org/0000-0002-9221-879X

—— Abstract

Allen’s Interval Algebra (IA) is one of the most prominent formalisms in the area of qualitative
temporal reasoning; however, its applications are naturally restricted to linear flows of time.
When dealing with nonlinear time, Allen’s algebra can be extended in several ways, and, as
suggested by Ragni and Wolfl [20], a possible solution consists in defining the Branching Algebra
(BA) as a set of 19 basic relations (13 basic linear relations plus 6 new basic nonlinear ones) in such
a way that each basic relation between two intervals is completely defined by the relative position
of the endpoints on a tree-like partial order. While the problem of deciding the consistency of
a network of I A-constraints is well-studied, and every subset of the I A has been classified with
respect to the tractability of its consistency problem, the fragments of the BA have received less
attention. In this paper, we first define the notion of convex BA-relation, and, then, we prove
that the consistency of a network of convex BA-relations can be decided via path consistency,
and is therefore a polynomial problem. This is the first non-trivial tractable fragment of the BA;
given the clear parallel with the linear case, our contribution poses the bases for a deeper study
of fragments of BA towards their complete classification.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases Constraint programming, Consistency, Branching time
Digital Object Identifier 10.4230/LIPIcs. TIME.2018.12

Acknowledgements G. Sciavicco acknowledges partial support by the Italian INDAM GNCS
project Formal methods for verification and synthesis of discrete and hybrid systems.

1 Introduction

Allen’s Interval Algebra [1] (IA) is one of the most prominent formalisms in the area of
qualitative temporal, and also spatial, reasoning. However, its applications are naturally
restricted to linear flows of time. Allen’s algebra is considered one of the most influential
formalisms in qualitative reasoning, and it has found application in a wide range of contexts,
? Marco Gavanelli, Alessandro Passa?mtino, and Guido Sciavicco;

5v icensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Ngrviag, and Wojciech Penczek; Article No. 12; pp. 12:1-12:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:marco.gavanelli@unife.it
https://orcid.org/0000-0001-7433-5899
mailto:alessandr.passantino@student.unife.it
mailto:guido.sciavicco@unife.it
https://orcid.org/0000-0002-9221-879X
https://doi.org/10.4230/LIPIcs.TIME.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Deciding the Consistency of Branching Time Interval Networks

such as scheduling, planning, database theory, natural language processing, among others. In
Allen’s I A we consider the domain of all intervals on a linear order, and define thirteen basic
relations between pairs of intervals (such as, for example, meets or before). A constraint
between two intervals is any disjunction of basic relations, and a network of constraints is
defined as a set of variables plus a set of constraints between them, interpreted as a logical
conjunction. The most relevant problem in I A is deciding whether a network can be satisfied,
that is, deciding if every variable of a network can be instantiated to an interval without
violating any constraint. The consistency of a network of constraints is archetypical of the class
of constraints satisfaction problems (CSP), because a network is a conjunction of constraints;
other consistency problems, even in temporal algebras, are more general, and allow some
form of disjunction. A very wide range of programming techniques, strategies, and heuristics
have been and are being studied to devise efficient implementations; in the particular case of
the T A, whose consistency problem is NP-complete, two main strategies have been mainly
adopted, that are based either on clever brute-force enumerating algorithms (see, e.g. [13, 23]),
or on tractable fragments of the algebra, which are interesting on their own [14] as well as
heuristics, aimed to reduce the branching factor in branch-and-bound approaches [15, 19].
Among the several tractable fragments of the A, a particularly interesting one is known
as [Aconver, introduced in the early years of this line of research, and encompassing 44
basic and non-basic relations [25]. To obtain IA.opver, van Beek and Cohen [25] study,
first, the simpler Point Algebra (PA), which has only three basic relations, and define the
notion of convexity for a PA-relation; having identified the set of P A onver-relations, they
define the set I A.onyves as the maximal subset of I A-relations with the following property:
every network of I A onyes-constraints can be translated into an equi-satisfiable network of
PA_onves-constraints. Then, using the properties of such a translation, they prove that the
path consistency algorithm is complete for deciding the consistency of a I A.onyer-network,
obtaining the same result for PA_ onypes-networks as a corollary. Since then, many other
tractable fragments of the I A have been discovered, and, in fact, we know the status of
every fragment of the I A with respect to the tractability /intractability of the corresponding
consistency problem [14].

Branching time has been less studied from the algebraic point of view, in sharp contrast
with the huge amount of research on point-based and interval-based temporal logics, such as
CTL, CTL*, ATL, or branching PNL [3, 4, 11]. The Branching Point Algebra (BPA) has
been studied in [9, 12], and the computational behaviour of the consistency problem of the
BPA and its fragments has been analyzed in [5], where, in particular, a polynomial algorithm
to decide the consistency of a network of BP A-constraints is given. In [20], the authors
define a branching version of Allen’s I A, which we refer to as BA (Branching Algebra) and
introduce two possible sets of basic relations that may hold between two intervals on a
tree-like partial order. One of these sets, composed of 24 basic relations, and also studied
from the (first-order) expressive power point of view in [10], is characterized by basic relations
whose semantics cannot be always written in the language of endpoints, therefore requiring
quantification; on the other hand, the basic relations of the second set are coarser, still jointly
exhaustive and mutually exclusive, and their point-based semantics depends only on the
relative position of the endpoints. The latter set (BApgsic), composed of 19 basic relations,
is therefore preferable in many aspects. As expected, the consistency problem for the full
BA is NP-complete, and we know only one tractable fragment of it that includes at least
one nonlinear relation, that is, the set BApysic itself, since a network of B Ap,sic.-constraints
can be fully translated into a network of BP A-constraints. In this paper:

M. Gavanelli, A. Passantino, and G. Sciavicco

Qo

e ez

e G Y
(a) (b)

Figure 1 A pictorial representation of the four basic branching point relations, in which a = b,
a < ¢, d > ¢, and d|le (left-hand side), and two branching relations that need quantification
(right-hand side).

(i) in the the spirit of [25], we define the notion of convex branching point relation and the
notion of convex branching interval relation, and prove that, as in the linear case, the
consistency of a network of convex branching interval (and therefore point) relations
can be decided enforcing its path consistency, and

(ii) following [22], we implement a simple branch-and-bound algorithm for B A-networks to
empirically study the expected improvement in computation time when the splitting is
driven by convex relations instead of basic relations.

This paper is organized as follows. First we give some necessary preliminaries and
notation. In Section 3 we give the main result of this paper, that is, we define convex
branching relations and show that the consistency problem can be decided by enforcing path
consistency in convex networks. Then, in Section 4, we give some experimental evidence
that convex branching relations can be used to speed up the process of deciding branching
relation networks, before concluding.

2 Preliminaries

Notation. Let (7, <) be a partial order, whose elements are generally denoted by a,b, ...,
and where a||b denotes that a and b are incomparable with respect to the ordering relation
<. We use z,y,... to denote variables in the domain of points. A partial order (7, <), often
denoted by T, is a future branching model of time (or, simply, a branching model) if for all
a,b € T there is a greatest lower bound of @ and b in T, and, if a||b then there exists no ¢ € T
such that ¢ > a and ¢ > b (that is, it is a tree). In a branching model (7, <), any maximal
linearly ordered subset B of T will be called branch. There are four basic relations that may
hold between two points on a branching model: equals (=), incomparable (||), less than (<),
and greater than (>); the first two are symmetric, while the last two are inverse of each

other. These relations are depicted in Fig. la, and are called basic branching point relations.

The set of basic branching point relations is denoted by BP Apgsic. In the linear setting, the
set of basic relations has only three elements, <,=, and >, and it is called PAp,sic (basic
point relations).

An interval in T is a pair [a,b] where a < b, and [a,b] = {z € T : a < z < b}. Intervals
are generically denoted by I,J,..., and we use X,Y, ... to indicate variables in the domain
of intervals. Following Allen [1], we adopt the so-called strict interpretation by asking that
intervals with coincident endpoints are excluded. In the case of linear time, a theory that
encompasses both intervals and points has been presented in [7]. There are several ways
to define basic relations between intervals on a branching order. Following [10], one can
describe 24 basic branching relations based on the possible relative position of two pairs
of ordered points on a branching model, that is, by directly generalizing the universally
known set of 13 basic interval relations [1] (I Apasic). While towards a precise study of the

12:3

TIME 2018

12:4

Deciding the Consistency of Branching Time Interval Networks

b (bi) I before J b<c “ b E d
c
m (mi) I meets J b=c e b d
a b
o (oi) I overlaps J a<c<b<d ¢ d
a b
d (di) I during J c<a<b<d ¢ d
. a b
s (si) I starts J a=c<b<d ¢ d
. . . a b
f(fi) I finishes J c<a<b=d c d
a b
e I equals J a=c<b=d ¢ d
d
b (ibi) I init.before J a<cllb L] ‘ /
b b

im (imi) I init.meets J a<c<bld %
c
ie I init.equals J a=c<bl|d “

d a b

U I unrelated J alle

Figure 2 A pictorial representation of the nineteen basic branching interval relations. In this
picture, we assume a < b and ¢ < d. Solid lines are actual intervals, dashed lines complete the
underlying tree structure.

expressive power of branching relations in a first-order context this is an optimal choice, this
is no longer true when studying the computational properties of the consistency problem. In
particular, some of these relations require first-order quantification to be defined: for example,
in Fig. 1b we see that, in order to distinguish the two situations, we need to quantify of the
existence, or non-existence, of points, comparable with ¢, between a and ¢. To overcome
this problem, that becomes relevant when we study the behaviour of branching relations
in association with the behaviour of branching point relations (that is, by studying the
properties of their point-based translations), Ragni and Wolfl [20] introduce a set of coarser
relations, characterized by being translatable to point-based relations using only the language
of endpoints, that is, without quantification. These 19 relations are depicted in Fig. 2, and
form the set of basic branching interval relations B Apgsic; for each relation, the symbol in
brackets corresponds to its inverse one, if the relation is not symmetric. A relation in the
set BApgsic is either a linear relation, or the relation u (unrelated), or it corresponds to the
disjunction between a pair of fine relations. For example, the relation im is the disjunction
of the two relations in Fig. 1b.

Operations and algebras. The set BPA of branching point relations is the set of all
possible non-empty disjunctions of basic branching point relations, and it encompasses
24 — 1 = 15 relations. Similarly, the set BA of branching interval relations is the set of
all possible disjunctions of basic branching interval relations, and it encompasses 2'9 — 1

M. Gavanelli, A. Passantino, and G. Sciavicco

Table 1 Composition of basic BP A-relations (left-hand side), and of basic PA-relations (right-
hand side).

o< [> [= [II | o< [> [= |
< || {<} | lin {<r | A<} :
S| |y | o] N (R e
— | <[B | =] i DN b
A [0 B 7
relations. In general, given the basic relations ry,...,r;, we denote by R = {rq,...,r} the

disjunctive relation r1 V...V r; thus, a relation is seen as a set, and a basic relation as a
singleton. A BP A-constraint is an object of the type xRy, where x,y are point variables
and R € BPA; analogously, a BA-constraint is an object of the type X RY, where X,Y are
interval variables and R € BA. There are three basic operations with relations: (Boolean)
intersection, inverse, and composition. The inverse of a relation R = {ry,...,r;} is the
relation R~ = {7“1_1, e ,rl_l}, where, for each ¢, ri_l is the inverse basic relation of the
basic relation 7;. In our notation, for example, bi (later) is the inverse of the basic relation b
(before). The composition of two basic relations r1, 9 is defined as follows: for variables s, t, z,
we say that s is in the composed relation ri o ro with t, denoted s(ry o r9)t, if there exists z
such that sriz and zrot. The composition of two relations Ry, Ry is defined component-wise:
RioRy ={r|3ry € Ri3ry € Ro(r =ry ory)}. Clearly, to compute the composition of two
non-basic relations we base ourselves on the composition between basic relations. As for
the set BP Apgsic (resp., the set PApqsic), the composition table can be easily computed ‘by
hand’, as in Tab. 1, left-hand side (resp., right-hand side), where we use the abbreviations
lin={<,=,>} and ? = lin U {||}. The result of composing two relations in the set BApgsic
(resp., I Apgsic) can be computed automatically from Tab. 1, and it is fully reported in [21]
(resp., [2]).

Given a set A of relations, an A-network is a directed graph N = (V, E), where V is a set
of variables and E C V x V is a set of A-constraints between pairs of variables. To denote
a constraint between the variables s and ¢ in a network, we use indistinctly the notation
(s,t) or the infix notation sRt (when we want to specify the relation). Given a network
N = (V, E), we say that N’ is a sub-network of N if N' = (V',E’), V' C V, and E’' is the
projection of E on the variables in V’. Given a network, we say that it is consistent if there
exists a model such that each variable can be mapped (realized) to a concrete element so that
every constraint is respected; establishing if an A-network is consistent is the A-consistency
problem, and two networks N and M are said to be equi-satisfiable if it happens that N is
consistent if and only if M is consistent. Given a constraint (s,t) in a network N, we say
that r € (s,t) is feasible if there exists a model of N such that s and ¢ are realized respecting
r, and a constraint (s,t) is said to be minimal if every r € (s,t) is feasible and (s,t) cannot
be extended with other feasible relations; establishing the minimal constraints for every
constraint in a network is called the minimal labels problem. Enforcing the minimal label in
a network implies deciding its consistency, but, in general, we may have a consistent network
with non-minimal labels. The operations of inverse, intersection, and composition can be
used to design a constraint satisfaction problem (CSP) technique to decide the consistency
of a A-network. The sets BPA and BA are called, respectively, the branching point algebra
and the branching interval algebra, and they extend, respectively, the interval algebra IA
and the point algebra PA. Since the consistency problem for the A is NP-complete [26],
the problem of finding tractable fragments of it is interesting, and it has been largely studied

12:5

TIME 2018

12:6

Deciding the Consistency of Branching Time Interval Networks

in the recent literature [1, 25, 14]. The branching setting presents a similar situation, as the
consistency problem for the BA is NP-complete as well, but, in contrast with the linear case,
only one tractable fragment is known, that is, BApgsi. [20]; the consistency of a network of
basic branching interval constraints can be decided by translating it into an equi-satisfiable
network of BP A-constraints, for which a deterministic polynomial consistency algorithm
exists [5].

Local consistency. On the one hand, the BA-consistency problem is in NP because there
exists a simple non-deterministic algorithm that solves it, which, given a BA-network
N = (V, E), guesses the relative position of 2 - |V| points and checks if every constraint is
respected. On the other hand, these problems are often solved via popular heuristics such as
constraint propagation and local consistency. A network N is said to be k-consistent if, given
any consistent realization of k — 1 variables, there exists an instantiation of any k-th variable
such that the constraints between the subset of k variables can be satisfied together; it is
said to be strongly k-consistent if it is k’-consistent for every k' < k (see [17]); if a network is
strongly k-consistent, then it must also have minimal labels. Because of the particular nature
of networks of constraints in temporal algebras, they are always 1-consistent (also called
node consistent) and 2-consistent (also called arc consistent), by definition. Enforcing path
consistency, that is, 3-consistency, in a network N, corresponds to apply the following simple
algorithm: for every triple (s,t, z) of variables in N = (V| E) such that sRt, sR;z,tRsz € E,
replace sRt by s(RN (Ry o Ry))t. Clearly, if enforcing path consistency results in at least
one empty constraint, the entire network N is not consistent. But, in general, enforcing path
consistency (in fact, k-consistency for any constant k) does not imply consistency; this is
true for BA-networks as well as for I A-networks. In [25], however, it is proven that enforcing
path consistency is equivalent to computing the minimal labels of a I Ay, g;c-network, which,
in turn, allows one to check the existence of a model. This property of path consistency is
shown for a more general set of relations, called convez interval relations, which are defined
starting from the set PAconver Of convex point relations, and, in particular, it is proved
that the set T Aconver (the convex interval algebra) includes I Apqsic, and that its consistency
problem (and, as a corollary, the consistency of a P A opper-constraints) can be decided by
path consistency. This result, particularly interesting for us, has the following consequences.
First, I Aconvez is a fragment of the I A with a tractable (in fact, cubic time) consistency
problem. Second, one can implement a simple branch-and-bound algorithm to decide the
consistency of any I A-network, based on I Ap,sic: at each step, the algorithm tries one basic
relation for each relation, and then forces the path consistency of the resulting network;
if at any step the network is path consistent, it returns true, and if every combination
has been tried and enforcing path consistency has always resulted in an empty relation, it
returns false. Third, the set I Acpnper can be used to drive the splitting in such an algorithm,
as a heuristics to speed up the branch-and-bound process: if, at any step, one ends up
with a I Aconver-network, that particular branch can be decided by simply enforcing path
consistency.

In the following, we shall define the algebra BA.onves of convex branching relations. We
shall prove that, since BA onper €xtends BApqsic, and since enforcing path consistency can
be used to decide the consistency of a BA onver-network, one can apply the same schema,
effectively lifting all above results to the setting of branching time.

A motivating scenario. Scheduling is the problem of distributing computing resources (such
as processor time, bandwidth, or memory) to various processes, threads, data flows, and
applications that need them. In robotics, scheduling is used to organize tasks to be assigned

M. Gavanelli, A. Passantino, and G. Sciavicco

to robots of various kinds, in such a way that all physical and subjective constraints are met.

A recent application of Allen’s Interval Algebra to the scheduling of tasks for a robot has
been proposed by Mudrovd and Hawes [18]. The authors propose a scheduling technique that
takes into account a series of constraints, including deadlines and processing time for each one
of a series of tasks that a robot is asked to complete. They propose to apply a consistency
checking algorithm to the network of qualitative constraints that underlies the scheduling
problem, in order to prune any ordering of the tasks that does not meet the qualitative
constraints, and to be able to select, systematically, possible models of the problem. To each
of the models, then, a successive phase of quantitative constraint checking is applied.

Mudrovéa and Hawes solve the scheduling problem of a single robot, which encompasses
assuming the time to be linear and introducing the additional constraint that no two tasks
can overlap. Using Branching Algebra instead of Interval Algebra as part of the scheduling
algorithm, and using the relation || to relax, when possible, the non-overlapping constraint,
one may obtain, instead, branching models among the solutions. A branching model of
the scheduling can be interpreted as a scheduling in which more than one robot is involved,
that is, in which every new branch implicitly refers to a new robot being activated (at the
branching point), and, if we assume that bootstrapping a robot has some fixed cost (higher
than maintaining a robot active), then it makes sense to look for a branching scheduling as
we have defined it, that is, tree-like (in which branches never join again). Thus, Branching
Algebra allows one to generalize this scheduling problem to a more complex scenario, which
cannot be easily handled in the original formulation.

3 Convex Branching Interval Relations

We start by defining the concept of convex relation in the branching setting. In this section,
we operate with translations from interval constraints to point constraints; when necessary,
for an interval variable X, we use the symbols X ~, X+ to denote the point variables that
correspond to its endpoints.

» Definition 1. The convex branching point algebra is the set of relations:

BPAconvez = {{:}v {<}7 {<7 :}7 {<7 = >}7 {:7 >}7 {>}7 {H}}
Each relation of set BP A onyes i called convex branching point relation.

Observe that BP Aconper extends the convex point algebra PA opver as defined in [25] by
adding the relation {||}. While the set P A onves is closed under composition, inverse, and
intersection, the set BP A onves 18 closed under under inverse and intersection only; this,
however, does not prevent us from applying constraint propagation algorithms such as path
consistency enforcing.

» Definition 2. The convex branching interval algebra BA onves is the set of all (and only)
BA-relations R such that the constraint XRY can be translated to an equi-satisfiable
conjunction of constraints between the endpoints of X and Y using BP A onyes-relations
only. A branching relation with such a property is called conver branching interval relation.

For example, in the linear setting, {b,m} is convex because, if X = [X~, X] and Y =
[Y~,Y*], the constraint X{b,m}Y is equivalent to the conjunction of the constraints
X~ < Xt Y™ <Y+ and X{{<,=}Y"; conversely, the relation {b,bi} is not convex,
because translating it results in a disjunction of point-based constraints. Clearly, the set
BA onver extends the set IAconver Of convex interval relations as defined in [25]. The

12:7

TIME 2018

12:8 Deciding the Consistency of Branching Time Interval Networks

T

Npg ——— M, N ¥
(int. var.) (point var.) N I N

place 2 new /:—

. T2 " Ty
point var. R N
show k-cons. N 7"

Tr-1
(endpoints) x

(a) (b)

Figure 3 A general view of the strategy for the inductive case of Theorem 5 (left-hand side), and
a path-consistent network with non-minimal labels (right-hand side).

crucial property of a BAc onver-network N is that it can be translated to an equi-satisfiable
BPA onvez-network M (notice that this is not true for a generic BA-network: non-convex
constraints may result in disjunctions that cannot be represented in the language of full
BP A-networks), such that, if N is k-consistent for any k, then M is 2 - k-consistent. As it
can be easily checked, there are precisely 91 convex branching interval relations. In the linear
case, the following results hold [25].

» Theorem 3. Enforcing path consistency in a I Aconyer-network is sufficient to compute its
minimal labels.

» Corollary 4. Enforcing path consistency in a PAconves-network is sufficient to compute
1ts minimal labels.

Our purpose in this section is to generalize the above theorem to the branching case.

We want to prove that we can decide the consistency of a B A opyer-network by enforcing
its path consistency. To this end, we prove that enforcing path consistency of a BAconves-
network actually enforces the minimal labels on each constraint by proving that, in fact,
enforcing path consistency of a network entails enforcing its strongly k-consistency for every
k. As we have already observed, this allows us to check the consistency of a network.

» Theorem 5. Enforcing path consistency in a BA opyer-network is sufficient to compute
its minimal labels.

Proof. Let N be a BA.onvez-network, and let M be the BPA . nvee-network that results
from translating N in the language of endpoints. We assume that path consistency has
been forced on N, and we want to show that NV is strongly k-consistent for every k; since a
strongly k-consistent network must have minimal labels, we have the result. Let us proceed
by induction. As base case, we know that N is k-consistent for k < 3. As for the inductive
case, we suppose now that N is k — 1-consistent and we prove that it is also k-consistent.
Consider a subset S of k — 1 interval variables in V. Let us call N,_; the sub-network, with
the k — 1 interval variables X, ..., Xj_1, corresponding to the projection of N over set .5,
and let us call My_; the corresponding BP A onvez-network whose variables are precisely
the 2 - (k — 1) endpoints of X;,...,X;_1. Our strategy, as sketched in Fig. 3a, can be
summarized as follows: since Ny _1 is consistent by hypothesis, M;_; must be consistent
as well, that is, it must realized in a branching model T;_1; if we pick the point variables
corresponding to the endpoints of any k-th interval variable and accommodate them in 7T
showing that every constraint is respected, then we obtain a branching model for k interval
variables, proving that Ny, is also consistent. Let X be any interval variable in N different

M. Gavanelli, A. Passantino, and G. Sciavicco 12:9

from Xq,...,Xr_1, and let XR; X, the BA.onves-relation between the variables X and X,
for each i. Let My the BP A onyes-network obtained by adding to Mj_1 the point variables
X, X, the constraint X~ < X7, and every constraint between the endpoints of X and the
endpoints of X7, ..., X;_1 that results from translating the constraints of the type X R; X;.
On Tj_1 we can identify the set R = {aq,...,a,} with the following characteristics: for each
i, a; is the realization of some point variable y in Mj_; (that is, a; is the realization of some
endpoint of the interval variables X7, ..., X;_1) and that, for every point variable y € Mjy_1,
realized in some point a € Tx_1, it is not the case that a < a;. Indeed, consider the branching
model Ti_1: since it must be a tree, it may be the case that, in order to realize two variables
that are constrained to be incomparable to each other, a greatest common predecessor must
be added; therefore, if projected to the points that realize some point variable in Ny_1, Tr_1
is a forest of trees, rather then a tree. Every point in R is the root of one of the trees in Tx_1;
let us call ¢ their greatest common predecessor. Now, let x1,...,x,, be the point variables
that have been realized in aq,...a, (observe that n < m < k — 1: two variables may have
been realized in the same root, and m cannot exceed k; because, at most, every interval
variable has its left endpoint realized in a root). We want to show, first, that the point
variable X~ can be successfully realized on 7_1, and we proceed case by case.

Suppose, first, that (x;, X) = {||} for every point variable z; realized in some root. In
this case, we realize X~ with a new point a such that a||a; for each root a;, and that ¢ < a.
To prove that this is a consistent choice, consider any point variable y of My _, realized
at some point b > a; for some root a;. Suppose that a; is the realization of some point
variable z;, which means that (y,x;) C lin. If <€ (y,2;), then (y,x;) o (z;, X) = {<, ||}
By intersection with BAconyes, then either (y,X~) = {<} or (y,X7) = {||}; in the
first case, however, we obtain, by path consistency, that (X, ;) € lin, which is a
contradiction. Therefore, (y,X~) = {||}. If , on the other hand, <¢ (y,z;), then,
(y,z;) C {>,=}, and, since {>,=} o {||} = {||}, it must be the case that (y, X) = {||}.
Suppose, now, that (x;, X) C lin for some point variable x; realized in some root a;.
Observe, first, that if (X, 2;) = {<}, then we can select the subset R’ C R such that,
for each z; € R/, we have that (X, x]) = {<}; in this case, by the argument in the
above case, for each z}' € R\ R/, we have that (X, z]) = {||}. Consider each a; that
is the realization of some variable in R’: we realize X~ in a point a > ¢, such that
a is less than every such a;, and incomparable with every other root in R \ R'. If,
otherwise, (X, z;) C {>,=}, then, for each z] realized in some root a; # a;, we must
have (X~,z;) = {||}. In this case, we can say that a; is the root of the tree in which
we have to realize X ~; let us call it 7,,. Observe that, by the same argument as in the
above case, wherever we realize X~ in 7,,, this realization is consistent with any point
that belongs to some 7,; with a; # a;. Now, we consider the point b € 7, which is the
least point (greater than or equal to a;) with at least two immediate successors by, by
such that by]|bg, if it exists. We have the following cases.

Suppose that b does not exists. This means that T, is linearly ordered. Let &’ be the
least point (greater than a;), such that is the realization of some variable y such that
(y, X) = {||}. If there is no such ¥, then, by Theorem 3, we can find a realization for
X~ consistent with 7,,; since we already know that such a realization is consistent
with every other tree, we conclude that it is consistent. If &’ exists, then we realize
X~ in a point a such that a||t’ and that a > d where d is the immediate predecessor
of /. By the argument used in the first case, this choice must be consistent with 7,
and therefore it must be consistent.

TIME 2018

12:10

Deciding the Consistency of Branching Time Interval Networks

Suppose, now, that b exists. If y is realized in b, and {<,=, ||} N (X, y) # 0, then we
proceed as in the previous case. If, on the other hand, (X~ ,y) = {>}, we have the
following two cases. First, if <€ (X7, y) for every y; realized in some point b; such
that b; is immediate successor of b, then realize X~ in a point a such that b < a and
that a < b; for every immediate successor b; of b, which must be a consistent choice,
given that, by path consistency, the relation between X~ and every variable realized
in a point greater than b must contain <. If, for some immediate successor b; of b,
which is the realization of some variable y, it is the case that <¢ (X ~,y), then we
can treat every immediate successor b; of b as the root of some sub-tree of T,, and
therefore we can apply the same entire argument, recursively.

Having realized the variable X, the network Mj_; enriched with X~ (and all relative
constraints) must be consistent. By reapplying the entire argument, we can show that any
other point variable can be consistently realized in the resulting network; if we choose X T
among these, we prove that the original network IV is, in fact k-consistent, completing the
induction. |

» Corollary 6. Enforcing path consistency in a BP Acopyes-network is sufficient to compute
its minimal labels.

It would be natural, at this point, to ask whether the set BP A onves can be enriched
while retaining the above nice properties. A natural candidate in this perspective would be
the set of all BPA-relations such that, for each R, it is the case that R Nlin (which is a
linear relation) is convex. This set is closed under composition, inverse, and intersection,
allowing one to approach its consistency problem in the same way as we did in this work; in
particular, it would be possible to define the set of B A-relations that can be translated in this
language, obtaining, in fact, a greater set of branching relation whose minimal labels could
be enforced by path consistency. Unfortunately, there is an easy counter-example to this
claim, shown in Fig. 3b, in which we have a path consistent network but with non-minimal
labels. Therefore, if there exists any extension of BP A ypver: Whose minimal labels can be
enforced by path-consistency, it cannot include at least one of the relations in Fig. 3b.

Observe that enforcing the minimal labels via path consistency is not the only way to prove
that the consistency of a network can be decided via path consistency, and it is certainly not
the only way to prove that a fragment of relations is tractable. For example, the tractability
of the consistency problem for a network of I A-relations in the ORD-Horn fragment is proven
via embedding into the Horn fragment of propositional logic [14]; as an another example,
the tractability of the consistency problem for a network of full BP A-relations is proven
with a specialized algorithm in [5], and it is the basis for Ragni and Wo6lfl’s result about the
tractability of the consistency problem for a network of BAp,g;-relations.

4 Experiments

In order to evaluate the usefulness of the convex fragment as a heuristics for the task of
checking the consistency of a BA-network, we devised a set of experiments, following the
classical methodologies in the literature.

To generate a random set of instances, we used a (modification of) a technique suggested
by Renz and Nebel [22] that consists of the following steps. Given a number n of nodes, an
average density d and a probability p, we generate a random instance as follows:

M. Gavanelli, A. Passantino, and G. Sciavicco

Algorithm 1 Backtracking algorithm.

function CONSISTENT(P, Split)
enforce generalized arc consistency on P
if there is a variable vxy such that Dxy = () then
return false
else
choose an unprocessed variable vxy such that Dxy ¢ Split
if there is no such variable then
return frue
{Dy,...,D,}=PARTITION(Dx Yy, Split)
for all D; € {D4,...,D,} do
P = PDXY/Di
if CONSISTENT(P’, Split) then
return true
return false

W edges at random;

(i) we generate a graph with n nodes, and select
(ii) for each selected edge (s,t), we generate a BA-relation R by selecting, with probability
p, each BAp,sic-relation to be inserted in R, and
(iii) to each non-selected edge (s,t), we assign the universal relation.
As much as the solver is concerned, we based ourselves on the general strategy of constraint
logic programming on finite domains, by means of which we are able to check the satisfiability
of a temporal network. The solver itself is based on the dual CSP, encoded with translation
into ternary constraints, as proposed by Condotta et al. [6]. In particular, given an A-network
N = (V,E), we define a CSP P as a triple (V,D,C), such that:
the set V contains a CSP variable vxy for each pair of variables X,Y in V;
the domain Dxy of each variable vyy is precisely the constraint (X,Y"), and
for each triple of variables, C contains a ternary constraint, so that each ternary constraint
will be satisfied by a triple (r,71,79) € BA? if and only if r € 1 o rs.

basic

As noted by Condotta et al. [6], enforcing the (generalized) arc consistency on the problem
P is equivalent to enforcing path consistency on the original A-network. Since, as we know,
both path consistency and (generalized) arc consistency are incomplete algorithms for BA-
networks, a backtracking search is applied, and to each node of the search tree, (generalized)
arc consistency is enforced. The generic schema of a backtracking algorithm can be described
as in Alg. 1 [19].

In Alg. 1, the family of sets Split plays a key role. When solving the general CSP,
without exploiting any tractable fragment of the BA, Split can be thought as containing
all singletons, each one of them corresponding to a single BAp,s;-relation. Therefore, the
technique to solve a problem P consists of simply choosing a variable, substitute its domain
with one of its components creating a new problem P’, and recursively solve P’. This
algorithm is correct because the search terminates with a node with basic relations only, for
which path consistency is a complete method. When a bigger fragment for which enforcing
path consistency is known to be complete for consistency, we can take advantage from it
by setting Split to be the family of its relations; in such a case Alg. 1 stops the search
even if the domain of some of the CSP variables is not a singleton, obtaining, de facto,
a smaller branching factor of the search tree. Unfortunately, establishing if a set can be
partitioned into smaller sets taken from some family of sets corresponds to the set partitioning

12:11

TIME 2018

12:12

Deciding the Consistency of Branching Time Interval Networks

100 +
=
g
= 50 o
e
0 : : : : : : : : : >
0 10 20 30 40 50 60 70 80 90 100

Density (%)

Figure 4 Geometric mean of the computation time to solve the instances varying the density d
of the network. Number of nodes n = 15, 20 instances solved per point. The black squares show the
running time of the backtracking algorithm with Split = B Apasic, while the red triangles represent
the curve with Split = BAconves-

300 +
=
o 200 +
£
H
100 +
0l e ‘ ; ‘ ‘ ‘
4 6 8 10 12 14 16 18 20

Number of nodes

Figure 5 Geometric mean of the computation time to solve the instances varying the number of
nodes n of the network. Density d = 70%, 20 instances solved per point. The black squares show the
running time of the backtracking algorithm with Split = B Apasic, while the red triangles represent
the curve with Split = BAconves-

problem, which is NP-complete in general (in Alg. 1 this step is encoded into a function
PARTITION(D, Split)). In our case, the domain can be partitioned into basic relations (so a
polynomial solution exists), but such a solution is inconvenient, as it does not exploit the
tractability of the fragment. Since this problem should be solved in every node of the search
tree, a quick, although non-optimal, method is mandatory to obtain reasonable efficiency. A
first solution would be to pre-compute the (possibly, optimal) solutions of the set-partitioning
for each possible subset of the domains; this would generate a table of size 2/BAvasicl which
may fit into the main memory of modern computers, but poses the problem of efficiently
accessing to the data structure that contains it. Another option is to use a greedy method
to quickly provide a possibly non-optimal partitioning (note, also, that it is not necessary
for PARTITION(D, Split) to return the complete partitioning, as each of the sets Dy,...,D,
can be generated on demand). We decided to follow the latter approach and to store the set
of convex relations into a trie, which is a data structure whose access time depends on the
order in which the elements of a set are stored, but that resulted efficient in practice.

The algorithm was implemented in the constraint logic programming system ECL'PS®
[24], using the CLP(FD) library. To implement the ternary constraints we used the propia

M. Gavanelli, A. Passantino, and G. Sciavicco

80
w 60 |
Q
E 0|
=

20 |

0 - - o o |
4 6 8 10 12 14 16 18 20

Number of nodes

Figure 6 Geometric mean of the computation time to solve the instances varying the number of
nodes n of the network. Each point is the geometric average of 140 instances, obtained with density
varying from 70% to 100%. The black squares show the running time of the backtracking algorithm
with Split = BApasic, while the red triangles represent the curve with Split = BAconves-

library [16] that provides a general and very declarative way to implement new constraints,
although we are aware that more efficient implementations could be possible. The objective
of the experimentation was discussing the relative improvement given by the exploitation of
the convex fragment, rather then evaluating the absolute performances of our implementation.
All experiments were run on a Intel Core i7-3720QM CPU @ 2.60GHz running ECL'PS®
Version 6.1 #224 on Linux Mint 18.1 Serena 64 bits, and using only one core. Timeout was
fixed to 10 minutes.

In Fig. 4, we fixed the number of vertices of the A-network to n = 15, the probability
p = 1/2 and varied the constraint density d from 5% to 100%. Each point in the curve
represents the geometric mean obtained running 20 instances. Statistically speaking, a small
number of very difficult networks may be produced in a set of 20 random instances; the
neat effect on the computation time of such instances can be softened using the geometric
mean rather then the, more common, arithmetic mean [8]. The shape of the curve shows
the expected phase transition: when the density is low, most of the instances are easily
satisfiable, while to high density correspond networks for which proving unsatisfiability is
easy. The phase transition occurs at a density around d = 80%, in which both satisfiability
and unsatisfiability are hard to prove. The curves in Fig. 4 (in which the red curve represents
the performance of the algorithm when the convex fragment is taken into account) show
that exploiting the convex fragment is particularly convenient for hard problems near the
phase transition, while the overhead that, implicitly, is introduced in such a solution makes
it not worth for easily satisfiable problems. In Fig. 5 we fixed the density to a point close

to phase transition (d = 70%), and varied the number of nodes in the graph, from 3 to 20.

Each point is the geometric mean of 20 runs. At 70% density, most problems under 20 nodes
are difficult, and, again, exploiting the convex fragment is convenient with respect to the
expected performance. Finally, we investigated the computation time of the two solutions
varying the number of nodes (from 5 to 20) independently of the density. To this end, we
generated, for each number of nodes, 140 instances with densities varying from 70% to 100%,
and considered the geometric mean of the time needed to solve them. In Fig. 6 we show the
result of such an analysis, that proves that a certain improvement in computation time exists
when the convex fragment is taken into account.

12:13

TIME 2018

12:14

Deciding the Consistency of Branching Time Interval Networks

5 Conclusions

Allen’s Interval Algebra is one of the most prominent formalisms in the area of qualitative
temporal reasoning. However, its applications are naturally restricted to linear flows of
time, raising the question of whether one can reason about branching (tree-like) flows of
time in a similar manner. We considered, in this paper, the set of 19 branching relations
suggested by Ragni and Wolfl, which enjoy the desirable characteristics of being expressible
in the language of endpoints without quantification. Ragni and W6lfl have shown that the
consistency problem for a network of branching relations is intractable (as expected), while
the consistency problem for a network of basic branching relations is polynomial. In clear
parallelism with the linear case, we defined the set of convex branching relations, which
extends the set of basic branching relations, and we proved that enforcing path consistency
of a network of convex relations is sufficient to decide its consistency, effectively providing
the first non-trivial tractable (via path consistency) fragment of the branching algebra. As
another consequence of this work, we made it possible to treat the consistency problem of a
network of constraints as a constraint propagation problem, allowing not only the possibility
of quick implementations using well-known libraries, but, also, the possibility of implementing
a clever branch-and-bound algorithm for a generic network that exploits the tractability of
convex relations as an heuristics. Finally, we tested such a solution, giving experimental
evidence of the expected improvement.

The most interesting open problems at the moment include, among other, the question of
whether the convex branching algebra is maximal with respect to tractability of the network
consistency problem (which seems unlikely) and/or with respect to the possibility of enforcing
the minimal labels of a network via path consistency, the question of whether other popular
and well-behaved fragments of the interval algebra in the linear case can be generalized to
the branching setting preserving their computational behaviour, and the question of whether
efficient enumerating algorithms can be devised for the branching case as it has been done
in the linear case. We already know that there is a set of branching point relations which
could be considered a natural generalization of convex branching point relations and whose
minimal labels problem cannot be solved by path consistency; however, fragments of the
branching point algebra that strictly include B A opnyper and for which the minimal labels of a
network can be enforced by path consistency are still possible.

—— References

1 J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832-843, 1983.

2 J.F. Allen and P. J. Hayes. Short time periods. In Proc. of IJCAI 1987: 10th International
Joint Conference on Artificial Intelligence, pages 981-983, 1987.

3 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672-713, 2002.

4 D. Bresolin, A. Montanari, and P. Sala. An optimal tableau for right propositional neighbor-
hood logic over trees. In Proc. of TIME 2008: 15th International Symposium on Temporal
Representation and Reasoning, pages 110-117. IEEE, 2008.

5 M. Broxvall. The point algebra for branching time revisited. In Proc. of KI2001: Advances
in Artificial Intelligence, volume 2174 of Lecture Notes in Artificial Intelligence, pages 106—
121. Springer, 2001.

6 J.F. Condotta, D. D’Almeida, C. Lecoutre, and L. Sais. From qualitative to discrete
constraint networks. In Proc. of the Workshop on Qualitative Constraint Calculi held with
KI 2006, pages 54—64, 2006.

M. Gavanelli, A. Passantino, and G. Sciavicco

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

W. Conradie, S. Durhan, and G. Sciavicco. An integrated first-order theory of points and
intervals: Expressive power in the class of all linear orders. In Proc. of TIME 2012: 19th
International Symposium on Temporal Representation and Reasoning, pages 47-51. IEEE,
2012.

M.J. Dent and R.E. Mercer. A new model of hard binary constraint satisfaction problems.
In Proc. of AI 96: 11th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, volume 1081 of Lecture Notes in Computer Science, pages 14-25.
Springer, 1996.

I. Diintsch, H. Wang, and S. McCloskey. Relations algebras in qualitative spatial reasoning.
Fundamenta Informaticae, 39(3):229-248, 1999.

S. Durhan and G. Sciavicco. Allen-like theory of time for tree-like structures. Information
and Computation, 259(3):375-389, 2018.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 995-1072. MIT Press, 1990.
R. Hirsch. Expressive power and complexity in algebraic logic. Journal of Logic and
Computation, 7(3):309-351, 1997.

P. Jonsson and V. Lagerkvist. An initial study of time complexity in infinite-domain
constraint satisfaction. Artificial Intelligence, 245:115-133, 2017.

A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable
subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591-640, 2003.

P.B. Ladkin and A. Reinefeld. Fast algebraic methods for interval constraint problems.
Annals of Mathematics and Artificial Intelligence, 19(3-4):383-411, 1997.

T. Le Provost and M. Wallace. Generalized constraint propagation over the CLP scheme.
Journal of Logic Programming, 16(3):319-359, 1993.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118,
1977.

L. Mudrova and N. Hawes. Task scheduling for mobile robots using interval algebra. In
Proc. of ICRA 2015: International Conference on Robotics and Automation, pages 383-388.
IEEE, 2015.

B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the efficiency
of using the ORD-Horn class. Constraints, 1(3):175-190, 1997.

M. Ragni and S. Wolfl. Branching Allen. In Proc. of ISCS 2004: 4th International Con-
ference on Spatial Cognition, volume 3343 of Lecture Notes in Computer Science, pages
323-343. Springer, 2004.

A.J. Reich. Intervals, points, and branching time. In Proc. of TIMFE 199/: 9th International
Symposium on Temporal Representation and Reasoning, pages 121-133. IEEE, 1994.

J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning. Journal of
Artifiacial Intelligence Resoning, 15:289-318, 2001.

J. Renz and B. Nebel. Qualitative spatial reasoning using constraint calculi. In M. Aiello,
I. Pratt-Hartmann, and J.F.A.K. van Benthem, editors, Handbook of Spatial Logic, pages
161-215. Springer, 2007.

J. Schimpf and K. Shen. Eclipse - from LP to CLP. Theory and Practice of Logic Pro-
gramming, 12(1-2):127-156, 2012.

P. van Beek and R. Cohen. Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132-144, 1990.

M. B. Vilain and H.A. Kautz. Constraint propagation algorithms for temporal reasoning.
In Proc. of AAAI 1986: 5th National Conference on Artificial Intelligence, pages 377-382,
1986.

12:15

TIME 2018

	Introduction
	Preliminaries
	Convex Branching Interval Relations
	Experiments
	Conclusions

