
Learning Qualitative Constraint Networks
Malek Mouhoub1

University of Regina 3737 Wascana Parkway, Regina SK S4V 0A2, Canada
mouhoubm@uregina.ca

https://orcid.org/0000-0001-7381-1064

Hamad Al Marri
University of Regina 3737 Wascana Parkway, Regina SK S4V 0A2, Canada
almarrih@uregina.ca

Eisa Alanazi
Um Al Qura University Aif Road, 21955, Mecca, Makkah Province, Saudi Arabia
eaanazi@uqu.edu.sa

Abstract
Temporal and spatial reasoning is a fundamental task in artificial intelligence and its related
areas including scheduling, planning and Geographic Information Systems (GIS). In these applic-
ations, we often deal with incomplete and qualitative information. In this regard, the symbolic
representation of time and space using Qualitative Constraint Networks (QCNs) is therefore
substantial.

We propose a new algorithm for learning a QCN from a non expert. The learning process
includes different cases where querying the user is an essential task. Here, membership queries
are asked in order to elicit temporal or spatial relationships between pairs of temporal or spatial
entities. During this acquisition process, constraint propagation through Path Consistency (PC)
is performed in order to reduce the number of membership queries needed to reach the target
QCN. We use the learning theory machinery to prove some limits on learning path consistent
QCNs from queries. The time performances of our algorithm have been experimentally evaluated
using different scenarios.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning

Keywords and phrases Temporal Reasoning, Qualitative Constraint Network (QCN), Constraint
Learning, Path Consistency, Constraint Propagation

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.19

1 Introduction

Reasoning with time and space is a fundamental task in artificial intelligence and its
related areas including scheduling, planning, Geographic Information Systems (GIS) and
computational linguistics. Handling the qualitative aspects of time and space is an important
matter when designing such systems especially when dealing with incomplete information.
Several research works have therefore been proposed in order to represent and reason on
symbolic temporal and spatial information. One of the most known approaches is the Allen
Algebra [1], based on the notion of time intervals and binary relations on them. A time
interval I is an ordered pair (I−, I+) such that I− < I+, where I− and I+ are points on
the time line. There are thirteen basic relations (Allen primitives) that can hold between
intervals. A binary relation between two intervals is represented by the disjunction of some

1 Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2016-05673

© Malek Mouhoub, Hamad Al Marri, and Eisa Alanazi;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mouhoubm@uregina.ca
https://orcid.org/0000-0001-7381-1064
mailto:almarrih@uregina.ca
mailto: eaanazi@uqu.edu.sa
https://doi.org/10.4230/LIPIcs.TIME.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Learning Qualitative Constraint Networks

Allen primitives and expresses the incompleteness of the temporal information. Any problem
under temporal constraints can be converted into an Interval Algebra (IA) network (also
called qualitative temporal network) where nodes correspond to intervals and each arc
represents the binary relation between the corresponding intervals. Note that an IA network
is a particular case of a Qualitative Constraint Networks (QCN) which is a general network
for representing problems under qualitative temporal or spatial constraints. Given an IA
network, the main reasoning task is to decide its consistency and return one or more solutions
(consistent scenarios satisfying all the temporal constraints) if it is the case. These tasks
can be achieved with a backtrack search algorithm enhanced with constraint propagation
techniques.

One of the challenges when dealing with problems under temporal or spatial constraints is
the modelling task. This latter requires some expertise in temporal and spatial representation
and reasoning, such as a good knowledge of the Allen Algebra. In this regard, we propose a
new algorithm for learning a QCN network from a non expert with a focus on the IA network.
The learning process includes different cases where querying the user is an essential task.
Here, membership queries are asked in order to elicit the temporal or spatial relationships
between pairs of temporal or spatial entities. During this acquisition process, constraint
propagation is performed in order to reduce the number of membership queries needed to
reach the target QCN. The time performance of our algorithm has been experimentally
evaluated using different randomly generated scenarios. Note that, while the focus of this
paper is on temporal constraints, our proposed algorithm can be easily generalized to any
QCN.

2 Qualitative Constraint Networks (QCNs)

A Qualitative Constraint Network (QCN) is a pair (V, C) in which V is a finite set of
variables representing temporal or spacial entities and C is a finite set of constraints on these
variables. Each constraint ci is expressed as a disjunction of binary relations between the
involved variables. Each of these relations is defined on a language set B = {b1, b2, . . . , bp}
where p > 0. A particular case of such networks is the IA network [1] where V is a set of
temporal events, each representing an assertion over a time interval; and B is the set of Allen
primitives depicted in Table 1 2. For instance, let us consider two temporal events, E1 and
E2. The following constraint expresses the fact that both events are mutually exclusive:
E1 (B ∨ Bi) E2. Note that a universal relation, corresponding to the disjunction of all
relations within B (I, representing the 13 Allen primitives in the case of the Interval Algebra),
is used to express the fact that there is no constraint between the involved entities (the
knowledge on such constraint is completely unknown).

Given a QCN, the main reasoning task that can be performed consists of checking the
consistency of the network and, if it is the case, returns one or more consistent scenarios
satisfying all the constraints of the related problem. This task can be done using a backtrack
search algorithm. Constraint propagation, before and during search, can be enforced in
order to prevent late failure earlier. The most known constraint propagation technique used
in QCN networks and especially in IA networks is Path Consistency (PC) [8, 14, 15, 20].
This technique (also called transitive closure) applies local consistency on every subset of
three variables which results in removing some inconsistent relations from the network. This

2 Note that, six of the seven primitives listed have inverse relations. This will bring the total of number
of possible relations to 13.

M. Mouhoub, H. Al Marri, and E. Alanazi 19:3

Table 1 Allen’s primitives.

Relation Symbol Inverse Meaning
X precedes Y B Bi XXXX YYYY
X equals Y E E XXXX

YYYY
X meets Y M Mi XXXXYYYY
X overlaps Y O Oi XXXX

YYYY
X during Y D Di XXXX

YYYYYYYY
X starts Y S Si XXXX

YYYYYYYY
X finishes Y F F i XXXXX

YYYYYYYYY

will lead to the reduction on the search space. Assuming X, Y and Z are three temporal
events, if X precedes Y and Y meets Z, then it must be that X precedes Z as well. Any
other relation belonging to the constraint between X and Z should be removed. Local
consistency is enforced using a |B|2 composition table (13 x 13 composition table between
Allen’s primitives in the case of IA networks). Note that PC can also infer new relations by
refining universal relations into a more specific one. For instance, if we take the previous
example and assume that there is no constraint between Y and Z then PC will infer a new
relation (precedes) between these two events.

Partial Path Consistency (PPC) is an extension of PC based on chordal graphs. A chordal
graph is a graph such that, for every connected four vertexes and higher there must be
one chordal edge [8]. A chordal graph is also called triangulated graph since the graph can
be printed in a map in which the vertices are connected in triangle shapes. Partial Path
Consistency assures that the chordal graph is consistent such as when applying regular PC [8].
Partial Path Consistency is much efficient than PC when working with chordal graphs. It is
useful in case there are universal edges in the graph that can be removed to form a chordal
graph.

3 Constraint Acquisition

Constraint acquisition is the process of inducing, from a set of examples, a constraint network
representing a given problem. The main goal of constraint acquisition algorithms is to
minimize the number of examples needed to converge to a target constraint network. In this
regard, several strategies have been explored and a passive learning algorithm (CONACQ.1
or the passive version of the CONACQ acquisition system [7]) using unit propagation to
speed up the convergence test has been proposed in [5]. In [6], a proposed active constraint
acquisition technique, called QUACQ, works by asking the user to classify partial queries
(those queries not involving all variables) in addition to membership queries (where the user
is asked to answer “yes” or “no” depending on whether the provided assignment is a solution
or not). Partial queries are asked when given a negative example and allow QUACQ to
converge in a number of queries that is logarithmic in the number of variables. An extension
to this latter algorithm has been proposed in [3] where multiple constraints are learned (and
not only one as in QUACQ) using Minimal Unsatisfiability Subsets (MUS).

In [7], the active version of the CONACQ architecture, called CONACQ.2, is proposed
as shown in Algorithm 1. CONACQ.2 starts with a bias B (similar to our language set
B) and its corresponding background language K. K is a set of declarative rules (definite

TIME 2018

19:4 Learning Qualitative Constraint Networks

Algorithm 1 CONACQ.2 [7].
1: procedure CONACQ.2
2: Input: a bias B, a background knowledge K, a strategy Strategy

3: Output: a clausal theory T encoding the target network
4: T ← ∅; converged← false; N ← ∅
5: while ¬converged do
6: q ← QueryGeneration(B, T, K, N, Strategy)
7: if q = nil then
8: converged← true

9: else
10: if Ask(q) = no then
11: T ← T ∧ (

∨
c∈K(q) a(c))

12: else
13: T ← T ∧

∧
c∈K(q) ¬a(c)

14: end if
15: end if
16: end while

return T

17: end procedure

Horn clauses) expressing some properties (such as the transitivity property) that can be used
to enforce local consistency between constraints. In the case of QCNs, the set K basically
corresponds to the composition table we mentioned in the previous section. Given these
two inputs B and K, in addition to a given strategy to follow for generating the queries,
the algorithm iterates by asking the user a new generated query at each time and expands
the theory set T (initially set to the empty set) according to the answer provided. More
precisely, if the user answers “no” to a given query q then the algorithm removes all the
concepts that support this query (as shown in line 11 of the Algorithm). In case the answer
is “yes” then all the concepts rejecting q must be removed (as per line 13 of the Algorithm).
The algorithm terminates when there is no query to generate. The target network, in the
form of the clausal theory T is then returned.

4 Proposed Learning Algorithm for QCNs

In this section, we present an algorithm for learning QCNs in the particular case of AI
networks. Note that our algorithm can be easily generalized to any QCN. We consider the
following three cases, each with a different target QCN.

1. Learning consistent and complete scenarios: the target QCN is a complete graph where
each edge (constraint) contains exactly 1 relation (Allen primitive in the case of IA
networks).

2. Learning consistent but incomplete scenarios: same as case 1 but in the case of incomplete
graphs (some constraints do not exist between pairs of variables).

3. Learning QCNs: the target QCN is a graph (can be complete) where each edge contains
1 or more primitives (each constraint has one or more relations). Note that, in this
particular case we are learning a QCN problem rather than a consistent scenario (solution)
as it is in cases 1 and 2.

M. Mouhoub, H. Al Marri, and E. Alanazi 19:5

Following CONACQ.2 [7], our algorithm learns through membership queries and uses PC
to reduce the number of queries. Note that when using PC for case 3, our learning algorithm
will return a path consistent QCN problem.

4.1 Proposed Learning Algorithm
The algorithm starts with all the constraints completely unknown (corresponding to the
universal relation I in the case of IA networks). The user is then asked a membership
query for each relation within each constraint. If the answer is “yes” for a given query, the
corresponding constraint will be replaced by the relation that has been confirmed (all the
other relations will be eliminated). Otherwise (if the answer is “no”), the related relation will
be removed from the constraint. After every query, PC is applied on the graph to remove
path inconsistent relations due to this recent update. This will reduce the number of relations
per constraint which will reduce the number of subsequent queries and helps getting the
target QCN scenario (solution) sooner.

The pseudo-code of our method is listed in Algorithm 2. Gt is initially set to a complete
constraint graph with universal relations. B and CT are respectively the set of possible
relations and composition table of the QCN to learn. QueryGeneration is a function that
generates a membership query each time it is called. We use two implementations of this
function. In the first one, the constraint and its related relation (to confirm) are picked
randomly. In the second implementation, the relations to confirm are picked according to
the first fail principle used when solving general Constraint Satisfaction Problems (CSPs) [9].
In this regard we use the ordering heuristics proposed in [20], namely “weight” and “cardi-
nality”. The idea behind the “weight” heuristic is to quantify the restriction imposed by a
relation, when assigned to a given edge, on the temporal constraints of the other edges. The
“cardinality” heuristic is a special case of the “weight” heuristic when considering that all
relations have the same weight (equal to 1). The algorithm iterates by processing a query at
each time, until a solution (target QCN) is found or a path inconsistency is detected.

Given that the constraint graph is not necessarily complete, our algorithm for case 2
differs from the previous one, as follows. If the answer is “yes” for a given query, the relation
is confirmed but we do not remove the other relations as the corresponding constraint can be
the universal relation, I. Instead, we ask the user a second query for the same constraint in
order to check if this latter is I. If the answer is “yes” then the constraint is confirmed to be
universal, otherwise (the answer is “no”) we replace the constraint by the relation confirmed
with the first query. The rationale is that, in case 2 we either have a single relation or a
universal relation for each constraint.

In case 3, given that the number of relations per constraint varies from 1 to |B| (13 in
the case of IA networks) then we will have to ask the user subsequent queries for the same
constraint regardless of the answer. More precisely, if the answer is “yes” then we need to ask
the user for the remaining relations as we can have more than one relation per constraint.

4.2 Dealing with Inconsistent Answers
As stated in Algorithm 2, our learning method collapses (fails to return the target QCN) if
PC detects an inconsistency after one of the constraints becomes empty (has no relations). In
this case, we need to identify the query that has been answered incorrectly. We address this
task using a backtrack search algorithm to go backward and let the user confirm previous
answers until we reach the state where the user changes the answer of a query. Given that
we can have more than one incorrect answer, every time a response to a query is changed, we

TIME 2018

19:6 Learning Qualitative Constraint Networks

Algorithm 2 Learning QCN for Case 1.
1: procedure LearningQCN
2: Input: a language set B, a composition table CT

3: Output: a target QCN Gt

4: Gt ← complete graph with universal relations
5: q ← QueryGeneration(Gt)
6: while q 6= nil do
7: r ← Relation(q)
8: if Ask(q) = “yes” then
9: ConfirmRelation(Gt, r)

10: else
11: RemoveRelation(Gt, r)
12: end if
13: status← PC(Gt, CT)
14: if status = “inconsistent” then
15: return “collapse”
16: end if
17: q ← QueryGeneration(Gt)
18: end while
19: return Gt

20: end procedure

resume the normal querying starting back from the state where the user fixed the incorrect
answer. For example, assume that after a query qj is answered, an inconsistency is detected.
Our algorithm will then backtrack until it identifies the query qm causing this inconsistency.
The user will then change the answer and our learning algorithm will resume from query
qm+1. The pseudo code of our method is listed in Algorithm 3. This algorithm is very similar
to Algorithm 2 except that we save the query and the current Gt at each time in the stack s.

5 Theoretical Limits on Learning QCNs

In this section we use the learning theory machinery to prove some limits on learning Path
Consistent QCNs from queries. In particular, we are interested in the number of queries
required by the best possible algorithm. The problem addressed in this work can be viewed as
a concept learning problem [2]. In concept learning, a concept is a subset of a given universe
X and a concept class C is a set of concepts. We assume the user has a hidden target c∗ ∈ C
and we try to exactly identify it with the minimum number of queries. There are different
types of queries and we are interested in what is known as membership queries [2, 12]. In
learning with membership queries, the learning algorithm, having access to the set of concepts
C, picks an instance x ∈ X and asks the user “Is x ∈ c∗?”. The answer is either “yes” or
“no”. This process continues until the algorithm exactly identifies c∗. The main challenge
here is to have a sequence of instances x, x′, . . . of minimum size that exactly identifies any
hidden concept. Let I = {1, 2, . . . , n} be the set of entities and B = {b1, b2, . . . , bp} be the
set of p > 0 relations. In this work, we are interested in the learnability of the three cases of
QCNs presented in the previous Section and defined over I and B as follows:
1. The set of complete scenarios Qcmp.
2. The set of incomplete scenarios Qinc.
3. The set of all QCNs Qall.

M. Mouhoub, H. Al Marri, and E. Alanazi 19:7

Algorithm 3 Learning with Mistakes.
1: procedure LearningWithMistakesQCN
2: Input: B: Language set. CT : Composition Table
3: Output: Gt : target QCN
4: Gt ← complete graph with universal relations
5: s← ∅
6: q ← QueryGeneration(Gt)
7: stackpush(s, < Gt, q >)
8: while q 6= nil do
9: r ← Relation(q)
10: if Ask(q) = “yes” then
11: ConfirmRelation(Gt, r)
12: else
13: RemoveRelation(Gt, r)
14: end if
15: status← PC(Gt, CT)
16: while status = “inconsistent” do
17: stackpop(s, < Gt, q >)
18: if Ask(q) = “yes” then
19: ConfirmRelation(Gt, r)
20: else
21: RemoveRelation(Gt, r)
22: end if
23: status← PC(Gt, CT)
24: end while
25: q ← QueryGeneration(Gt)
26: stackpush(s, < Gt, q >)
27: end while
28: return Gt

29: end procedure

Clearly, Qcmp (Qinc (Qall. Let S be the set of two-element subsets of I. An instance
x is a pair (s, b) where s ∈ S and b ∈ B. For simplicity, we write the triple (i, j, b) to
denote the instance (s, b) where s = {i, j}. The instance space X is then defined simply as
X = S × B and clearly |X | =

(
n
2
)
× p. A concept c is a subset of X or equivalently it is a

mapping from X to {0, 1} where c(x) = 1 iff x ∈ c for any x ∈ X . For a set Q of QCNs, c is
representable by Q if there exists a QCN N ∈ Q where c(x) = 1 if and only if x holds in
N . The concept class C is then defined as the set of all concepts that are representable by
Q. We consider the three concept classes Ccmp, Cinc and Call that represent respectively the
set of concepts that are representable by the set of QCNs in Qcmp,Qinc and Qall. One of
the important parameters in learning theory is the teaching dimension [11]. The teaching
dimension of a concept c w.r.t. a class C, TD(c, C), is the smallest number of examples (or
instances) that distinguishes c from every other concept in the class. The teaching dimension
of a class C (denoted as TD(C)) is the teaching dimension of the hardest concept to teach,
i.e., TD(C) = maxc∈C TD(c, C) [11]. It is known that the number of membership queries
required by the best possible algorithm is lower bounded by TD [11]. Therefore, any learning
algorithm would need at least TD queries in the worst case scenario. In the following, we
show the teaching dimension of the three classes of QCNs. We believe such results would
give some insights into the learnability of QCNs in general.

TIME 2018

19:8 Learning Qualitative Constraint Networks

I Proposition 1. TD(Ccmp) =
(

n
2
)
.

Proof. For the upper bound, every concept c ∈ Ccmp represents a complete scenario with(
n
2
)
edges and we can teach any edge (i, j) in c by at least one instance (i, j, bk) where bk ∈ B

is the singleton relation that holds between i and j. To see why TD(Ccmp) is at least
(

n
2
)
,

consider the concept c where, for any two edges (i, j) and (j, r) in c, we cannot infer any
useful information on the relation between (i, r) from the transitive closure table. Thus,
there exists no edges in c where we can infer their relation from the other two edges and one
instance per edge is required. J

Note that the fact that Ccmp ⊂ Cinc does not necessarily mean TD(Ccmp) ≤ TD(Cinc) i.e.,
TD is not monotonic. There could be concepts that are hard to teach on small classes but
their teaching becomes easy on large classes. Therefore, the above result gives no clue over
the TD of the set of incomplete scenarios.

I Proposition 2. TD(Cinc) = n(n− 1)− 1.

Proof. For the upper bound, at least two examples x = (i, j, bk) and x′ = (i, j, bk′) for
bk 6= bk′ suffice to teach the relation between any pair (i, j) of entities. In particular, if there
exists an edge (i, j) with relation bk, then c(x) = 1 and c(x′) = 0 otherwise if there exists no
edge between i and j then c(x) = 1 and c(x′) = 1 for any concept c ∈ Cinc. As any concept
in Cinc has at least one edge in its graph, it follows that we need at least two examples per
pair and for at least one pair (i, j) we need exactly one instance (since the QCN where all
the edges are universal is not included in this class). Therefore, TD(Cinc) ≤ n(n − 1) − 1.
For the lower bound, consider the concept c∅ that represents a QCN with empty edge set
in its graph. It is easy to see that we cannot teach such concept with fewer than n(n− 1)
examples as we need to confirm that every pair (i, j) holds a universal relation. J

I Proposition 3. TD(Call) = |X |.

Proof. The instance space size |X | is a trivial upper bound on the teaching dimension
of any class. For the lower bound, consider the concept c∅ again. Our argument is that
TD(c∅, Call) > |X | − 1. To see this, consider any set T of instances where |T | = |X | − 1 and
w.l.o.g. assume X = T ∪ {(i, j, bk)} for an arbitrary instance (i, j, bk). We can always have
another concept c′ 6= c∅ where it represents a QCN with only one edge (i, j) and its relation
equals to B\{bk}. Thus, T cannot distinguish c∅ from c′ and TD(c∅, Call) > |X | − 1. J

6 Experimentation

We report on the experiments conducted in order to assess the effect of PC on the number of
queries needed to learn an IA network. In this regard, we compare our proposed learning
algorithm with and without PC or PPC (we call the method without PC, the “Naive” method)
for each of the three cases listed in Section 4 as well as the case of incorrect answers. In
the case where PC is used, we consider 2 situations: the case where the QueryGeneration

function generates the queries randomly as well as using an ordering heuristic as described
in Section 4. Moreover, for case 2 we consider PPC in addition to PC, given that we have
incomplete graphs in this case. All the experiments are conducted on a Dell XPS 8900,
i7-6700K, 32 GB RAM, running Linux. All the algorithms are coded in Java. For each of
these cases, we first generate a random consistent temporal scenario (that we call Gt). We
then add primitives randomly to get an initial graph Gproblem with the goal of achieving the
following, at the end of the learning process: Gproblem = Gt. Each query is generated with a
probability Py of getting a “yes” answer. The general approach is similar for all the cases we
consider in the following, and differs in terms of the target Gt).

M. Mouhoub, H. Al Marri, and E. Alanazi 19:9

In case 1, we use the S(n, p) model [20] that starts by generating n numeric random
intervals (pairs of natural values) assigned to each temporal variable in the graph. Allen
primitives are then deduced from pairs of these numeric intervals. For example, let us assume
the following assignments to two temporal events X and Y : X = (3, 11) and Y = (7, 18).
The corresponding Allen primitive is then: (XOY) i.e. X overlaps Y . The model S(n, p)
ensures a consistent solution since all variables have numeric intervals. A random consistent
scenario is then build and considered as our target graph Gt. Our algorithm then starts from
a complete graph Gproblem where each edge contains the universal relation I (the disjunction
of all the 13 primitives).

Case 2 is similar to case 1 with the following difference when generating the target
network. Some edges in Gt will be removed based on a parameter Pu corresponding to the
percentage of universal relations in Gt. These relations (edges to be removed) will be in a set
Eu that is used in the query generation. Qsolution is generated by traversing all the edges
in Gt, and by adding all the universal relations in Eu. In case 3, we first generate Gt as in
case 1 and then randomly add more primitives to each constraint (X, Y). Gt is therefore a
complete graph. Qsolution contains queries for the primitives within the constraint (X, Y).
The query generation for inconsistent scenarios is produced as follows. Mistakes are picked
randomly with a percentage ratio Pm. Query generators are similar to the query generators
in case 1, case 2, and case 3. However, queries are labelled with isMistake as a boolean
indicator which is checked when answering each query. If isMistake is true, then the answer
would be incorrect, otherwise, the answer must be correct. Figures 1, 2, and 3 show the
comparative results for the 3 cases when 100 variables are considered. It is clear from the
chart corresponding to case 1 that PC has a significant effect on reducing the number of
queries especially when there is a small percentage of “yes” answers. For instance, in the
extreme case where there is no “yes” answers, the Naive method requires about 60000 queries
while the learning method using PC only needs about 2500 queries to reach the target IA
scenario. By increasing the percentage of “yes” answers, the number of queries starts to drop
down to 4950 queries for 100% of “yes” answers using the Naive method, which is very close
to the 3731 queries that are asked using PC. The “cardinality descending” heuristic is the
most effective one as we can easily see from the chart, while the other two do not seem to
have an effect when compared to PC without heuristics.

The situation in case 2 is similar to the one in case 1. All the methods using path consist-
ency are better than the naive method. These methods have however similar performance.

For case 3, we can easily see that there is a significant difference between the 3 methods
considered. PC with “cardinality” ordering heuristic is the winner in this situation and is
followed by the PC method without heuristic. These results are justified by the fact that
we are dealing with complete graphs with much more relations per constraint than cases 1
and 2.

Tables 2, 3 and 4 show the results for inconsistent scenarios due to mistakes for each of
the 3 cases when 100 variables are considered. As we can notice, in all cases the number of
queries, mistakes and related backtracks is considerably reduced when path consistency is
used.

In Table 2, we can easily see that there is a significant difference between the Naive
method and PC in terms of number of queries, number of mistakes detected and running
time. There are 14 times more mistakes detected by the Naive method than the PC method.
This is explained by the fact that PC removes inconsistent relations at each time leaving less
chances for the user to choosing them. Also, the ordering heuristic does not seem to do a
good job in this case.

TIME 2018

19:10 Learning Qualitative Constraint Networks

0 20 40 60 80 100

0

1

2

3

4

5

6

·104

Case 1: Percentage of “yes” answers

N
um

be
r
of

Q
ue
rie

s
Naive

P C

PC with “cardinality” ordering heuristic
PC with “weight” ordering heuristic

PC with “cardinality descending” ordering heuristic

Figure 1 Test results for case 1.

In Table 3, we notice that the performance PPC is better than the one of PC and this
is due to the fact that we are dealing with incomplete graphs. Also, the “weight” ordering
heuristic is effective in this case for both PC and PPC. This is again explained by the nature
of problems we are dealing with in case 2.

Table 4 clearly shows that both the “cardinality” and “weight” ordering heuristics are
effective given that the objective is to produce a path consistent QCN.

7 Conclusion

The symbolic representation of time and space is very relevant especially when dealing with
incomplete information. We have proposed a new algorithm for learning QCNs by queries.
The proposed algorithm is enhanced with path consistency to reduce the number of queries
needed to reach a target QCN. In order to assess the effect of PC and ordering heuristics
on reducing this number, in practice, we have conducted several experiments on randomly
generated IA networks, considering several scenarios. The results of these tests are very
promising and encouraging. In this regard, we plan to pursue this work by considering other
QCNs such as the Region Connection Calculus (RCC) [13], the rectangle algebra [4] and the
n-intersections [10]. We will as well consider temporal constraint networks involving both
quantitative and qualitative information [17,18]. Another future direction, we will consider,
is to extend our algorithm to learning preferences as these often co-exist with constraints in
many real world applications [16,19].

M. Mouhoub, H. Al Marri, and E. Alanazi 19:11

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

·104

Case 2: Percentage of “yes” answers

N
um

be
r
of

Q
ue
rie

s

Naive

P C

PC with “cardinality”
PC with “weight”

PC with “cardinality descending”
P P C

PPC with “cardinality”
PPC with “weight”

PPC with “cardinality descending”

Figure 2 Test results for case 2.

Table 2 Results for inconsistent scenarios for case 1.

Method # of Queries Time(s) Mistakes Backtracks
Naive 13005708 802.175 399 398
PC 4444 55.061 28 28

PC with “cardinality” 6879 82.741 43 43
PC with “weight” 7819 122.455 36 36

PC with “cardinality descending” 38367 524.589 75 75

Table 3 Results for inconsistent scenarios for case 2.

Method # of Queries Time(s) Mistakes Backtracks
Naive 63206804 3430.845 6676 6666
PC 36662 458.491 4 5
PPC 10598 114.350 3 2

PC with “cardinality” 28906 327.168 5 0
PPC with “cardinality” 88593 986.297 14 14

PC with “weight” 8786 198.325 1 1
PPC with “weight” 8655 109.046 2 2

PC with “cardinality descending” 132225 2470.913 19 20
PPC with “cardinality descending” 67066 706.155 8 9

TIME 2018

19:12 Learning Qualitative Constraint Networks

0 20 40 60 80 100

0

1

2

3

4

5

6

7
·104

Case 3: Percentage of “yes” answers

N
um

be
r
of

Q
ue
rie

s

Naive

P C

PC with “cardinality”
PC with “weight”

PC with “cardinality descending”

Figure 3 Test results for case 3.

Table 4 Results for inconsistent scenarios for case 3.

Method # of Queries Time(s) Mistakes Backtracks
Naive 2384321 123.455 66 66
PC 40917 542.344 41 1

PC with “cardinality” 11514 46.772 10 6
PC with “weight” 11280 54.366 11 2

PC with “cardinality descending” 330215 5323.526 69 61

M. Mouhoub, H. Al Marri, and E. Alanazi 19:13

References
1 James F Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.
2 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
3 R. Arcangioli and N. Lazaar. Multiple Constraint Acquisition. In Workshop on Constraints

and Preferences for Configuration and Recommendation, the Twenty-Forth International
Joint Conference on Artificial Intelligence, 2015.

4 Philippe Balbiani, Jean-François Condotta, and Luis Farinas del Cerro. A new tractable
subclass of the rectangle algebra. In Proceedings of the 16th international joint conference
on Artifical intelligence - Volume 1, pages 442–447, 1999.

5 C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin. Query-Driven Constraint Acquisition.
In Proceedings of the Twentiest International Joint Conference on Artificial Intelligence,
pages 50–55, 2007.

6 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar,
Nina Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via par-
tial queries. In IJCAI’2013: 23rd International Joint Conference on Artificial Intelligence,
page 7, 2013.

7 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017. doi:10.1016/j.artint.2015.08.
001.

8 Christian Bliek and Djamila Sam-Haroud. Path consistency on triangulated constraint
graphs. In IJCAI, volume 99, pages 456–461. Citeseer, 1999.

9 Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

10 Max J. Egenhofer and Robert D. Franzosa. Point-set topological spatial relations. Inter-
national Journal of Geographical Information Systems, 5(2):161–174, 1991.

11 Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. Journal of
Computer and System Sciences, 50:20–31, 1995.

12 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994.

13 Sanjiang Li and Mingsheng Ying. Region connection calculus: Its models and composition
table. Artificial Intelligence, 145(1):121–146, 2003.

14 Zhiguo Long, Michael Sioutis, and Sanjiang Li. Efficient path consistency algorithm for
large qualitative constraint networks. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, pages 1202–1208. AAAI Press, 2016.

15 Roger Mohr and Thomas C Henderson. Arc and path consistency revisited. Artificial
intelligence, 28(2):225–233, 1986.

16 Malek Mouhoub and Amrudee Sukpan. Managing temporal constraints with preferences.
Spatial Cognition & Computation, 8(1-2):131–149, 2008.

17 Malek Mouhoub and Amrudee Sukpan. Conditional and composite temporal csps. Applied
Intelligence, 36(1):90–107, 2012.

18 Peter Revesz. Tightened transitive closure of integer addition constraints. In Eighth Sym-
posium on Abstraction, Reformulation, and Approximation, pages 136–142. AAAI, 2009.

19 Samira Sadaoui and Shubhashis Kumar Shil. A multi-attribute auction mechanism based
on conditional constraints and conditional qualitative preferences. JTAER, 11(1):1–25,
2016.

20 Peter Van Beek and Dennis W Manchak. The design and experimental analysis of al-
gorithms for temporal reasoning. Journal of Artificial Intelligence Research, 4(1):1–18,
1996.

TIME 2018

http://dx.doi.org/10.1016/j.artint.2015.08.001
http://dx.doi.org/10.1016/j.artint.2015.08.001

	Introduction
	Qualitative Constraint Networks (QCNs)
	Constraint Acquisition
	Proposed Learning Algorithm for QCNs
	Proposed Learning Algorithm
	Dealing with Inconsistent Answers

	Theoretical Limits on Learning QCNs
	Experimentation
	Conclusion

