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Abstract
It is a well known fact that sequential algorithms which exhibit a strong "local" nature can
be adapted to the distributed setting given a legal graph coloring. The running time of the
distributed algorithm will then be at least the number of colors. Surprisingly, this well known
idea was never formally stated as a unified framework. In this paper we aim to define a robust
family of local sequential algorithms which can be easily adapted to the distributed setting. We
then develop new tools to further enhance these algorithms, achieving state of the art results for
fundamental problems.

We define a simple class of greedy-like algorithms which we call orderless-local algorithms. We
show that given a legal c-coloring of the graph, every algorithm in this family can be converted
into a distributed algorithm running in O(c) communication rounds in the CONGEST model.
We show that this family is indeed robust as both the method of conditional expectations and the
unconstrained submodular maximization algorithm of Buchbinder et al. [10] can be expressed as
orderless-local algorithms for local utility functions – Utility functions which have a strong local
nature to them.

We use the above algorithms as a base for new distributed approximation algorithms for
the weighted variants of some fundamental problems: Max k-Cut, Max-DiCut, Max 2-SAT and
correlation clustering. We develop algorithms which have the same approximation guarantees
as their sequential counterparts, up to a constant additive ε factor, while achieving an O(log∗ n)
running time for deterministic algorithms and O(ε−1) running time for randomized ones. This
improves exponentially upon the currently best known algorithms.
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35:2 Adapting Local Sequential Algorithms to the Distributed Setting

Table 1 Summary of our results for the CONGEST model (Õ hides factors polylogarithmic in
∆). (*) General graphs, max-agree (†) Unweighted graphs, only Max-Cut (k = 2).

Problem Our Approx.Our TimePrev Approx. Prev Time Notes

Weighted Correlation-Clustering* 1/2− ε O(log∗ n) - - det.
Weighted Max k-Cut 1− 1/k − ε O(log∗ n) 1/2 [12]† Õ(∆ + log∗ n) det.
Weighted Max-Dicut 1/3− ε O(log∗ n) 1/3 [12]† Õ(∆ + log∗ n) det.
Weighted Max-Dicut 1/2− ε O(ε−1) 1/2 [12]† Õ(∆ + log∗ n) rand.
Weighted Max 2-SAT 3/4− ε O(ε−1) - - rand.

1 Introduction

A large part of research in the distributed environment aims to develop fast distributed
algorithms for problems which have already been studied in the sequential setting. Ideally,
we would like to use the power of the distributed environment to achieve a substantial
improvement in the running time over the sequential algorithm, and indeed, for many
problems distributed algorithms achieve an exponential improvement over the sequential
case. One approach to designing distributed algorithms is using the sequential algorithm
as natural staring point [5–7,12,18], then certain adjustments are made for the distributed
environment in order to achieve a faster running time.

There is a well known folklore in distributed computing, which roughly says that if a
sequential graph algorithm works by traversing nodes in any order (perhaps adversarial),
and for every node makes a local decision, then given a legal c-coloring of the graph, the
algorithm can be adapted to the distributed setting by going over all color classes, and
for each executing all nodes in the class simultaneously. Surprisingly, there is no formal
framework describing the above. In this paper we provide such a framework for a specific
class of algorithms (defined later).

We note that for general graphs a legal coloring may require at least ∆ + 1 colors, where
∆ is the maximal degree of the graph. Using the above framework we aim to answer the
following question: Are there certain classes of algorithms where using the above can result
in a running time sublinear in ∆? We show that for certain approximation problems the
answer is quite surprising, as we are able to achieve an almost constant running time!

More precisely, we show that for the problems of Max k-Cut, Max-DiCut, Max 2-SAT
and correlation clustering we can adapt the sequential algorithm to these problems in such a
way that the running time is O(log∗ n) rounds for deterministic algorithms and O(ε2) for
randomized ones, while losing only an additive ε-factor in the approximation ratio. For the
problems of Max-Cut and Max-DiCut this greatly improves upon the previous best known
results, which required a number of rounds linear in ∆. A summary of our results appears in
Table 1.

1.1 Tools and results
In this paper we focus our attention on approximation algorithms for unconstrained optimiz-
ation problems on graphs. We are given some graph G(V,E), where each vertex v is assigned
a variable Xv taking values in some set A. We aim to maximize some utility function f

over these variables (For a formal definition see Section 2). Our distributed model is the
CONGEST model of distributed computation, where the network is represented by a graph,
s.t nodes are computational units and edges are communication links. Nodes communicate in
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synchronous communication rounds, where at each round a node sends and receives messages
from all of its neighbors. In the CONGEST model the size of messages sent between nodes
is limited to O(logn) bits, where |V | = n. This is more restrictive than the LOCAL model,
where message size is unbounded. Our complexity measure is the number of communication
rounds of the algorithm.

Adapting a sequential algorithm of the type we describe above to the distributed setting,
means we wish each node v in the communication graph to output an assignment to Xv

such that the approximation guarantee is close to that of the sequential algorithm, while
minimizing the number of communication rounds of the distributed algorithm. Our goal is to
formally define a family of sequential algorithms which can be easily converted to distributed
algorithms, and then develop tools to allow these algorithms to run exponentially faster,
while achieving almost the same approximation ratio. To achieve this we focus our attention
on a family of sequential algorithms which exhibit a very strong local nature.

We define a family of utility functions, which we call local utility functions (Formally
defined in Section 2). We say that a utility function f is a local utility function, if the change
to the value of the function upon setting one variable Xv can be computed locally. Intuitively,
while optimizing a general utility function in the distributed setting might be difficult for
global functions, the local nature of the family of local utility functions makes it a perfect
candidate.

We focus on adapting a large family of, potentially randomized, local algorithms to the
distributed setting. We consider orderless-local algorithms - algorithms that can traverse the
variables in any order and in each iteration apply some local function to decide the value of
the variable. By local we mean that the decision only depends on the local environment of
the node in the graph, the variables of nodes adjacent to that variable and some randomness
only used by that node. This is similar to the family of Priority algorithms first defined
in [9]. The goal of [9] was to formally define the notion of a greedy algorithm, and then
to explore the limits of these algorithms. Our definition is similar (and can be expressed
as a special case of priority algorithms), but the goal is different. While [9] aims to prove
lower bounds, we provide some sufficient conditions that allow us to easily transform local
sequential algorithms into fast distributed algorithms.

Our definitions are also similar to the SLOCAL model [21], which also shows that sequential
algorithms which traverse the graph vertices in any order and make local decisions can be
adapted to the distributed LOCAL model in poly logarithmic rounds using randomization.
While the results of [21] are much more broad, our transformation does not require any
randomization and works in the CONGEST model. Finally, we should also mention the
field of local computation algorithms [35] whose aim is developing efficient local sequential
algorithms. We refer the reader to an excellent survey by Levi and Medina [30].

One might expect that due to the locality of this family of algorithms it can be distributed
if the graph is provided with a legal coloring. The distributed algorithm goes over the color
classes one after another and executes all nodes in the color class simultaneously. This solves
any conflicts that may occur form executing two neighboring nodes, while the orderless
property guarantees that this execution is valid. In a sense this argument was already used
for specific algorithm (Coloring to MIS [32], MaxIS of [5], Max-Cut of [12]). We provide a
more general result, using this classical argument. Specifically, we show that given a legal
c-coloring, any orderless-local algorithm can be distributed in O(c)-communication rounds in
the CONGEST model.

To show that this definition is indeed robust, we show two general applications. The
first is adapting the method of conditional expectations (Formally defined in Section 2)

DISC 2018



35:4 Adapting Local Sequential Algorithms to the Distributed Setting

to the distributed setting. This method is inherently sequential, but we show that if the
utility function optimized is a local utility function, then the algorithm is an orderless-local
algorithm. A classical application of this technique is for Max k-cut, where an (1 − 1/k)-
approximation is achieved when every node chooses a cut side at random. This can be
derandomized using the method of conditional expectations, and adapted to the distributed
setting, as the cut function is a local utility function. We note that the same exact approach
results in a (1/2− ε)-approximation for max-agree correlation clustering on general graphs
(see Section 2 for a definition). Because the tools used for Max-Cut directly translate to
correlation clustering, we focus on Max-Cut for the rest of the paper, and only mention
correlation clustering at the very end.

The second application is the unconstrained submodular maximization algorithms of [10],
where a deterministic 1/3-approximation and a randomized expected 1/2-approximation
algorithms are presented. We show that both are orderless-local algorithms when provided
with a local utility function. This can be applied to the problem of Max-DiCut, as it is an
unconstrained submodular function, and also a local utility function. The algorithms of [10]
were already adapted to the distributed setting for the specific problem of Max-DiCut by [12]
using similar ideas. The main benefit of our definition is the convenience and generality of
adapting these algorithms without the need to consider their analysis or reprove correctness.
We conclude that the family of orderless-local algorithms indeed contains robust algorithms
for fundamental problems, and especially the method of conditional expectations.

At the time this paper was first made public, there was no distributed equivalent for
the method of conditional expectations. We have since learned that, independently and
simultaneously, an adaptation of the method of conditional expectations to the distributed
setting was also presented in [20]. Their results show how the method of conditional
expectations combined with a legal coloring can be used to convert any randomized LOCAL
r-round algorithm for a locally checkable problem to a deterministic one, running in O(∆O(r)+
O(r log∗ n)).1 This is done via a transformation to an SLOCAL algorithm, where the
derandomization is applied and then transforming back to a LOCAL algorithm.

Although not stated for the CONGEST model, we believe it to be the case that when r = 1
their application of the method of conditional expectations works in the CONGEST, and is
equivalent to our results. Another difference apart from the different model of communication,
is that they focus on derandomizing locally checkable problems, while we focus on local utility
functions. These two families of problems are different, as the approximation guaranteed for
a certain local utility function need not be locally checkable. This last point highlights the
different goal of the two papers. While [20] skillfully show that a large family of LOCAL
algorithm can be derandomized, we aim to adapt sequential algorithm to the distributed
setting while achieving as fast of a running time as possible in the more restrictive CONGEST
model – hence we focus on local utility function which capture the locality of the optimization
process.

Next, we wish to consider the running time of these algorithms. Recall that we expressed
the running time of orderless local algorithms in terms of the colors of some legal coloring
for the graph. For a general graph, we cannot hope for a legal coloring using less than ∆ + 1,
where ∆ is the maximum degree in the graph. This means that using the distributed version
of an orderless-local algorithm unchanged will have a running time linear in ∆. We show how

1 They actually show that the running time is either O(∆O(r) + O(r log∗ n)) or r · 2O(
√

logn), achieving
the latter via network decomposition. We focus on the first bound, as the second is less relevant for the
comparison which follows.
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to overcome this obstacle for Max k-Cut and Max-DiCut. The general idea is to compute a
defective coloring of the graph which uses few colors, drop all monochromatic edges, and call
the algorithm for the new graph which now has a legal coloring.

A key tool in our algorithms is a new type of defective coloring we call a weighted ε-defective
coloring. The classical defective coloring allows each vertex to have at most d monochromatic
edges, for some defect parameter d. We consider positively edge weighted graphs and require
a weighted fractional defect - for every vertex the total weight of monochromatic edges is at
most an ε-fraction of the total weight of all edges of that vertex. We show that a weighted
ε-defective coloring using O(ε−2) colors can be computed deterministically in O(log∗ n)
rounds using the defective coloring algorithm of [29]. The classical algorithm of Kuhn was
found useful in the adaptation of sequential algorithms to the distributed setting [17, 21],
thus its effectiveness for weighted ε-defective coloring might be of further use.

Although we cannot guarantee a legal coloring with a small number of colors for any
graph G(V,E,w), we may remove some subset of E which will result in a new graph G′

with a low chromatic number. We wish to do so while not decreasing the total sum of edge
weights in G′, which we prove guarantees the approximation will only be mildly affected for
our cut problems. Formally, we show that if we only decrease the total edge weight by an
ε-fraction, we will incur an additive ε-loss in the approximation ratio of the cut algorithms
for G. For the randomized algorithm this is easy, simply color each vertex randomly with a
color in [dε−1e] and drop all monochromatic edges. For the deterministic case, we execute
our weighted ε-defective coloring algorithm, and then remove all monochromatic edges. We
then execute the relevant cut algorithm on the resulting graph G′ which now has a legal
coloring, using a small number of colors. The above results in extremely fast approximation
algorithms for weighted Max k-Cut and weighted Max-DiCut, while having almost the same
approximation ratio as their sequential counterpart.

Finally, our techniques can also be applied to the problem of weighted Max 2-SAT. To do
so we may use the randomized expected 3/4-approximation algorithm presented in [34]. It is
based on the algorithm of [10], and thus is almost identical to the unconstrained submodular
maximization algorithm. Because the techniques we use are very similar to the above, we
defer the entire proof to the full version of the paper.2

1.2 Previous research
Cut problems: An excellent overview of the Max-Cut and Max-DiCut problems appears
in [12], which we follow in this section. Computing Max-Cut exactly is NP-hard as shown
by Karp [27] for the weighted version, and by [19] for the unweighted case. As for ap-
proximations, it is impossible to improve upon a 16/17-approximation for Max-Cut and a
12/13-approximation for Max-DiCut unless P = NP [24,38]. If every node chooses a cut side
randomly, an expected 1/2-approximation for Max-Cut, a 1/4-approximation for Max-DiCut
and a (1 − 1/k)-approximation is achieved. This can be derandomized using the method
of conditional expectations. In the breakthrough paper of Goemans and Williamson [23] a
0.878-approximation is achieved using semidefinite programming. This is optimal under the
unique games conjecture [28]. In the same paper a 0.796-approximation for Max-DiCut was
presented. This was later improved to 0.863 in [MatuuraM01]. Other results using different
techniques are presented in [26,37].

2 The full version can be found here: https://arxiv.org/abs/1711.10155.
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In the distributed setting the problem has not received much attention. A node may
choose a cut side at random, achieving the same guarantees as above in constant time. In [25]
a distributed algorithm for d-regular triangle free graphs which achieves a (1/2+0.28125/

√
d)-

approximation ratio in a single communication round is presented. The only results for
general graphs in the distributed setting is due to [12]. In the CONGEST model they
present a deterministic 1/2-approximation for Max-Cut, a deterministic 1/3-approximation
for Max-DiCut, and a randomized expected 1/2 approximation for Max-DiCut running in
Õ(∆ + log∗ n) communication rounds. The results for Max-DiCut follow from adapting the
unconstrained submodular maximization algorithm of [10] to the distributed setting. Better
results are presented for the LOCAL model; we refer the reader to [12] for the full details.
Recently, a lower bound of O(1/ε)-rounds in the LOCAL model for any (even randomized)
(1− ε)-approximation algorithm for Max-Cut and Max-DiCut was presented in [8].

Max 2-SAT: The decision version of Max 2-SAT is NP-complete [19], and there exist several
approximation algorithms [16,23,31,33], of which currently the best known approximation
ratio is 0.9401 [31]. In [3] it is shown that assuming the unique games conjecture, the
approximation factor of [31] cannot be improved. Assuming only that P 6= NP it cannot be
approximated to within a 21/22-factor [24]. To the best of our knowledge the problem of
Max 2-SAT (or Max-SAT) was not studied in the distributed model.

Correlation clustering: An excellent overview of correlation clustering (see Section 2 for a
definition) appears in [1], which we follow in this section. Correlation clustering was first
defined by [4]. Solving the problem exactly is NP-Hard, thus we are left with designing
approximation algorithms for the problem, here one can try to approximate max-agree
or min-disagree. If the graph is a clique, there exists a PTAS for max-agree [4, 22], and
a 2.06-approximation for max-disagree [14]. For general (even weighted) graphs there
exists a 0.7666-approximation for max-agree [13, 36], and a O(logn)-approximation for min-
disagree [15]. A trivial 1/2-approximation for max-agree on general graphs can be achieved
by considering putting every node in a separate cluster, then considering putting all nodes in
a single cluster, and taking the more profitable of the two.

In the distributed setting little is known about correlation clustering. In [11] a dynamic
distributed MIS algorithm is provided, it is stated that this achieves a 3-approximation for
min-disagree correlation clustering as it simulates the classical algorithm of Ailon et al. [2].
We note that the algorithm of Ailon et al. assumes the graph to be a clique, thus the above
result is limited to complete graphs where the edges of the communication graph are taken to
be the positive edges, and the non-edges are taken as the negative edges (as indeed for general
graphs, the problem is APX-Hard, and difficult to approximate better than Θ(logn) [15]).
We also note that using only two clusters, where each node chooses a cluster at random,
guarantees an expected 1/2-approximation for max-agree on weighted general graphs. We
derandomize this approach in this paper.

2 Preliminaries

Sequential algorithms: The main goal of this paper is converting (local) sequential graph
algorithms for unconstrained maximization (or minimization) to distributed graph algorithms.
Let us first define formally this family of algorithms. The sequential algorithm receives as
input a graph G = (V,E), we associate each vertex v ∈ V with a variable Xv taking values in
some finite set A. The algorithm outputs a set of assignments X = {Xv = αv}. The goal of
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the algorithms is to maximize some utility function f(G,X) taking in a graph and the set of
assignments and outputting some value in R. For simplicity we assume that the order of the
variables in X does not affect f , so we use a set notation instead of a vector notation. We
somewhat abuse notation, and when assigning a variable we write X ∪ {Xv = α}, meaning
that any other assignment to Xv is removed from the set X. We also omit G as a parameter
when it is clear from context.

When considering randomized algorithms we assume the algorithm takes in a vector of
random bits denoted by ~r. This way of representing random algorithms is identical to having
the algorithm generate random coins, and we use these two definitions interchangeably. The
randomized algorithm aims to maximize the expectation of f , where the expectation is taken
over the random bits of the algorithm.

Max k-Cut, Max-DiCut: In this paper we provide fast distributed approximation algorithms
to some fundamental problems, which we now define formally. In the Max k-Cut problem
we wish to divide the vertices into k disjoint sets, such that the weight of edges between
different sets is maximized. In the Max-DiCut problem the edges are directed and we wish to
divide the nodes into two disjoint sets, denoted A,B, such that the weight of edges directed
from A to B is maximized.

Max 2-SAT: In the Max 2-SAT problem we are given a set of unique weighted clauses
over some set of variables, where each clause contains at most two literals. Our goal is to
maximize the weight of satisfied clauses. This problem is more general than the cut problems,
so we must define what it means in the distributed context. First, the variables will be node
variables as defined before. Second, each node knows all of the clauses it appears in as a
literal.

Correlation clustering: We are given an edge weighted graph G(V,E,w), such that each
edge is also assigned a value from {+,−} (referred to positive and negative edges). Given
some partition, C, of the graph into disjoint clusters, we say that an edge agrees with C if it
is positive and both endpoints are in the same cluster, or it is negative, and its endpoints are
in different clusters. Otherwise we say it disagrees with C. We aim to find a partition C,
using any number of clusters, such that the weight of edges that agree with C (agreements) is
maximized (max-agree), or equivalently the weight of edges that disagree with C is minimized
(min-disagree).

The problem is usually expressed as an LP using edge variables, where each variable
indicates whether the nodes are in the same cluster. This allows a solution to use any number
of clusters. In this paper we only aim to achieve a (1/2− ε)-approximation for the problem.
This can be done rather simply without employing the full power of correlation clustering.
Specifically, two clusters are enough for our case as we show that we can deterministically
achieve (1/2− ε) |E| agreements which results in the desired approximation ratio.

Local utility functions: We are interested in a type of utility function which we call a
local utility function. Before we continue with the definition let us define an operator on
assignments X, we define Lv[X] =

{
{Xu = αu} ∈ X | u ∈ N(v)

}
. For convenience, when

we pass Lv[X] as parameter to a function, we assume that the function also receives the
1-hop neighborhood of v which we do not write explicitly. We say that a utility function
f , as defined above, is a local utility function if for every v there exists a function gv s.t
f(X ∪ {Xv = α})− f(X ∪ {Xv = α′}) = gv(Lv[X], α, α′). That is, to compute the change
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in the utility function which is caused by changing Xv from α′ to α, we only need to know
the immediate neighborhood of v, and the assignment to neighboring node variables. We
note that for the cut problems considered in this paper the utility functions are indeed local
utility functions. This is proven in the following Lemma:

I Lemma 1. The utility functions for Max k-Cut, Max-DiCut and max-agree correlation
clustering with 2 clusters are local utility functions.

Proof. The utility functions for Max k-Cut is given by f(X) =
∑
e=(w,u)∈E w(e) ·Xw ⊕Xu

where Xw ⊕Xu = 0 if Xw = Xu and 1 otherwise. Thus, if we fix some v it holds that

f(X ∪ {Xv = α′})− f(X ∪ {Xv = α})

=
∑

e=(v,u)∈E

w(e) · α′ ⊕Xu −
∑

e=(v,u)∈E

w(e) · α⊕Xu

=
∑

e=(v,u)∈E

w(e) · (α′ ⊕Xu − α⊕Xu) , gv(Lv[X], α′, α)

Because the final sum only depends on vertices u ∈ N(v), the last equality defines the
local function equivalent to the difference, and we are done.

For the problem of Max-DiCut the utility functions is given by f(X) =
∑
e=(v→u)∈E w(e) ·

Xv ∧ (1−Xu), and for max-agree correlation clustering with 2 clusters the utility function is
given by f(X) =

∑
e=(v,u)∈E+ w(e) · (1−Xv ⊕Xu) +

∑
e=(v,u)∈E− w(e) ·Xv ⊕Xu (E+, E−

are the positive and negative edges, respectively), and the proof is exactly the same. J

Submodular functions: A family of functions that will be of interest in this paper is the
family of submodular functions. A function f : {0, 1}Ω → R is called a set function, with
ground set Ω. It is said to be submodular if for every S, T ⊆ Ω it holds that f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ). The functions we are interested in have V as their ground set, thus we
remain with our original notation, setting A = {0, 1} and having f take in a set of binary
assignments X as a parameter.

The method of conditional expectations: Next, we consider the method of conditional
expectations. Let A be some set and f : An → R, next let X = (X1, ..., Xn) be a vector of
random variables taking values in A. We wish to be consistent with the previous notation,
thus we treat X as a set of assignments. If E[f(X)] ≥ β, then there is an assignment of
values Z = {Xi = αi}ni=1 such that f(Z) ≥ β. We describe how to find the vector Z. We first
note that from the law of total expectation it holds that E[f(X)] =

∑
α∈AE[f(X) | X1 =

α]Pr[X1 = α], and therefore for at least some α ∈ A it holds that E[f(X) | X1 = α] ≥ β.
We set this value to be α1. We then repeat this process for the rest of the values in X, which
results in the set Z. In order for this method to work we need it to be possible to compute3
the conditional expectation of f(X).

Graph coloring: A c-coloring for G(V,E) is defined as a function ϕ : V → C. For simplicity
we treat any set C of size c with some ordering as the set of integers [c]. This simplifies
things as we can always consider ϕ(v)± 1, which is very convenient. We say that a coloring

3 This point is critical, and this computation is not simple in many cases. In our case we also need this
computation to be done locally at every nodes. We apply this technique to Max-Cut, which meets all of
these demands.



K. Kawarabayashi and G. Schwartzman 35:9

Algorithm 1: OL(G,~r, π).

1 ∀v ∈ V,Xv = init(Lv[X])
2 Order the variables according to π: v1, v2..., vn
3 for i from 1 to n do Xvi

= decide(Lv[X], ri)
4 Return X

is a legal coloring if ∀v, u s.t (v, u) ∈ E it holds that ϕ(v) 6= ϕ(u). An important tool
in this paper is defective coloring. Let us fix some c-coloring function ϕ : V → [c]. We
define the defect of a vertex to be the number of monochromatic edges it has. Formally,
defect(v) = size{u ∈ N(v) | ϕ(v) = ϕ(u)}. We call ϕ a c-coloring with defect d if it holds
that ∀v ∈ V, defect(v) ≤ d. A classic result by Kuhn [29] states that for all d ∈ {1, 2, ...,∆}
an O(∆2/d2)-coloring with defect d can be computed deterministically in O(log∗ n) rounds
in the CONGEST model.

In this paper we define a new kind of defective coloring which we call a weighted ε-
defective coloring. Given a positively edge weighted graph and any coloring, for every vertex
we denote by Em(v) its monochromatic edges. Define its weighted defect as defectw(v) =∑

e=(u,v)∈Em(v) w(e). We aim to find a coloring s.t the defect for every v is below εw(v) =
ε
∑
v∈e w(e). We show that the algorithm of Kuhn actually computes a weighted ε-defective

O(ε−2)-coloring. We state the following theorem (As the analysis is rather similar to the
original analysis of Kuhn, the proof is deferred to the full version):

I Theorem 2. For any constant ε ∈ (0, 1/e) a weighted ε-defective O(ε−2)-coloring can be
computed deterministically in O(log∗ n) rounds in the CONGEST model.

3 Orderless-local algorithms

Next we turn our attention to a large family of (potentially randomized) greedy algorithms.
We limit ourselves to graph algorithms s.t every node v has a variable Xv taking values in
some set A. We aim to maximize some global utility function f(X). We focus on a class
of algorithms we call orderless-local algorithms. These are greedy-like algorithms which
may traverse the vertices in any order, and at each step decide upon a value for Xv. This
decision is local, meaning that it only depends on the 1-hop topology of v and the values of
neighboring variables. The decision may be random, but each variable has its own random
bits, keeping the decision process local.

The code for a generic algorithm of this family is given in Algorithm 1. The algorithm
first initiates the vertex variables. Next it traverses the variables in some order π : V → [n].
Each Xvi

is assigned a value according to some function decide, which only depends on Lv[X]
at the time of the assignment and some random bits ~ri which are only used to set the value
for that variable. Finally the assignment to the variables is returned. We are guaranteed
that the expected value of f is at least β(G) for any, potentially adversarial, ordering π of
the variables. Formally, E~r[f(OL(G,~r, π))] ≥ β(G).

We show that this family of algorithms can be easily distributed using coloring, s.t the
running time of the distributed version depends on the number of colors. The distributed
version, OLDist, is presented as Algorithm 2. The variables are all initiated as in the
sequential version, and then the color classes are executed sequentially, while in each color
class the nodes execute decide simultaneously, and send the newly assigned value to all
neighbors. Decide does not communicate with the neighbors, so the algorithm finishes in
O(c) rounds.
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Algorithm 2: OLDist(G,~r, ϕ).

1 ∀v ∈ V,Xv = init(Lv[X])
2 for i from 1 to c do
3 foreach v s.t ϕ(v) = i simultaneously do
4 Xvi

= decide(Lv[X], ri)
5 Send Xvi

to neighbors
6 end
7 end
8 return X

It is easy to see that given the same randomness both the sequential and distributed
algorithms output the same result, this is because all decisions of the distributed algorithm
only depend on the 1-hop environment of a vertex, and we are provided with a legal coloring.
Thus, one round of the distributed algorithm is equivalent to many steps of the sequential
algorithm. We prove the following lemma:

I Lemma 3. For any graph G with a legal coloring ϕ, there exists an order π on the variables
s.t it holds that OL(G,~r, π) = OLDist(G,~r, π) for any ~r.

Proof. We prove the claim by induction on the executions of color classes by the distributed
algorithm. We note that the execution of the distributed algorithm defines an order on the
variables. Let us consider the i-th color class. Let us denote these variables as

{
Xvj

}k
j=1,

assigning some arbitrary order within the class. The ordering we analyze for the sequential
algorithm would be π(vj) = (ϕ(v), j). Now both the distributed and sequential algorithms
follow the same order of color classes, thus we allow ourselves to talk about the sequential
algorithm finishing an execution of a color class.

Let Yi be the assignments to all variables of the distributed algorithm after the i-th color
class finishes execution. And let Y ′i be the assignments made by the sequential algorithm
following π until all variable in the i-th color class are assigned. Both algorithms initiate
the variables identically, so it holds that Y0 = Y ′0 . Assume that it holds that Yi−1 = Y ′i−1.
The coloring is legal, so for any Xu, Xv, s.t ϕ(u) = ϕ(v) = i it holds that N(v) ∩ u = ∅.
Thus, when assigning v, its neighborhood is not affected by any other assignments done in
the color class, so the randomness is identical for both algorithms, and using the induction
hypothesis all assignments up until this color class were identical. Thus, for all variables in
this color class decide will be executed with the same parameters for both the distributed
and sequential algorithms, and all assignments will be identical. J

Finally we show that for any graph G with a legal coloring ϕ, it holds that

E~r[f(OLDist(G,~r, ϕ))] ≥ β(G).

We know from Lemma 3 that for any coloring ϕ there exists an ordering π s.t OL(G,~r, π) =
OLDist(G,~r, ϕ) for any ~r. The proof is direct from here:

E~r[f(OLDist(G,~r, ϕ))] =
∑
~r

Pr[~r]f(OLDist(G,~r, ϕ))

=
∑
~r

Pr[~r]f(OL(G,~r, π)) = E~r[f(OL(G,~r, π))] ≥ β(G)
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Algorithm 3: CondExpSeq(G).

1 ∀v ∈ V,Xv = ∅
2 Order the variables according to any order: v1, v2..., vn
3 for i from 1 to n do Xvi

= argmaxαE[f(X) | Y,Xvi
= αv]− E[f(X) | Y ]

4 Return X

We conclude that any orderless-local algorithm can be distributed, achieving the same
performance guarantee on f , and requiring O(c) communication rounds to finish, given a
legal c-coloring. We state the following theorem:

I Theorem 4. Given some utility function f , any sequential orderless-local algorithm for
which it holds that E~r[f(OL(G,~r, π))] ≥ β(G), can be converted into a distributed algorithm
for which it holds that E~r[f(OLDist(G,~r, ϕ))] ≥ β(G), where ϕ is a legal c-coloring of the
graph. The running time of the distributed algorithm is O(c) communication rounds.

3.1 Distributed derandomization
We consider the method of conditional expectations in the distributed case for some local
utility function f(G,X), as defined in the preliminaries. Assume that the value of every Xv

is set independently at random according to some distribution on A which depends only
on the 1-hop neighborhood of v. We are guaranteed that ∀G,E[f(G,X)] ≥ β(G). Thus
in the sequential setting we may use the method of conditional expectations to compute a
deterministic assignment to the variables with the same guarantee. We show that because
f is a local utility function, the method of conditional expectations applied on f is an
orderless-local algorithm, and thus can be distributed.

Initially all variables are initiated to some value ∅ /∈ A, meaning the variable is
unassigned. Let Y = {Xu = αu | u ∈ U ⊆ V } be some partial assignment to the vari-
ables. The method of conditional expectations goes over the variables in any order,
and in each iteration sets Xvi

= argmaxαE[f(X) | Y,Xvi
= α]. This is equivalent to

argmaxα
{
E[f(X) | Y,Xvi = α]− E[f(X) | Y ]

}
, as the subtracted term is just a constant.

With this in mind, we present the pseudo code for the method of conditional expectations in
Algorithm 3.

To show that Algorithm 3 is an orderless-local algorithm we only need to show that
argmaxαE[f(X) | Y,Xv = αv]− E[f(X) | Y ] can be computed locally for any v. We state
the following lemma, followed by the main theorem for this section.

I Lemma 5. The value argmaxαE[f(X) | Y,Xv = αv] − E[f(X) | Y ] can be computed
locally.

Proof. It holds that:

E[f(X) | Y,Xv = αv]− E[f(X) | Y ]

=
∑
α∈A

E[f(X) | Y,Xv = αv]Pr[Xv = α]−
∑
α∈A

E[f(X) | Y,Xv = α]Pr[Xv = α]

=
∑
α∈A

Pr[Xv = α](E[f(X) | Y,Xv = αv]− E[f(X) | Y,Xv = α])

Where the first equality is due to the law of total expectation and the fact that
∑
α∈A Pr[Xv =

α] = 1. The probability of assigning Xv to some value can be computed locally, so we are only
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left with the difference between the expectations. To show that this is indeed a local quantity
we use the definition of expectation as a weighted summation over all possible assignments to
unassigned variables. Let Uv be the set of all possible assignments to unassigned variables in
N(v) and let U be the set of all possible assignments to the rest of the unassigned variables.
It holds that:

E[f(X) | Y,Xv = αv]− E[f(X) | Y,Xv = α]

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]f(X ∪ Zv ∪ Z ∪ {Xv = αv})− f(X ∪ Zv ∪ Z ∪ {Xv = α})

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]gv(Lv[X ∪ Zv ∪ Z], α, αv)

=
∑
Zv∈Uv

∑
Z∈U

Pr[Zv]Pr[Z]gv(Lv[X ∪ Zv], α, αv)

=
∑
Zv∈Uv

Pr[Zv]gv(Lv[X ∪ Zv], α, αv),

where in the first equality we use the definition of expectations and the fact that the
variables are set independently of each other. Then we use the definition of a local utility
function, and finally the dependence on U disappears due to the law of total probability.
The final sum can be computed locally, as the probabilities for assigning variables in Zv are
known and gv is local. J

I Theorem 6. Let G be any graph and f a local utility function for which it holds that
E[f(X)] ≥ β, where the random assignments to the variables are independent of each
other, and depend only on the immediate neighborhood of the node. There exists a distributed
algorithm achieving the same value as the expected value for f , running in O(c) communication
rounds in the CONGEST model, given a legal c-coloring.

3.2 Submodular Maximization
In this section we consider the problem of unconstrained submodular function maximization.
Given an submodular function f (as defined in Section 2), we aim to find an input s.t the
function is maximized. There are no constraints on the input set we pass to the function,
hence it is ’unconstrained’. We are interested in finding an approximate solution to the
problem, to this end, we consider both the deterministic and randomized algorithms of [10],
achieving 1/3 and 1/2 approximation ratios for unconstrained submodular maximization. We
show that both can be expressed as orderless-local algorithms for any local utility function.
As the deterministic and randomized algorithms of [10] are almost identical, we focus on the
randomized algorithm achieving a 1/2-approximation in expectation (Algorithm 5), as it is a
bit more involved (The deterministic algorithm appears as Algorithm 4). The algorithms
of [10] are defined for any submodular function, but as we are interested only in the case
where the ground set is V , we will present it as such.

The algorithm maintains two variable assignment Zi, Yi, initially Z0 = {Xv = 0 | v ∈ V },
Y0 = {Xv = 1 | v ∈ V }. It iterates over the variables in any order, at each iteration it
considers two nonnegative quantities ai, bi. These quantities represent the gain of either
setting Xvi

= 1 in Zi−1 or setting Xvi
= 0 in Yi−1. Next a coin is flipped with probability

p = ai/(ai + bi), if ai = bi = 0 we set p = 1. If we get heads we set Xvi
= 1 in Zi and

otherwise we set it to 0 in Yi. When the algorithm ends it holds that Zn = Yn, and this is
our solution. The deterministic algorithm is almost identical, only that it allows ai, bi to take
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Algorithm 4: det-usm(f).

1 Z0 = {Xv = 0 | v ∈ V }, Y0 = {Xv = 1 | v ∈ V }
2 for i from 1 to n do
3 ai = f(Zi−1 ∪ {Xvi = 1})− f(Zi−1)
4 bi = f(Yi−1 ∪ {Xvi

= 0})− f(Yi−1)
5 if ai ≥ bi then
6 Zi = Zi−1 ∪ {Xvi

= 1}
7 Yi = Yi−1

8 end
9 else

10 Zi = Zi−1
11 Yi = Yi−1 ∪ {Xvi

= 0}
12 end
13 end
14 return Zn

Algorithm 5: rand-usm(f).

1 Z0 = {Xv = 0 | v ∈ V }, Y0 = {Xv = 1 | v ∈ V }
2 Order the variables in any order v1, ..., vn
3 for i from 1 to n do
4 ai = max {f(Zi−1 ∪ {Xvi = 1})− f(Zi−1), 0}
5 bi = max {f(Yi−1 ∪ {Xvi

= 0})− f(Yi−1), 0}
6 if ai + bi = 0 then p = 1 else p = ai/(ai + bi)
7 Yi = Yi−1, Zi = Zi−1
8 Flip a coin with probability p, if heads Zi = Zi ∪ {Xvi = 1}, else

Yi = Yi ∪ {Xvi
= 0}

9 end
10 return Zn

negative values, and instead of flipping a coin it makes the decision greedily by comparing
ai, bi.

We first note that the algorithm does not directly fit into our mold, as each vertex has
two variables. We can overcome this, by taking Xv to be a binary tuple, the first coordinate
stores its value for Zi, and the other for Yi. Initially it holds that ∀v ∈ V,Xv = (0, 1), and our
final goal function will only take the first coordinate of the variable. We note that because f
is a local utility function the values ai, bi can be computed locally, this results directly from
the definition of a local utility function, as we are interested in the change in f caused by
flipping a single variable. Now we may rewrite the algorithm as an orderless-local algorithm,
the pseudocode as Algorithm 6.

Using Theorem 4 we state our main result:

I Theorem 7. For any graph G and a local unconstrained submodular function f with V as
its ground set, there exists a randomized distributed 1/2-approximation, and a deterministic
1/3-approximation algorithms running in O(c) communication rounds in the CONGEST
model, given a legal c-coloring.
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Algorithm 6: rand-usm(G,~r, π).

1 ∀v ∈ V,Xv = (0, 1)
2 Order the vertices according to π
3 for i from 1 to n do
4 Xu = decide(Lv[X], ~ri)
5 end
6 return Xn

Algorithm 7: decide(Lv[X], r).

1 Z =
{
Xu = αu,1 | {Xu = (αu,1, αu,2)} ∈ Lv[X]

}
2 Y =

{
Xu = αu,2 | {Xu = (αu,1, αu,2)} ∈ Lv[X]

}
3 a = max {gv(Z, 0, 1), 0}
4 b = max {gv(Z, 1, 0), 0}
5 if a+ b = 0 then p = 1
6 else p = a/(a+ b)
7 Flip coin with probability p
8 if heads then return (1,1)
9 else return (0,0)

3.3 Fast approximations for cut functions
Using the results of the previous sections we can provide fast and simple approximation
algorithms for Max-DiCut and Max k-Cut. Lemma 1 guarantees that the utility functions
for these problems are indeed local utility functions. For Max-DiCut we use the algorithms
of Buchbinder et al., as this is an unconstrained submodular function. For Max k-Cut each
node choosing a side uniformly at random achieves a (1− 1/k) approximation, thus we use
the results of Section 3.1. Theorem 7 and Theorem 6 immediately guarantee distributed
algorithms, running in O(c) communication rounds given a legal c-coloring.

Denote by Cut(G,ϕ) one of the cut algorithms guaranteed by Theorem 7 or Theorem 6.
We present two algorithms, approxCutDet, a deterministic algorithm to be used when
Cut(G,ϕ) is deterministic (Algorithm 8), and, approxCutRand, a randomized algorithm
(Algorithm 9) for the case when Cut(G,ϕ) is randomized. approxCutDet works by coloring
the graph G using a weighted ε-defective coloring and then defining a new graph G′ by
dropping all of the monochromatic edges. This means that the coloring is a legal coloring for
G′. Finally we call one of the deterministic cut functions. approxCutRand is identical, apart
from the fact that nodes choose a color uniformly at random from [dε−1e].

For approxCutDet, the running time of the coloring is O(log∗ n) rounds, returning a
weighted ε-defective O(ε−2)-coloring. The running time of the cut algorithms is the number
of colors, thus the total running time of the algorithm is O(ε−2 + log∗ n) rounds. Using the
same reasoning, the running time of approxCutRand is O(ε−1). It is only left to prove the
approximation ratio. We prove the following lemma:

I Lemma 8. Let G(V,E,w) be any graph, and let G′(V,E′, w) be a graph resulting from
removing any subset of edges from G of total weight at most ε

∑
e∈E w(e). Then for any con-

stant p, any p-approximation for Max-DiCut or Max k-Cut for G′ is a p(1−4ε)-approximation
for G.
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Algorithm 8: approxCutDet(G, ε).
1 ϕ = epsilonColor(G, ε)
2 Let G′ = (V,E′ = {(v, u) ∈ E | ϕ(v) 6= ϕ(u)})
3 Cut(G′, ϕ)

Algorithm 9: approxCutRand(G, ε).
1 Each vertex v chooses ϕ(v) uniformly at random from [dε−1e]
2 Let G′ = (V,E′ = {(v, u) ∈ E | ϕ(v) 6= ϕ(u)})
3 Cut(G′, ϕ)

Proof. Let OPT,OPT ′ be the size of optimal solutions for G,G′. It holds that OPT ′ ≥
OPT − ε

∑
e∈E w(e), as any solution for G is also a solution for G′ whose value differs

by at most ε
∑
e∈E w(e) (the weight of discarded edges). Assigning every node a cut side

uniformly at random the expected cut weight is at least
∑
e∈E w(e)/4 for Max-DiCut and

Max k-Cut. Using the probabilistic method this implies that OPT ≥
∑
e∈E w(e)/4. Using

all of the above we can say that given a p-approximate solution for OPT ′ it holds that:
p ·OPT ′ ≥ p(OPT − ε

∑
e∈E w(e)) ≥ p(OPT − 4εOPT ) = p(1− 4ε)OPT J

Lemma 8 immediately guarantees the approximation ratio for the deterministic algorithm.
As for the randomized algorithm, let the random variable δ be the fraction of edges removed,
let p be the approximation ratio guaranteed by one of the cut algorithms and let ρ be
the approximation ratio achieved by approxCutRand. We know that Eρ[ρ | δ] = p(1− 4δ).
Applying the law of total expectations we get that E[ρ] = Eδ[Eρ[ρ | δ]] = Eδ[p(1− 4δ)] =
p(1− 4ε). We state our main theorems for this section.

I Theorem 9. There exists a deterministic (1 − 1/k − ε)-approximation algorithms for
Weighted Max k-Cut running in O(log∗ n) communication rounds in the CONGEST model.

I Theorem 10. There exists a deterministic (1/3− ε)-approximation algorithm for Weighted
Max-DiCut running in O(log∗ n) communication rounds in the CONGEST model.

I Theorem 11. There exists a randomized distributed expected (1/2− ε)-approximation for
Weighted Max-DiCut running in O(ε−1) communication rounds in the CONGEST model.

Correlation clustering

We note the same techniques used for Max-Cut work directly for max-agree correlation
clustering on general graphs. Specifically, if we divide the nodes into two clusters, s.t each
node selectes a cluster uniformly at random, each edge has exactly probability 1/2 to agree
with the clustering, thus the expected value of the clustering is

∑
e∈E w(e)/2, which is a

1/2-approximation. The above can be derandomized exactly in the same manner as Max-Cut,
meaning this is an orderless local algorithm. Finally, we apply the weighted ε-defective
coloring algorithm twice (note that we ignore the sign of the edge), discard all monochromatic
edges and execute the deterministic algorithm guaranteed from Theorem 6 with a legal
coloring. Because there must exists a clustering which has a value at least

∑
e∈E w(e)/2, a

lemma identical to Lemma 8 can be proved and hence we are done. We state the following
theorem:
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I Theorem 12. There exists a deterministic (1/2− ε)-approximation algorithms for weighted
max-agree correlation clustering on general graphs, running in O(log∗ n) communication
rounds in the CONGEST model.
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