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—— Abstract

The landscape of the distributed time complexity is nowadays well-understood for subpolyno-
mial complexities. When we look at deterministic algorithms in the LOCAL model and locally
checkable problems (LCLs) in bounded-degree graphs, the following picture emerges:

There are lots of problems with time complexities ©(log* n) or O(logn).

It is not possible to have a problem with complexity between w(log™ n) and o(logn).

In general graphs, we can construct LCL problems with infinitely many complexities between

w(logn) and n°M).

In trees, problems with such complexities do not exist.
However, the high end of the complexity spectrum was left open by prior work. In general graphs
there are problems with complexities of the form ©(n®) for any rational 0 < o < 1/2, while for
trees only complexities of the form ©(n'/*) are known. No LCL problem with complexity between
w(y/n) and o(n) is known, and neither are there results that would show that such problems do
not exist. We show that:

In general graphs, we can construct LCL problems with infinitely many complexities between
w(y/n) and o(n).
In trees, problems with such complexities do not exist.
Put otherwise, we show that any LCL with a complexity o(n) can be solved in time O(y/n) in
trees, while the same is not true in general graphs.
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1 Introduction

Recently, in the study of distributed graph algorithms, there has been a lot of interest on
structural complezity theory: instead of studying the distributed time complexity of specific
graph problems, researchers have started to put more focus on the study of complezity classes
in this context.

LCL problems. A particularly fruitful research direction has been the study of distributed
time complexity classes of so-called LCL problems (locally checkable labellings). We will
define LCLs formally in Section 2.2, but the informal idea is that LCLs are graph problems
in which feasible solutions can be verified by checking all constant-radius neighbourhoods.
Examples of such problems include vertex colouring with &k colours, edge colouring with &
colours, maximal independent sets, maximal matchings, and sinkless orientations.

LCLs play a role similar to the class NP in the centralised complexity theory: these are
problems that would be easy to solve with a nondeterministic distributed algorithm — guess
a solution and verify it in O(1) rounds — but it is not at all obvious what the distributed
time complexity of solving a given LCL problem with deterministic distributed algorithms is.

Distributed structural complexity. In the classical (centralised, sequential) complexity
theory one of the cornerstones is the time hierarchy theorem [12]. In essence, it is known that
giving more time always makes it possible to solve more problems. Distributed structural
complexity is fundamentally different: there are various gap results that establish that there
are no LCL problems with complexities in a certain range. For example, it is known that
there is no LCL problem whose deterministic time complexity on bounded-degree graphs is
between w(log* n) and o(logn) [7].

Such gap results have also direct applications: we can speed up algorithms for which the
current upper bound falls in one of the gaps. For example, it is known that A-colouring
in bounded-degree graphs can be solved in polylogn time [17]. Hence 4-colouring in 2-
dimensional grids can be also solved in polylog n time. But we also know that in 2-dimensional
grids there is a gap in distributed time complexities between w(log™ n) and o(v/n) [5], and
therefore we know we can solve 4-colouring in O(log" n) time.

The ultimate goal here is to identify all such gaps in the landscape of distributed time
complexity, for each graph class of interest.

State of the art. Some of the most interesting open problems at the moment are related
to polynomial complexities in trees. The key results from prior work are:
In bounded-degree trees, for each positive integer k there is an LCL problem with time
complexity ©(n'/*) [8].
In bounded-degree graphs, for each rational number 0 < o < 1/2 there is an LCL problem
with time complexity ©(n®) [1].
However, there is no separation between trees and general graphs in the polynomial region.
Furthermore, we do not have any LCL problems with time complexities ©(n®) for any
1/2<a<1.

Our contributions. This work resolves both of the above questions. We show that:
In bounded-degree graphs, for each rational number 1/2 < o < 1 there is an LCL problem
with time complexity ©(n®).
In bounded-degree trees, there is no LCL problem with time complexity between w(+/n)
and o(n).
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Hence whenever we have a slightly sublinear algorithm, we can always speed it up to O(y/n)
in trees, but this is not always possible in general graphs.

Key techniques. We use ideas from the classical centralised complexity theory — e.g. Turing
machines and regular languages — to prove results in distributed complexity theory.

In the positive result, the key idea is that we can take any linear bounded automaton
M (a Turing machine with a bounded tape), and construct an LCL problem ITj; such that
the distributed time complexity of II is a function of the sequential running time of M.
Prior work [1] used a class of counter machines for a somewhat similar purpose, but the
construction in the present work is much simpler, and Turing machines are more convenient
to program than the counter machines used in the prior work.

To prove the gap result, we heavily rely on Chang and Pettie’s [8] ideas: they show that
one can relate LCL problems in trees to regular languages and this way generate equivalent
subtrees by “pumping”. However, there is one fundamental difference:

Chang and Pettie first construct certain universal collections of tree fragments (that do

not depend on the input graph), use the existence of a fast algorithm to show that these

fragments can be labelled in a convenient way, and finally use such a labelling to solve
any given input efficiently.

We work directly with the specific input graph, expand it by “pumping”, and apply a

fast algorithm there directly.

Open problems. Our work establishes a gap between ©(n!/?) and ©(n) in trees. The next

natural step would be to generalise the result and establish a gap between @(nl/ (k“‘l)) and
O(n!'/*) for all positive integers k.

2 Model and related work

As we study LCL problems, a family of problems defined on bounded-degree graphs, we

assume that our input graphs are of degree at most A, where A = O(1) is a known constant.

Each input graph G = (V, E) is simple, connected, and undirected; here V' is the set of nodes
and E is the set of edges, and we denote by n = |V| the total number of nodes in the input
graph.

2.1 Model of computation

The model considered in this paper is the well studied LOCAL model [14,18]. In the LOCAL
model, each node v € V of the input graph G runs the same deterministic algorithm. The
nodes are labelled with unique O(logn)-bit identifiers, and initially each node knows only its
own identifier, its own degree, and the total number of nodes n.

Computation proceeds in synchronous rounds. At each round, each node

sends a message to its neighbours (it may be a different message for different neighbours),

receives messages from its neighbours,

performs some computation based on the received messages.
In the LOCAL model, there is no restriction on the size of the messages or on the computational
power of a node. Hence, after ¢ rounds in the LOCAL model, each node has knowledge about
the network up to distance ¢ from him. The time complexity of an algorithm running in the
LOCAL model is determined by this radius-t that each node needs to explore in order to
solve a given problem. It is easy to see that, in this setting, every problem can be solved in
diameter time.
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2.2 Locally checkable labellings

Locally checkable labelling problems (LCLs) were introduced in the seminal work of Naor
and Stockmeyer [15]. These problems are defined on bounded degree graphs, so let F be
the family of such graphs. Also, let ¥;, and Yo be respectively input and output label
alphabets. Each node v of a graph G € F has an input i(v) € %;,, and must produce an
output o(v) € Xou. The output that each node must produce depends on the constraints
defined with the LCL problem. Hence, let C' be the set of legal configurations. A problem II
is an LCL problem if

Yin and X, are of constant size;

there exists an algorithm A able to check the validity of a solution in constant time in

the LOCAL model.
Hence, if the solution produced by the nodes is in the set C' of valid configurations, then, by
just looking at its local neighbourhood, each node must output ‘accept’, otherwise, at least
one node must output ‘reject’. An example of an LCL problem is vertex colouring, where
we have a constant size palette of colours; nodes can easily check in 1 round whether the
produced colouring is valid or not.

2.3 Related work

Cycles and paths. LCL problems are fully understood in the case of cycles and paths.
In these graphs it is known that there are LCL problems having complexities O(1), e.g.
trivial problems, ©(log™ n), e.g. 3 vertex-colouring, and O(n), e.g. 2 vertex-colouring [9, 14].
Chang, Kopelowitz, and Pettie [7] showed two automatic speedup results: any o(log* n)-time
algorithm can be converted into an O(1)-time algorithm; any o(n)-time algorithm can be
converted into an O(log™ n)-time algorithm.

Oriented grids. Brandt et al. [5] studied LCL problems on oriented grids, showing that, as
in the case of cycles and paths, the only possible complexities of LCLs are O(1), ©(log* n),
and ©(n), on n x n grids. However, while it is decidable whether a given LCL on cycles can
be solved in ¢-rounds in the LOCAL model [5,15], it is not the case for oriented grids [5].

Trees. Although well studied, LCLs on trees are not fully understood yet. Chang and
Pettie [8] show that any n°(M)-time algorithm can be converted into an O(log n)-time algorithm.
In the same paper they show how to obtain LCL problems on trees having deterministic and
randomized complexity of ©(n'/*), for any integer k. However, it is not known if there are
problems of complexities between o(n'/*) and w(n!/(*+1).

General graphs. Another important direction of research is understanding LCLs on general
(bounded-degree) graphs. Using the techniques presented by Naor and Stockmeyer [15], it
is possible to show that any o(loglog” n)-time algorithm can be sped up to O(1) rounds.
It is known that there are LCL problems with complexities ©(log" n) [2, 3, 10, 16] and
O(logn) [4,7,11]. On the other hand, Chang et al. [7] showed that there are no LCL problems
with deterministic complexities between w(log™ n) and o(logn). It is known that there are
problems (for example, A-colouring) that require Q(logn) rounds [4, 6], for which there are
algorithms solving them in O(polylogn) rounds [17]. Until very recently, it was thought that
there would be many other gaps in the landscape of complexities of LCL problems in general
graphs. Unfortunately, it has been shown in [1] that this is not the case: it is possible to
obtain LCLs with numerous different deterministic time complexities, including ©(log® n)
and ©(log®log* n) for any a > 1, 200eg”n) 90(og®log™ n) "and @((log* n)®) for any o < 1,
and O(n®) for any o < 1/2 (where « is a positive rational number).
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3 Near-linear complexities in general graphs

In this section we show the existence of LCL problems having complexities in the spectrum
between w(y/n) and o(n). We first give the definition of a standard model of computation,
that is Linear Bounded Automata, and we then show that it is possible to encode the
execution of an LBA as a locally checkable labelling. We then define an LCL problem where
interesting instances are those in which one encodes the execution of a specific LBA in a
multidimensional grid. Depending on the number of dimensions of the grid, and on the
running time of the LBA, we obtain different time complexities.

3.1 Linear bounded automata

A Linear Bounded Automaton (LBA) Mp consists of a Turing machine with a tape of
bounded size B, able to recognize the boundaries of the tape [13, p. 225]. We consider a
simplified version of LBAs, where the machine is initialized with an empty tape (no input is
present). We describe this simplified version of LBAs as a 5-tuple M = (Q, qo, f,T',d), where:
Q is a finite set of states;
qo € @ is the initial state;
f € Q is the final state;
T is a finite set of tape alphabet symbols, containing a special symbol b (blank), and two
special symbols, L and R, called left and right markers;
0: Q\{f} xT' = Q xTI' x {—,«, —} is the transition function.
The tape (of size B) is initialized in the following way:
the first cell contains the symbol L;
the last cell contains the symbol R;
all the other cells contain the symbol b.
The head is initially positioned on the cell containing the symbol L. Then, depending on the
current state and the symbol present on the current position of the tape head, the machine
enters a new state, writes a symbol on the current position, and moves to some direction.
In particular, the transition function § is going to be described by a finite set of 5-tuples
(so0,to, 1, t1, d) where:
1. The first 2 elements specify the input:
so indicates the current state;
to indicates the tape content on the current head position.
2. The remaining 3 elements specify the output:
s1 is the new state;
t1 is the new tape content on the current head position;
d specifies the new position of the head:
‘—’ means that the head moves to the next cell;
‘¢’ indicates that the head moves to the previous cell;
‘—> means the head does not move.
If § is not defined on the current state and tape content, the machine terminates. The growth
of an LBA Mg, denoted with g(Mp), is defined as the running time of Mp. For example,
it is easy to design a machine M that implements a binary counter, counting from all-0 to
all-1, and this gives a growth of g(Mp) = ©(25).
Also, it is possible to define a unary k-counter, that is, a list of k& unary counters (where
each one counts from 0 to B — 1 and then overflows and starts counting from 0 again) in
which when a counter overflows, the next is incremented. It is possible to achieve a growth
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of g(Mp) = ©(B*) by carefully implementing these counters (for example by using a single
tape of length B to encode all the k& counters at the cost of using more machine states and
tape symbols).

3.2 Grid structure

Each LCL problem we will construct in Section 3.4 is designed in a way that ensures that
the hardest input graphs for the LCL problem, i.e., the graphs providing the lower bound
instances for the claimed time complexity, have a (multidimensional) grid structure. In this
section, we introduce a class of graphs with this structure.

Let ¢ > 2 and dy, . ..,d; be positive integers. The set of nodes of an i-dimensional grid
graph G consists of all i-tuples v = (uq,...,u;) with 0 < u; < d; forall 1 < j <i. We
call uy,...,u; the coordinates of node v and dy,...,d; the sizes of the dimensions 1,...,1.
Let v and v be two arbitrary nodes of G. There is an edge between u and v if and only if
[lu —v|]1 =1, i.e., all coordinates of u and v are equal, except one that differs by 1.

3.2.1 Grid labels

In addition to the graph structure, we add constant-size labels to each grid graph. Each
edge e = {u, v} is assigned two labels L,(e) and L, (e), one for each endpoint. Label L, (e)
is chosen as follows:

L,(e) = Next; if v; —u; =1,

L,(e) =Prev; if u; —v; = 1.

Label L, (e) is chosen analogously. If we want to focus on a specific label of some edge e and
it is clear from the context which of the two edge labels is considered, we may refer to it
simply as the label of e.

The labelling of the edges here is just a matter of convenience. We could equally well
assign the labels to nodes instead of edges, satisfying the formal criteria of an LCL problem
(and, for that matter, combine all input labels, and later output labels, of a node into a
single input, resp. output, label). Furthermore, we could also equally well encode the labels
in the graph structure. Hence all new time complexities presented in Section 3.4 can also be
achieved by LCL problems without input labels.

In the full version of this paper we prove that, assuming that the considered graph
contains a node not having any edge labelled with Prev;, for all dimensions j, then nodes
can locally check if they are in a valid grid graph.

3.2.2 Unbalanced grid graphs

In Section 3.2.1, we saw the basic idea behind ensuring that non-grid graphs are not among
the hardest instances for the LCL problems we construct. In this section, we will study the
ingredient of our LCL construction that guarantees that grid graphs where the dimensions
have “wrong” sizes are not worst-case instances. More precisely, we want that the hardest
instances for our LCL problems are grid graphs with the property that there is at least one
dimension 2 < j < ¢ whose size is not larger than the size of dimension 1. In the following,
we will show how to make sure that unbalanced grid graphs, i.e., grid graphs that do not have
this property, allow nodes to find a valid output without having to see too far. In a sense, in
any constructed LCL, a locally checkable proof (of a certain well-specified kind) certifying
that the input graph is an unbalanced grid graph constitutes a valid (global) output.
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Figure 1 An example of an unbalanced grid with 2 dimensions; nodes in green are labelled with
Unbalanced, while white nodes are labelled with Exempt.

Consider a grid graph with ¢ dimensions of sizes di,...,d;. If di < d; for all 2 < j <74,
the following output labelling is regarded as correct in any constructed LCL problem:

For all 0 < t < dy, node v = (vy,...,v;) satisfying v; = ... = v; = ¢ is labelled

Unbalanced.

All other nodes are labelled Exempt.
This labelling is clearly locally checkable, i.e., it can be described as a collection of local
constraints: Each node v labelled Unbalanced checks that it has exactly two “diagonal
neighbours” and that their positions relative to v are consistent with the above output
specification. Node v also may have only one diagonal neighbour, but only if it has no
incident edge labelled Prev;, or if it has an incident edge labelled Next; for all 2 < j <4, but
no incident edge labelled Next;. The latter condition ensures that the described diagonal
chain of labels terminates at the end of dimension 1, but not at the end of any other dimension,
thereby guaranteeing that grid graphs that are not unbalanced do not allow the output
labelling specified above. Finally, the unique node without any incident edge labelled Prev;
checks that it is labelled Unbalanced, in order to prevent the possibility that each node simply
outputs Exempt. We refer to Figure 1 for an example of an unbalanced 2-dimensional grid
and its labelling.

3.3 Machine encoding

After examining the cases of the input graph being a non-grid graph or an unbalanced grid
graph, in this section, we turn our attention towards the last remaining case: that is the
input graph is actually a grid graph for which there is a dimension with size smaller than
or equal to the size of dimension 1. In this case, we require the nodes to work together to
create a global output that is determined by some LBA. Essentially, the execution of the
LBA has to be written (as node outputs) on a specific part of the grid graph. In order to
formalise this relation between the desired output and the LBA, we introduce the notion of
an LBA encoding graph in the following.

3.3.1 Labels

Let Mp be an LBA, where B denotes the size of the tape. Let Sy = (s¢, he,te) be the whole
state of Mp after step £, where s, is the machine internal state, h, is the position of the
head, and t, is the whole tape content. The content of the cell in position y € {0,...,B —1}
after step £ is denoted by t¢[y]. We denote by (z,y)) the node v = (vq,...,v;) having v; = z,
vy =y, and v; = 0 for all j & {1,k}. An (output-labelled) grid graph of dimension ¢ is an
LBA encoding graph if there exists a dimension 2 < k < ¢ satisfying the following.

9:7
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di + 1 is equal to B.
For all 0 < 2 < min{g(Mp),d1} and all 0 < y < B — 1, it holds that:
Node (x,y) is labelled with Tape(t.[y]).
Node (z,y)x is labelled with State(s).
Node (z, h,,)y is labelled with Head.
Node (x,y) is labelled with Dimension(k).
All other nodes are labelled with Exempt.

Intuitively, the 2-dimensional surface expanding in dimensions 1 and k (having all the other
coordinates equal to 0), encodes the execution of the LBA. The described labelling is locally
checkable, see the full version of this paper for details.

3.4 LCL construction

Fix an integer ¢ > 2, and let M be an LBA with growth g. As we do not fix a specific size of
the tape, g can be seen as a function that maps the tape size B to the running time of the
LBA executed on a tape of size B. We now construct an LCL problem IT,; with complexity
related to g. Note that II); depends on the choice of i. The general idea of the construction
is that nodes can either:

produce a valid LBA encoding, or

prove that dimension 1 is too short, or

prove that there is an error in the (grid) graph structure.
We need to ensure that on balanced grid graphs it is not easy to claim that there is an error,
while allowing an efficient solution on invalid graphs, i.e., graphs that contain a local error
(some invalid label), or a global error (a grid structure that wraps, or dimension 1 too short
compared to the others).

3.4.1 LCL Problem II,,

Denote by L the set of output labels used for producing an LBA encoding graph. Formally,
we specify the LCL problem II,; as follows. The input label set for I, is the set of labels
used in the grid labelling. The possible output labels are the following;:

the labels from L;

an unbalanced label, Unbalanced;

an exempt label, Exempt;

an error label Error;

Ll ol ol

error pointers, i.e., all possible pairs (s,r), where s is either Next; or Prev; for some
1<j<i,and r € {0,1} is a bit whose purpose it is to distinguish between two different
types of error pointers, type 0 pointers and type 1 pointers.

Note that the separate mention of Exempt in this list is not strictly necessary since Exempt
is contained in £, but we want to recall the fact that Exempt can be used in both a proof of
unbalance and an LBA encoding.

Intuitively, nodes that notice that there is/must be an error in the grid structure, but are
not allowed to output Error because the grid structure is valid in their local neighborhood,
can point in the direction of an error. However, the nodes have to make sure that the error
pointers form a chain that actually ends in an error. In order to make the proofs in this
section more accessible, we distinguish between the two types of error pointers mentioned
above; roughly speaking, type 0 pointers will be used by nodes that (during the course of
the algorithm) cannot see an error in the grid structure, but notice that the grid structure
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Figure 2 An example of an error pointer chain (shown in red). Nodes that are marked with a
red cross are those who actually see an error in the grid structure. The output of only some of the
depicted nodes is shown.

wraps around in some way, while type 1 pointers are for nodes that can actually see an
error. If the grid structure wraps around, then there must be an error somewhere (and nodes
that see that the grid structure wraps around know where to point their error pointer to),

except in the case that the grid structure wraps around “nicely” (e.g., along one dimension).

This exceptional case is the only scenario where, deviating from the above, an error pointer
chain does not necessarily end in an error, but instead may form a cycle; however, since the
constraints we put on error pointer chains are local constraints (as we want to define an LCL
problem), the global behaviour of the chain is irrelevant. We will not explicitly prove the
global statements made in this informal overview; for our purposes it is sufficient to focus on
the local views of nodes.

Note that if a chain of type 0 error pointers does not cycle, then at some point it will
turn into a chain of type 1 error pointers, which in turn will end in an error. Chains of type
1 error pointers cannot cycle. We refer to Figure 2 for an example of an error pointer chain.

An output labelling for problem IIj; is correct if the following conditions are satisfied.
1. Each node v produces at least one output label. If v produces at least two output labels,

then all of v’s output labels are contained in £\ {Exempt}.

2. Each node at which the input labelling does not satisfy the local grid graph constraints
given in Section 3.2.1 outputs Error. All other nodes do not output Error.

3. If a node v outputs Exempt, then v has at least one incident edge e with input label
L,(e) € {Prevy,...,Prev;}.

4. If the output labels of a node v are contained in £\ {Exempt}, then either there is a node
in v’s 2-radius neighbourhood that outputs an error pointer, or the output labels of all
nodes in v’s 2-radius neighbourhood are contained in £. Moreover, in the latter case v’s
2-radius neighbourhood has a valid grid structure and the local constraints of an LBA
encoding graph, given in Section 3.1, are satisfied at v.

5. If the output of a node v is Unbalanced, then either there is a node in v’s ¢-radius
neighbourhood that outputs an error pointer, or the output labels of all nodes in v’s
i-radius neighbourhood are contained in {Unbalanced, Exempt}. Moreover, in the latter
case v’s i-radius neighbourhood has a valid grid structure and the local constraints for a
proof of unbalance, given in Section 3.2.2; are satisfied at v.

6. Let v be a node that outputs an error pointer (s,r). Then z,(s) is defined, i.e., there
is exactly one edge incident to v with input label s. Let u be the neighbour reached by
following this edge from v, i.e., u = z,(s). Then u outputs either Error or an error pointer
(s',7"), where in the latter case the following hold:

r’ > r, i.e., the type of the pointer cannot decrease when following a chain of error
pointers;

9:9
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if ¥ =0 =r, then s’ = s, i.e., the pointers in a chain of error pointers of type 0 are
consistently oriented;

if ' =1 =r and s € {Prev;,Next;}, s’ € {Prevj,, Next; }, then j* > j, i.e., when
following a chain of error pointers of type 1, the dimension of the pointer cannot
decrease;

ifr'=1=rands,s € {Prevj,Next;} for some 1 < j <, then s’ = s, i.e., any two
subsequent pointers in the same dimension have the same direction.

These conditions are clearly locally checkable, so Il;; is a valid LCL problem.

3.4.2 Time complexity

Let B be the smallest positive integer satisfying n < B*~!. g(Mp). We will only consider
LBAs with the property that B < g(Mp) and for any two tape sizes By > By we have
g(Mp,) > g(Mp,). The LCL problem IIj; has time complexity O(n/B*"!) = O(g(Mp)).
The following theorem is proved in the full version of this paper.

» Theorem 1. Problem Iy has time complezity ©(g(Mp)).

3.4.3 Instantiating the LCL construction

Our construction is quite general and allows to encode a wide variety of LBAs to obtain
many different LCL complexities. As a proof of concept, we show some complexities that can
be obtained using some specific LBAs.

By using a k-unary counter, for constant k, we obtain a growth of ©(B¥).

By using a binary counter, we obtain a growth of ©(25).

» Theorem 2. For any rational number 0 < o < 1, there exists an LCL problem with time
complezxity ©(n®).

Proof. Let j > k be positive integers satisfying o = k/j. Given an LBA with growth ©(B¥)
and using a (j — k + 1)-dimensional grid graph, we obtain an LCL problem with complexity
O(n/B’~*). We have that n = ©(B7~*.g(Mp)) = ©(B7), which implies B = ©(n'/7). Thus
the time complexity of our LCL problem is ©(n/nlU=*)/7) = @(n®). <

» Theorem 3. There exist LCL problems of complexities 9(@), for any positive integer i.
Proof. Given an LBA with growth ©(27) and using an (i + 1)-dimensional grid graph, we
obtain an LCL problem with complexity ©(n/B?). We have that n = ©(B" - g(Mp)) =
O(B? - 2B), which implies B = ©(logn). Thus the time complexity of our LCL problem is
O(n/log'n). <

4 Complexity gap on trees

In this section we prove that, on trees, there are no LCLs having complexity T between
w(y/n) and o(n). We show that, given an algorithm A that solves a problem in time T, it
is possible to speed up its running time to O(y/n), by first constructing a virtual tree S in
which a ball of radius T' corresponds to a ball of radius O(y/n) of the original graph, and
then find a valid output for the original graph, having outputs for the virtual graph S.
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Figure 3 Example of a tree T and its skeleton 7”; nodes removed from T in order to obtain 7"
are shown in gray. In this example, 7 is 3.

4.1 Skeleton tree

We first describe how, starting from a tree 7' = (V, E'), nodes can distributedly construct a
virtual tree T”, called the skeleton of T. Intuitively, T” is obtained by removing all subtrees
of T having a height that is less than some threshold 7.

More formally, let 7 = ¢y/n, for some constant ¢ that will be fixed later. Each node v
starts by gathering its 7-radius neighbourhood, Ball,. Also, let d, be the degree of node v in
T. We partition Ball,, Vv € V, in d,, components (one for each neighbour of v), and let us
denote these components with C;(v), where 1 <14 < d,,. Each component C;(v) contains all
nodes of Ball, present in the subtree rooted at the i-th neighbour of v, excluding v.

Then, each node marks as Del all the components that have low depth and broadcasts
this information. Informally, nodes build the skeleton tree by removing all the components
that are marked as Del by at least one node. More precisely, each node v, for each C;(v), if
dist(v,w) < 7 for all w in V(C;(v)), marks all edges in E(C;(v)) U{{v,u}} as Del, where u
is the i-th neighbor of v. Then, v broadcasts Ball, and the edges marked as Del to all nodes
at distance at most 7 + 2¢. Finally, when a node v receives messages containing edges that
have been marked with Del by some node, then also v internally marks as Del those edges.

Now we have all the ingredients to formally describe how we construct the skeleton
tree. The skeleton tree T = (V' E’) is defined in the following way. Intuitively, we
keep only edges that have not been marked Del, and nodes with at least one remaining
edge (i.e., nodes that have at least one incident edge not marked with Del). In particular,

E' = {e € E(T) | e is not marked Del}, and V' = {u € V | Jw € V s.t. {u,w} € E'}.

Also, we want to keep track of the mapping from a node of T” to its original node in T
let ¢ be such a mapping. Finally, we want to keep track of deleted subtrees, so let 7,
be the subtree of T rooted at v € V' containing all nodes of C;(v), for all j such that
C;(v) has been marked as Del. See Figure 3 for an example.

4.2 Virtual tree

We now show how to distributedly construct a new virtual tree, starting from 7, that
satisfies some useful properties. Informally, the new tree is obtained by pumping all paths
contained in 7’ having length above some threshold. More precisely, by considering only
degree-2 nodes of T” we obtain a set of paths. We split these paths in shorter paths of length
I (¢ <1< 2¢) by computing a (¢ + 1, ¢) ruling set. Then, we pump these paths in order to
obtain the final tree. Recall a («, 8)-ruling set R of a graph G guarantees that nodes in
R have distance at least «, while nodes outside R have at least one node in R at distance
at most 3. It can be distributedly computed in O(log" n) rounds using standard colouring
algorithms [14].
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Figure 4 Example of the tree 7" obtained from T”; nodes with degree greater than 2 (in blue)
are removed from 7".

y

Figure 5 Blue nodes break the long paths P of 7" shown on the left into short paths Q shown
in black on the right; short paths (in the example, paths with length less then 4) are ignored.

More formally, we start by splitting the tree in many paths of short length. Let v a node
in V' and df' its degree in T”. Let T" be the forest obtained by removing from T’ each node
v having d{l > 2. T" is a collection P of disjoint paths. Let 1) be the mapping from nodes
of T” to their corresponding node in T”. See Figure 4 for an example.

We now want to split long paths of P in shorter paths. In order to achieve this, nodes of
the same path can efficiently find a (¢ + 1, ¢) ruling set in the path containing them. Nodes
not in the ruling set form short paths of length [, such that ¢ <1 < 2¢, except for some paths
of P that were already too short, or subpaths at the two ends of a longer path. Let Q be
the subset of the resulting paths having length [ satisfying ¢ <1 < 2¢. See Figure 5 for an
example.

In order to obtain the final tree, we use the following function, called Replace. Informally,
given a graph G and a subgraph H connected to the other nodes of G via a set of nodes F,
called poles, and given another graph H’, it replaces H with H’. This function is a simplified
version of the function Replace presented in [8] in Section 3.3.

» Definition 4 (Replace). Let H be a subgraph of G. The poles of H are those vertices in
V(H) adjacent to some vertex in V(G) \ V(H). Let F' = (v1,...,vp) be a list of the poles
of H, and let F' = (v}, ...,v,) be a list of nodes contained in H' (called poles of H'). The
graph G’ = Replace(G, (H, F), (H', F")) is defined in the following way. Start with G, replace
H with H', and replace any edge {u,v;}, where u € V(G) \ V(H), with {u,v}}.

Informally, we will use the function Replace to substitute each path @ € Q with a longer
version of it, that satisfies some useful properties. We will later define a function, Pump, that
is used to obtain these longer paths. The function Pump is defined in an analogous way to
the function Pump presented in [8] in Section 3.8. We now show which properties it satisfies.

» Definition 5 (Properties of Pump). Given a path Q € Q of length I (¢ <1 < 2¢), consider
the subgraph QT of T', containing, for each v € V(Q), the tree Ty (v)» Where x(v) = ¢(¥(v))),
that is, the path @ augmented with all the nodes deleted from the original tree that are
connected to nodes of the path. Let v, vy be the endpoints of ().

The function Pump(Q”, B) produces a new tree PT having two endpoints, v} and v},
satisfying that the path between v{ and v} has length I’, such that ¢cB <1’ < ¢(B + 1).
The new tree is obtained by replacing a subpath of @, along with the deleted nodes
connected to it, with many copies of the replaced part, concatenated one after the other. Let
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Figure 6 Example of Q7 obtained by merging the path nodes (in black) with previously removed
trees connected to them (in red).

Cun ek

Figure 7 S (on the right) is obtained by pumping the black paths.

G’ = Replace(G, (QT, (v1,v2)), (PT, (v],v}))). Pump satisfies that nodes v}, vj € G’ have the
same view as vy, v € G at distance 2r (where r is the LCL checkability radius). Note that,
in the formal definition of Pump, we will set ¢ as a function of r.

See Figure 6 for an example of Q7.

The final tree S is obtained from T' by replacing each path @ € Q in the following way.
Let QT be the set containing all Q7. Replace each subgraph Q7 with P = Pump(QT, B).

Note that a node v can not see the whole set Q, but just all the paths @) € Q that end at
distance at most 7 4 2¢ from v. Thus each node locally computes just a part of S, that is
enough for our purpose. We call the subgraph of Q7 induced by the nodes of Q) the main
path of QT , and we define the main path of P” in an analogous way. See Figure 7 for an
example.

Finally, we want to keep track of the real nodes of S. Nodes of S are divided in two parts,
S, and S,,. The set S, contains all nodes of T’ that are not contained in any @7, and all nodes

that are at distance at most 2r from nodes not contained in any Q7, while S, = V(S) \ S,.

Let 1 be a mapping from real nodes of the virtual graph (S,) to their corresponding node
of T (this is well defined, by the properties of Pump), and let T, = {n(v) | v € S,} (note
that also n~! is well defined for nodes in T,). Informally, T, is the subset of nodes of T that

are far enough from pumped regions of S, and have not been removed while creating 7".

Note that we use the function 7 to distinguish between nodes of S and nodes of T', but 7 is
actually the identity function between a subset of shared nodes. Let Virt be the function
that maps T to S, that is, S = Virt(T, B, ¢). See Figure 8 for an example.

4.3 Properties of the virtual tree
The following lemma bounds the size of the graph S, compared to the size of T

» Lemma 6. The tree S has at most N = c¢(B + 1)n nodes, where n = |V(T)|, and
S = Virt(T, B, c).

Proof. S is obtained by pumping 7. The main path of the subtree obtained by pumping
some Q7 € QT has length at most ¢(B + 1). This implies that each node of the main path
of QT is copied at most ¢(B + 1) times. Also, a deleted tree T, rooted at some path node
v is not connected to more than one path node. Thus, all nodes of T are copied at most
¢(B + 1) times. <
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\:,/\{:/f T -, L
// /\E/ “/?\ Jf/\ﬁ\/

Figure 8 Nodes in yellow on the left are the ones in S,, while the yellow ones on the right are
nodes in T,. Note that, for the sake of simplicity, we consider 2r = 1.

The following lemma bounds the size of T compared to the size of T”. Notice that,
this is the exact point in which our approach stops working for time complexities of O(y/n)
rounds. This is exactly what we expect, since we know that there are LCL problems on trees
having complexity O(v/n) [8].

» Lemma 7. For any path P = (x1,...,2%) of length k > c\/n that is a subgraph of T', at
most @ nodes in V(P) have degree greater than 2.

Proof. If a node z; € P has df/ > 2, it means that it has at least one neighbour z ¢
{zj_1,zj11} in T such that there exists a node w satisfying dist(z;, w) > 7 such that the
shortest path connecting x; and w contains z. Thus, for each node in P with df/ > 2, we
have at least other 7 nodes not in P. If at least @ + 1 nodes of P have degree greater than

2, we would obtain a total of (@ + 1) - 7 > n nodes, a contradiction. <
The following lemma compares distances in 7" with distances in S.

» Lemma 8. There exists some constant ¢ such that, if nodes u, v of T, are at distance at
least cy/n in T, then their corresponding nodes n~'(u) and n='(v) are at distance at least

c¢By/n/3 in S.

Proof. Consider a node u at distance at least 7 from v in 7. There must exist a path P in
T' connecting ¢~ (u) and ¢~1(v). By Lemma 7, at most @ nodes in P have degree greater
than 2, call the set of these nodes X. We can bound the number of nodes of P that are not
part of paths that will be pumped in the following way:
At most C‘C/J:LIH + @ + 1 nodes can be part of the ruling set. To see this, order the nodes
of P from left to right in one of the two canonical ways. The first summand bounds all
the ruling set nodes whose right-hand short path is of length at least ¢, the second one
bounds the ruling set nodes whose right-hand short path ends in a node z € X, and the
last one considers the path that ends in ¢=*(u) or ¢=1(v).
At most @(1 +2(c — 1)) nodes are either in X or in short paths of length at most ¢ — 1
on the sides of a node in X.
At most 2(c — 1) nodes are between ¢~1(u) (or ¢~!(v)) and a ruling set node.
While pumping the graph, in the worst case we replace paths of length 2¢ with paths of length
eB, thus dist(¢ 7 (u), $~1 (1)) > (cy/n+1—(LF 4+ Y2 414 ¥ (142(c—1))+2(c—1)))- L ~ 1,
which is greater than ¢B+/n/3 for ¢ and n greater than a large enough constant. <

4.4 Solving the problem faster

We now show how to speed up the algorithm A and obtain an algorithm running in O(y/n).
First, note that if the diameter of the original graph is O(y/n), every node sees the whole
graph in O(y/n) rounds, and the problem is trivially solvable by bruteforce. Thus, in the
following we assume that the diameter of the graph is w(y/n). This also guarantees that T,
is not empty.
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Informally, nodes can distributedly construct the virtual tree S in O(y/n) rounds, and
safely execute the original algorithm on it. Intuitively, even if a node v sees just a part of .S,
we need to guarantee that this part has large enough radius, such that the original algorithm
can’t see outside the subgraph of S constructed by v.

More precisely, all nodes do the following. First, they distributedly construct S, in O(y/n)
rounds. Then, each node v in T}, (nodes for which n~!(v) is defined), simulates the execution
of A on node n~1(v) of S, by telling A that there are N = ¢(B + 1)n nodes. Then, each node
v in T, outputs the same output assigned by A to node n~1(v) in S. Also, each node v in T,
fixes the output for all nodes in 7, (n can be defined also for them, v sees all of them, and the
view of these nodes is contained in the view of v, thus it can simulate A in S for all of them).
Let A be the set of nodes that already fixed an output, that is, A = {{u} UV(T,) | v € T, }.
Intuitively A contains all the real nodes of S (nodes with a corresponding node in T') and
leaves out only nodes that correspond to pumped regions. Finally, nodes in V(T') \ A find a
valid output via bruteforce.

We need to prove two properties, the first shows that a node can safely execute A on the
subgraph of S that it knows, while the second shows that it is always possible to find a valid
output for nodes in V(T') \ A after having fixed outputs for nodes in A.

Let us choose a B satisfying Torig(IN) < ¢By/n/3, where Torig(N) is the running time of A.
Note that B can be an arbitrarily large function of n. Such a B exists for all 7oig(2) = o(x).
We prove the following lemma.

» Lemma 9. For nodes in T,, it is possible to execute A on S by just knowing the neigh-
bourhood of radius 2¢y/n in T.

Proof. First, note that by Lemma 6, the number of nodes of the virtual graph, |V(5)], is
always at most N, thus, it is not possible that a node of S sees a number of nodes that is
more than the number claimed when simulating the algorithm.

Second, since B satisfies Torig(IN) < ¢By/n/3, and since, by Lemma 8 and the bound of
¢y/n on the depth of each deleted tree T, the nodes outside a 2¢/n ball of nodes in T, are at
distance at least cBy/n/3 in S, the running time of A is less than the radius of the subtree
of S rooted at a node v that v distributedly computed and is aware of. This second part
also implies that nodes in T, do not see the whole graph, thus they cannot notice that the
value of N is not the real size of the graph. <

4.5 Filling gaps by bruteforce

Using similar techniques presented in [8] we can show that, by starting from a tree T in
which nodes of A have already fixed an output, we can find a valid output for all the other
nodes of the graph, in constant time. See the full version for the details.
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