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Abstract
Prior’s tense logic forms the core of linear temporal logic, with both past- and future-looking
modalities. We present a sound and complete proof system for tense logic over ordinals. Tech-
nically, this is a hypersequent system, enriched with an ordering, clusters, and annotations. The
system is designed with proof search algorithms in mind, and yields an optimal coNP complexity
for the validity problem. It entails a small model property for tense logic over ordinals: every
satisfiable formula has a model of order type at most ω2. It also allows to answer the validity
problem for ordinals below or exactly equal to a given one.
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1 Introduction

Linear temporal logic has become a staple specification language in verification since its
introduction by Pnueli [28]. In its most common form, the logic features an “until” temporal
modality and ranges over linear time flows of order type ω, i.e. over infinite words, where
it enjoys a PSPACE-complete satisfiability problem [34]. A large number of variants with
the same complexity has been motivated and introduced in the literature, notably temporal
logics with past modalities [23, 21], ranging over arbitrary ordinals [33, 12], or even – with
the Stavi modalities added – over arbitrary linear time flows [10, 32].

Linear temporal logic finds its roots in Prior’s tense logic [31, 9], which only featured the
strict “past” P and “future” F modalities. This set of modalities is still interesting in its
own right, as it is sufficient for many modelling tasks [35], and is known to lead to a slightly
easier NP-complete satisfiability problem both over ω [34] and over arbitrary linear time
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15:2 A Hypersequent Calculus with Clusters for Tense Logic over Ordinals

flows [26]. While linear tense logic is less expressive than FO(<), the first-order logic over
linear orders with unary predicates, it has nevertheless nice characterisations as it captures
instead its two-variable fragment FO2(<) [13].

In this paper, we investigate tense logic over well-founded linear time flows, i.e. over
ordinals, which can be denoted as KtL`.3 in the taxonomy of modal logics from [6]. We
show in particular that
1. the satisfiability problem for KtL`.3 over the class of ordinals is NP-complete, and that
2. a formula ϕ of KtL`.3 has a well-founded linear model if and only if it has a model of

order type α for some α < ω · (|ϕ|+ 2); this should be contrasted with the corresponding
ω|ϕ|+2 bound proven in [12, Cor. 3.3] for linear temporal logic.

These two results are however just byproducts of our main contribution, which is a sound
and complete proof system for KtL`.3 in which proof search runs in coNP.

All the algorithmic results for tense logic mentioned earlier in this introduction have been
obtained via model-theoretic techniques, by showing that if a formula has a model, then it has
a “small” one, and it is actually possible to proceed similarly for KtL`.3. However, as the
resulting algorithms consist essentially in guessing a model, they are impractical as they are
unlikely to avoid the (high) worst case complexity of the problem. In the case of the full linear
temporal logic, this has motivated the use of automata-theoretic techniques [36, 33, 8, 12],
typically by building an at most exponential-sized automaton recognising the set of models of
the formula: checking the language non-emptiness of the automaton can then be performed
on-the-fly in PSPACE and can rely in practice on a rich algorithmic toolset. However, in the
case of tense logic, it is not immediate how to tailor this approach to recover the above NP
upper bound, because the automata for tense logic may require exponential-size – over ω,
this is a consequence of the proof of [13, Thm. 3]. Finally, if one’s interest is to check that a
formula ϕ is valid, neither the model-theoretic nor the automata-theoretic approach yields a
“natural” certificate that could be checked by simple independent means.

All these considerations motivate our use of proof-theoretic techniques. In their simplest
form, those can be Hilbert-style axiomatisations which, in the context of modal logic, allow
to characterise valid formulas in a way that is modular with respect to the considered classes
of models – incidentally, the name KtL`.3 refers to its axiomatisation (see Appendix A).
However, these systems are not directly amenable to automated reasoning, which is rather
achieved through more structured proof systems, the seminal example being Gentzen’s sequent
calculus. As the latter is often too limited for modal logics, it has been enriched in various ways,
using e.g. labelled sequents [25], display calculus [5, 19], nested sequents [18, 7, 30, 29, 22],
or hypersequents [2, 14, 20, 15]. These enriched formalisms remain quite modular and
sustain extensions simply by adding a few rules. They can be exploited to provide optimal
complexity solutions to the validity problem directly by proof search [17, 24, 4, 11, 3], which
may sometimes avoid the worst-case complexity of the problem and rely in practice on various
heuristics. Finally, this approach obviously yields a proof of validity as a certificate in case
of success.

Our proof system for KtL`.3 is obtained as a natural extension of our earlier work
on Kt4.3 [3], using additional insights from Avron’s sequent calculus for KL [1]. This is
satisfying since KtL`.3 is simply obtained from Kt4.3 – the tense logic of arbitrary linear
time flows – by adding well-foundation to the left, i.e. towards the past (see Section 2), and
completes the picture as KtQ the tense logic of dense linear time flows was also handled in [3].
Specifically, we use the framework of ordered hypersequents with clusters introduced in [3] as
an elaboration, with terminating proof search, of Indrzejczak’s ordered hypersequent calculus
for Kt4.3 [15, 16]. Conceptually, re-using the framework required to generalise its semantics.
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The new semantics is more uniform, and allows us to provide purely proof-theoretic soundness,
completeness, and complexity arguments in Section 3, unlike in [3] where soundness builds
on a model-theoretic result from [26].

Furthermore, our proof system is easily shown in Section 4 to also address the more
precise problems of validity over all the well-founded linear time flows

of order type β < α+ 1 for a given α, and
of order type exactly α < ω2.

Such a result seems out of reach of axiomatisations, and yields for instance a coNP decision
procedure for validity over ω-words. Finally, using the exponential translation of FO2(<)
into tense logic given in [13, Thm. 2], our results yield an optimal NEXP upper bound for
satisfiability of the former over ordinals, which was already known from [27]. But more
importantly they yield a proof system for FO2(<) over ordinals, which would be challenging
to construct directly, because eigenvariables cannot be handled in the usual fashion.

2 Tense Logic over Ordinals

2.1 Syntax
Tense logic features two unary temporal operators, over a countable set Φ of propositional
variables, with the following syntax:

ϕ ::= ⊥| p | ϕ ⊃ ϕ | Gϕ | Hϕ (where p ∈ Φ)

Formulæ Gϕ and Hϕ are called modal formulæ. Intuitively, Gϕ expresses that ϕ holds
“globally” in all future worlds, while Hϕ expresses that ϕ holds “historically” in all past
worlds. Other Boolean connectives may be encoded from ⊥ and ⊃, and as usual Fϕ = ¬G¬ϕ
expresses that ϕ will hold “in the future” and Pϕ = ¬H¬ϕ that it held “in the past.”

2.2 Ordinal Semantics
In the case of KtL`.3, our formulæ shall be evaluated on Kripke structures M = (α, V ),
where α is an ordinal and V : Φ→ ℘(α) is a valuation of the propositional variables. Recall
that an ordinal α is seen set-theoretically as {β ∈ Ord | β < α}. An ordinal is either 0 (the
empty linear order), a limit ordinal λ (such that for all β < λ there exists γ with β < γ < λ),
or a successor ordinal α+ 1.

Given a structure M = (α, V ), we define the satisfaction relation M, β |= ϕ, where β < α

and ϕ is a formula, by structural induction on ϕ:

M, β 6|= ⊥
M, β |= p iff β ∈ V (p)
M, β |= ϕ ⊃ ψ iff if M, β |= ϕ then M, β |= ψ

M, β |= Gϕ iff M, γ |= ϕ for all β < γ < α

M, β |= Hϕ iff M, γ |= ϕ for all γ < β

When M, β |= ϕ, we say that (M, β) is a model of ϕ.

I Example 2.1. The satisfiable formulæ of KtL`.3 are strictly contained in the set of
formulæ satisfiable in Kt4.3, i.e. over arbitrary linear orders. For instance, the formula
ϕ0 = P p ∧ H (p ⊃ P p) is satisfiable in Kt4.3 but not in KtL`.3, because all its models
must contain an infinite decreasing sequence of worlds where p is true. Moreover, KtL`.3
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can force models to be of order type greater than ω: for instance, the formula ϕ1 = G (p ⊃
F p) ∧ G (¬p ⊃ F¬p) ∧ F¬p ∧ F (p ∧ G p) forces to have a first infinite sequence of worlds not
satisfying p, followed by a second infinite sequence of worlds satisfying p, and all its models
(α, V ) must have α ≥ ω · 2.

3 Hypersequents with Clusters

As is often the case with modal logics, Gentzen’s sequent calculus does not provide a rich
enough framework to obtain complete proof systems. The extension we consider is to use
hypersequents [2], which are essentially sets of sequents logically interpreted as a disjunction.
Indrzejczak has moved to ordered hypersequents [15, 16] (which are lists of hypersequents)
to obtain a sound and complete calculus for Kt4.3. We have further enriched the structure
of his ordered hypersequents with clusters and annotations [3] to obtain a calculus for
Kt4.3 for which proof search terminates and, in fact, yields an optimal complexity decision
procedure. We keep the same structure in the present work, but significantly adapt the proof
rules, annotation mechanism, and even the semantics of hypersequents; we discuss these
differences in more depth when concluding in Section 5. It should be noted that, unlike
simple hypersequents, hypersequents with clusters do not have a translation as formulæ.

3.1 Annotated Hypersequents with Clusters
A sequent (denoted S) is a pair of two finite sets of formulæ, written Γ ` ∆. It is satisfied in
a world γ of a structure M if, in that world, the conjunction of the formulæ of Γ implies the
disjunction of the formulæ of ∆. In that case, we write M, γ |= Γ ` ∆.

We define next the basic structure of our hypersequents, then enrich it with annotations
to obtain the hypersequents that we shall work with.

I Definition 3.1 (hypersequent). A hypersequent is a list of cells, each cell being either a
sequent or a non-empty list of sequents called a (syntactic) cluster. We shall use the following
abstract syntax, where both operators “;” and “‖” are associative with unit “•”:

H ::= C | H ;H (hypersequents)

C ::= • | S | {Cl} (cells)

Cl ::= S | Cl ‖ Cl (cluster contents)

Note that this definition allows for empty cells and hypersequents “•”, but these notational
conveniences will never arise in actual proofs – and should not be confused with the empty
sequent “`”. We will see that the order of cells in a hypersequent is semantically relevant, but
the order of sequents inside a cluster is not. Nevertheless, assuming an ordering as part of
the syntactic structure of clusters is useful in order to refer to specific sequents or positions.

I Definition 3.2. An annotated sequent is a sequent that may be annotated with G formulæ.
We simply write Γ ` ∆ for a sequent carrying no annotation, otherwise we write, e.g.,
Γ ` ∆ (Gϕ,Gψ, . . .). Then, annotated hypersequents are hypersequents whose sequents are
annotated, with the constraint that an annotation may only occur once in an annotated
hypersequent, and that ϕ occurs on the right-hand side of sequents carrying the annotation
Gϕ. Formally, we can see annotations as partial functions from the set of G formulæ to the
set of positions of the hypersequent.
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I Example 3.3. For instance, Γ ` ∆, ϕ (Gϕ);{Π ` Σ, ψ (Gψ)} is an annotated hypersequent
but Γ ` ∆, ϕ, ψ (Gϕ,Gψ) ; {Π ` Σ, ψ (Gψ)} is not allowed due to the two occurrences of
(Gψ). Finally, ` ⊥ (G p) is not an annotated hypersequent as it fails the second condition.

Annotations will impact the semantics of hypersequents: intuitively, counter-models
should attach to sequents annotated with (Gϕ) a world or set of worlds that invalidates ϕ
and is (in a sense that will be made clear below) “rightmost” for that property.

3.2 Semantics
The semantics of an ordered hypersequent with clusters relies on a notion of embedding
which we define next, building on a view of hypersequents as partially ordered structures.

I Definition 3.4 (partial order of a hypersequent). Let H be a hypersequent containing n
sequents, counting both the sequents found directly in its cells and those in its clusters. In
this context, any i ∈ [1;n] is called a position of H, and we write H(i) for the i-th sequent of
H. We define a partial order - on the positions of H by setting i - j if and only if either
the i-th and j-th sequents are in the same cluster, or the i-th sequent is in a cell that lies
strictly to the left of the cell of the j-th sequent. We write i ≺ j when i - j but j 6- i, i.e. j
lies strictly to the right of i in H. We write i ∼ j when i - j - i. Finally, the domain of H
is defined as dom(H) = ([1;n],-); note that empty cells are ignored in dom(H).

While a hypersequent is syntactically a finite partial order, its semantics will refer to a
linear well-founded order, obtained by “bulldozing” its clusters into copies of ω. The resulting
order type is the object of the next definition.

I Definition 3.5 (order type). Let H be a hypersequent. We define its order type o(H)
by induction on its structure: for cells, o(•) = 0, o(S) = 1, and o({Cl}) = ω, and for
hypersequents, o(H1 ;H2) = o(H1) + o(H2). Thus, o(H) = ω · k +m where k is the number
of clusters in H and m the number of non-empty cells to the right of the rightmost cluster.

I Definition 3.6 (embedding). Let H be an annotated hypersequent and α an ordinal. We
say that µ : dom(H)→ α+ 1 \ {0} is an embedding of H into α, written H ↪→µ α, if:

for all i, j ∈ dom(H), i ≺ j implies µ(i) < µ(j) and i ∼ j implies µ(i) = µ(j); and
for all i ∈ dom(H), i is in a cluster if and only if µ(i) is a limit ordinal.

Observe that, if H ↪→µ α, then o(H) < α+ 1.

I Definition 3.7 (semantics). Let M = (α, V ) be a structure, H a hypersequent, and µ an
embedding H ↪→µ α. We say that µ is annotation-respecting if, for all ϕ and i such that
H(i) carries the annotation (Gϕ) and for all γ < α such that M, γ |= ¬ϕ, we have γ < µ(i).

We say that (M, µ) is a model of H, written M, µ |= H, if µ is annotation-respecting and
there exists a position i of H and an ordinal β < µ(i) such that for all γ with β ≤ γ < µ(i)
we have M, γ |= H(i).

Following this definition, we say that a hypersequent is valid if for any M = (α, V ) and
annotation-respecting H ↪→µ α, we have M, µ |= H. A formula ϕ is valid in the usual sense
(i.e., satisfied in every world of every ordinal structure) if and only if the hypersequent ` ϕ is
valid in our sense.

If a hypersequentH is not valid, then it has a counter-model, that is a structureM = (α, V )
and an annotation-respecting embedding H ↪→µ α such that, for every i ∈ dom(H) and
β < µ(i), there exists γ with β ≤ γ < µ(i) such that M, γ 6|= H(i). For the positions

FSTTCS 2018
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(ax)
H [ϕ,Γ ` ∆, ϕ]

H [ϕ ⊃ ψ,Γ ` ∆, ϕ] H [ϕ ⊃ ψ,ψ,Γ ` ∆]
H [ϕ ⊃ ψ,Γ ` ∆]

(⊃ `)

(⊥)
H [Γ,⊥ ` ∆]

H [ϕ,Γ ` ∆, ψ, ϕ ⊃ ψ]
H [Γ ` ∆, ϕ ⊃ ψ]

(` ⊃)

Figure 1 Propositional rules of HKtL`.3.

i ∈ dom(H) that are not in clusters, µ(i) is a successor ordinal γ + 1 and this amounts to
asking that M, γ 6|= H(i). When i is in a cluster, the condition implies the existence of an
infinite increasing sequence (γj)j of ordinals with limit µ(i) = supj γj such that M, γj 6|= H(i)
for all j.

3.3 Proof System
We now present our proof system for KtL`.3, called HKtL`.3. This system deals with
annotated hypersequents; from now on, we simply call sequents and hypersequents their
annotated versions. The rules of HKtL`.3 are given in Figures 1 to 3: the first group
includes the usual propositional rules, the second deals with modalities, and the last one
with annotations. The figures make use of some notations which we explain next, before
commenting on the rule definitions themselves.

Notations. First, we use hypersequents with holes. One-placeholder hypersequents, cells,
and clusters are defined by the following syntax:

H [] ::= H ; C [] ;H C [] ::= ? | { Cl[] } Cl[] ::= Cl• ‖ ? ‖ Cl• Cl• ::= • | Cl

Two-placeholder cells and hypersequents have two holes identified by ?1 and ?2:

H [] [] ::= H ; C [] [] ;H | H[?1] ;H[?2] C [] [] ::= { Cl[?1] ‖ Cl[?2] } | { Cl[?2] ‖ Cl[?1] }

As usual, C [S] (resp. C [Cl]) denotes the same cell with S (resp. Cl) substituted for ?;
two-placeholder cells and hypersequents with holes behave similarly. In terms of the partial
orders underlying hypersequents with two holes, observe that the positions i and j associated
resp. to ?1 and ?2 are such that i - j.

Second, we do not write explicitly the annotations that sequents may carry in rule
applications. These annotations are implicitly the same in a conclusion sequent and the
corresponding sequents in premises, or updated by adding the explicit annotation; freshly
created sequents always have an explicit annotation. Annotations can prevent a rule
application if the addition of an annotation would break the single-annotation constraint.

Third, we use a convenient notation for enriching a sequent: if S is a sequent Γ ` ∆ (A),
then S n (Γ′ ` ∆′ (A′)) is the sequent Γ,Γ′ ` ∆,∆′ (A,A′). Moreover, we sometimes need
to enrich an arbitrary sequent of a cluster {Cl} with a sequent S; then {Cl}n S denotes the
cluster with its leftmost sequent enriched.

Rules. We now comment on the definition of our rules. The propositional rules of Figure 1 are
straightforward: they are the usual ones applied to an arbitrary sequent of the hypersequent.
The left modal rules of Figure 2 should not be surprising. For instance, in (G`), if the
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(G`)
H [Gϕ,Γ ` ∆] [ϕ,Gϕ,Π ` Σ]

H [Gϕ,Γ ` ∆] [Π ` Σ]
H1;

{
Cl• ‖ ϕ,Gϕ,Γ ` ∆ ‖ Cl ′•

}
;H2

H1;
{

Cl• ‖ Gϕ,Γ ` ∆ ‖ Cl ′•
}

;H2
({G`})

(H`)
H [ϕ,Hϕ,Π ` Σ] [Hϕ,Γ ` ∆]

H [Π ` Σ] [Hϕ,Γ ` ∆]
H1;

{
Cl• ‖ ϕ,Hϕ,Γ ` ∆ ‖ Cl ′•

}
;H2

H1;
{

Cl• ‖ Hϕ,Γ ` ∆ ‖ Cl ′•
}

;H2
({H`})

H1 ; C [Γ ` ∆,Gϕ] ; ` ϕ (Gϕ) ; C ′ ;H2
H1 ; C [Γ ` ∆,Gϕ] ; { ` ϕ (Gϕ)} ; C ′ ;H2
H1 ; C [Γ ` ∆,Gϕ ‖ ` ϕ (Gϕ)] ; C ′ ;H2 if C 6= ?

H1 ; C [Γ ` ∆,Gϕ] ; C ′ n (` Gϕ) ;H2 if C ′ 6= •
H1 ; C [Γ ` ∆,Gϕ] ; C ′ n (` ϕ (Gϕ)) ;H2 if C ′ 6= • and C ′ 6= {Cl}

H1 ; C [Γ ` ∆,Gϕ] ; C ′ ;H2
(`G)

H2 ; C ′ ; Hϕ ` ϕ ; C [Γ ` ∆,Hϕ] ;H1
H2 ; C ′ n (` Hϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C ′ 6= •
H2 ; C ′ n (Hϕ ` ϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C ′ 6= • and C ′ 6= {Cl}

H2 ; C ′ ; C [Γ ` ∆,Hϕ] ;H1
(`H)

Figure 2 Modal rules of HKtL`.3. In (`G) and (`H), we allow C′ = • only when H2 = •.

((G))
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ,Gϕ] H1 ; Γ ` ∆,Gϕ (Gϕ) ;H2

({(G)})

((Ḡ))
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π, ϕ ` Σ]
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ]

Figure 3 Annotation rules of HKtL`.3.

conclusion has a counter-model, then Gϕ holds at some ordinal and thus both ϕ and Gϕ
must also hold at strictly greater ordinals. The rule also applies to two distinct sequents
inside the same cluster; the soundness proof below shows how this is covered in detail. The
({G`}) rule allows to proceed in the same way inside a cluster when the sequent “further to
the right” is the original sequent itself, something that our notations do not allow in (G`).
Finally, (H`) and ({H`}) are symmetric to the two previous rules.

The rules (`G) and (`H) are the most complex ones. We shall not try to justify their
soundness at this point, but simply make a few remarks that are important to understand their
definition. First, these rules are the only ones that may introduce new cells in hypersequents.
In the case of (`G), new cells are annotated with the principal formula Gϕ, which prevents
another application of (`G) on Gϕ (otherwise a premise would carry this annotation at two
positions). Second, the principal cell C [Γ ` ∆,Gϕ] in (`G) may be the rightmost cell of the
conclusion hypersequent, in which case both C ′ and H2 are empty, and the rule has two
or three premises depending on whether the principal cell is a cluster or not. When the
principal cell is not rightmost, then C ′ is not allowed to be empty, and the rule has one or
two extra premises depending on whether C ′ is a cluster or not. The situation is symmetric
for (`H).

Finally, the special rules of Figure 3 are, again, best explained through the soundness
proof: they correspond to situations that can be ruled out or simplified by taking into account
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. . .

. . .

(ax)
S1 ; p ` p (G p) ; {G p, p ` (Gϕ)} S1; ` p,G p (G p) ; {G p, p ` (Gϕ)}

({(G)})

S1 ; G p ⊃ p ` p (G p) ; {G p, p ` (Gϕ)}
(⊃ `)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; ` p (G p) ; {G p, p ` (Gϕ)}
(G`)
. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {G p, p ` (Gϕ)}
(`G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(`G)

Figure 4 In a proof of S1 (Example 3.9) branches with a non-cluster cell for (G p) are provable.

the annotation-respecting nature of our semantics. These rules are important to be able to
extract counter-models from proof search failures (i.e., sequents on which no rule applies).

Examples. We have designed our rules so that they are all invertible: by keeping in premises
all the formulæ from the conclusion, we ensure that validity is never lost by applying a rule;
this will be shown formally in Proposition 3.11. In practice, keeping all formulæ can be
unnecessarily heavy. Fortunately, it is easy to see that the following weakening rules are
admissible:

(weak `)
H [Γ ` ∆]
H [Γ, ϕ ` ∆]

H [Γ ` ∆]
H [Γ ` ϕ,∆]

(` weak)

I Example 3.8. The formula ϕ0 = P p ∧ H (p ⊃ P p) from Example 2.1 is not satisfiable in
KtL`.3, so the dual sequent S0 = H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥) is valid. Here is
indeed a proof tree, with implicit uses of propositional and weakening rules, and principal
formulæ shown in orange.

(ax)
H (p ⊃ ⊥), p ` p ; S0 H (p ⊃ ⊥), p ` H (p ⊃ ⊥) ; S0

(ax)

p ⊃ (H (p ⊃ ⊥) ⊃ ⊥),H (p ⊃ ⊥), p ` ; S0
(⊃ `)

H (p ⊃ ⊥), p ` ; H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥)
(H`)

H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥)
(`H)

I Example 3.9. Since ϕ1 = G (p ⊃ F p)∧G (¬p ⊃ F¬p)∧F¬p∧F (p∧G p) from Example 2.1
is satisfiable, its dual sequent S1 = G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ where
ϕ = p ⊃ ⊥ ∨ (G p ⊃ ⊥) is invalid, although with no counter-models below ω · 2.

In our calculus, proof search for S1 will succeed on branches not considering at least
two clusters; we show in Figure 4 one such branch, with implicit uses of propositional and
weakening rules, and principal formulæ shown in orange.

However, proof search will fail on the branch shown in Figure 5, which corresponds to
the counter-model described in Section 2.

3.4 Soundness
I Proposition 3.10. The rules of HKtL`.3 are sound: if the premises of a rule instance
are valid, then so is its conclusion.

Proof. We show the contrapositive: considering an application of a rule with a conclusion
hypersequent H and a counter-model (M, µ) of H with M = (α, V ) and H ↪→µ α, we provide
a counter-model of one of the premises (or a contradiction when there is no premise).
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. . .

. . .

. . .

S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p ` G (p ⊃ ⊥) (G (p ⊃ ⊥))}
S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p, p ⊃ (G (p ⊃ ⊥) ⊃ ⊥) ` (G (p ⊃ ⊥))}

(⊃ `)

S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p ` (G (p ⊃ ⊥))}
(G`)
. . .

S1 ; {` G p, p (G p)} ; {G p, p ` G (p ⊃ ⊥) (Gϕ)}
(`G)

S1 ; {G p ⊃ p ` p (G p)} ; {p ⊃ (G (p ⊃ ⊥) ⊃ ⊥),G p, p ` (Gϕ)}
(⊃ `)×2

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {` p (G p)} ; {G p, p ` (Gϕ)}
(G`)×2
. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {G p, p ` (Gϕ)}
(`G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(`G)

Figure 5 A failed branch in the proof of S1 (Example 3.9).

Since we will often have to extend an embedding with a value for a new position, we
define µ + (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) = µ(k) for k < i and
µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

A full proof is given in Appendix B, and we cover here only a few key cases. Consider
first an application of (`G) with Γ ` ∆,Gϕ at position i, when C ′;H2 is empty. For any
βi < µ(i) there exists γi with βi ≤ γi < µ(i) such that M, γi 6|= H(i), hence there also exists
γ′i > γi such that M, γ′i 6|= ϕ. Let γ be the least ordinal that contains all such γ′i. We have
that µ(i) ≤ γ.

If µ(i) = γ, then µ(i) must be a limit ordinal. Hence C 6= ? and the third premise H ′3
is available. We construct a counter-model (M, µ′) for it by taking µ′ = µ + (k 7→ γ),
where k = i+ 1 is the new position in H ′3. Indeed, we have that for any β′ < µ′(k) there
exists γ′ with β′ ≤ γ′ < µ′(k) and M, γ′ 6|= ϕ (the inequality can even be made strict).
Moreover, the annotation is respected by definition of γ: there cannot be any λ ≥ γ such
that M, λ 6|= ϕ.
Otherwise we conclude by observing that (M, µ′) is a counter-model of one of the first
two premises with µ′ = µ+ (k 7→ γ) where k is the newly created position. We check that
µ′ is monotone, because µ(i) < γ. If γ is a successor ordinal, (M, µ′) is a counter-model
of the first premise simply because the predecessor of γ invalidates ϕ and the annotation
is respected; both hold by construction. If γ is a limit ordinal we have a counter-model
(M, µ′) of the second premise: we do have that for any β′ < µ′(k) there exists γ′ with
β′ ≤ γ′ < µ′(k) that invalidates ϕ, and the annotation is respected by construction.

When C ′ ;H2 is not empty, we need to consider whether γ is less than the ordinal to which
the positions of C ′ are mapped by µ, and use the last two premises when it is not the case.

The case of (`H) is similar, but simpler in that we can take γ = λ + 1 where λ is
the least ordinal such that M, λ 6|= ϕ. Finally, annotation rules (Figure 3) rely on the
annotation-respecting condition on µ: informally, ϕ cannot be falsified at an ordinal beyond
µ(i) when i carries the annotation (Gϕ), thus the conclusions of ((G)) and ({(G)}) cannot
have counter-models, and ϕ must be satisfied at ordinals corresponding to Π ` Σ for ((Ḡ)). J

3.5 Completeness and Complexity
As in [3], completeness is a by-product of the very simple proof-search behaviour of our
calculus. As we shall see, all the rules are invertible and proof search branches are polynomially
bounded, as long as obvious pitfalls are avoided in the search strategy. Thus it is useless to
backtrack during proof-search. Moreover, proof attempts result in finite (polynomial depth)
partial proofs, whose unjustified leaves yield counter-models that amount (by invertibility)
to counter-models of the conclusion. Hence the completeness of our calculus. We detail this
argument below, and its corollary: proof-search yields an optimal coNP procedure for validity.
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(H`)
(ax)

H a, a ` a ; H b ` b ; H a ` a ; ` H a,H b
H a ` a ; H b ` b ; H a ` a ; ` H a,H b

b,H a ` a ; H b ` b,H a ; ` H a,H b
H a ` a ; H b ` b,H a ; ` H a,H b

(H`)
· · ·

H a ` a ; H b ` b ; ` H a,H b · · ·
(`H)

H a ` a ; ` H a,H b
(`H)

` H a,H b
(`H)

Figure 6 Proof search with a failure hypersequent and an immediately provable hypersequent.

I Proposition 3.11 (invertibility). In any rule instance, if a premise has a counter-model,
then so does its conclusion.

Proof. Considering a rule instance with a counter-model (M, µ) of a premise H, we build a
counter-model (M, µ′) of the conclusion H ′. Depending on the rule that is applied, H and H ′
will either have exactly the same structure, or H will have a new cell. Accordingly, we take
µ′ to be the restriction of µ to the positions of H ′ (and adapt it accordingly for the positions
that have been shifted). It is indeed a proper annotation-respecting embedding of H ′ into
M. It is then easy to see that (M, µ′) is a counter-model of H ′, since any sequent H ′(i) is
contained in the corresponding sequent H(j): M, µ(j) 6|= H(j) implies M, µ′(i) 6|= H ′(i). J

We characterise next the proof attempts that we consider for proof search, and show how
to extract counter-models when such attempts fail.

I Definition 3.12. We say that a sequent is immediately provable if it is provable by an
application of (H`) or ({H`}) followed by (ax). We call partial proof a finite derivation tree
whose internal nodes correspond to rule applications, but whose leaves may be unjustified
hypersequents, and that satisfies two conditions: any rule application should be such that all
premises differ from the conclusion; immediately provable sequents must be proven through
(ax) and (H`) or ({H`}). Finally, we call failure hypersequent a hypersequent that can only
be the conclusion of a rule instance when it is also one of its premises.

Obviously, a hypersequent has a proof if and only if it has a partial proof without
unjustified leaves. The two conditions on partial proofs amount to a simple proof search
strategy that avoids loops. The second one addresses specifically loops arising from repeated
applications of (`H), in branches where several new cells are created for the same Hϕ

formula: this results in two cells of the form Γ,Hϕ ` ϕ,∆ and thus in an immediately
provable hypersequent. This is seen, for example, in the first premise of the third application
of rule (`H) in Figure 6. Finally, failure hypersequents correspond to points where proof
search is stuck, as with the unjustified hypersequent of Figure 6. We show next that such
hypersequents are invalid.

I Proposition 3.13. Any failure hypersequent H has a counter-model.

Proof sketch, details in Appendix B. We construct a counter-model over α = o(H), taking
µ as the only possible embedding, notably satisfying µ(i) = ω · k if i belongs to the k-th
cluster of H and µ(i) = ω · k +m if i is the m-th cell between the k-th and the next cluster
(if any). We can then take a function pos : α → dom(H) which maps worlds β < α to
positions of H in a way that respects the partial order induced by H. For a position i that
does not belong to a cluster, pos(β) = i if and only if β is the predecessor of µ(i). A position
i appearing in a cluster must correspond to an infinite sequence of ordinals of limit µ(i),
so that for all i ∼ j and β, if pos(β) = i then there exists γ with β < γ < µ(i) = µ(j)
such that pos(γ) = j; informally, this ensures that positions i and j inside a cluster are
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“infinitely interleaved” within µ(i) = µ(j). For example, for the unjustified hypersequent
of Figure 5, we could set pos(0) = 1, pos(i) = 2 for all other i < ω, pos(ω + 2j) = 3
and pos(ω + 2j + 1) = 4 for all j ≥ 0. We finally define the valuation V : Φ → ℘(α) by
V (p) = {β < α | ∃Γ,∆ . H(pos(β)) = (p,Γ ` ∆)} and let M = (α, V ).

We claim that M, γ 6|= H(pos(γ)) for all γ < α: we prove by induction on ψ that, if ψ
appears in the left-hand (resp. right-hand) side of H(pos(γ)), then M, γ � ψ (resp. M, γ 2 ψ).
Most cases follow a standard argument, we only detail the one where ψ = Gϕ occurs on the
right of H(pos(γ)). Since (`G) does not apply, an annotation must already exist for Gϕ. By
rules ((G)) and ({(G)}) this annotation must be on a position i such that pos(γ) - i. By
definition of annotations, ϕ occurs on the right of H(i). Hence, there exists γ′ > γ such that
i = pos(γ′), and M, γ′ 2 ϕ, thus M, γ 2 Gϕ.

From there we can check that H ↪→µ α, and the rule ((Ḡ)) enforces that µ is annotation-
respecting. It is then easy to conclude that (M, µ) is a counter-model of H. J

We now turn to establishing that proof search terminates, and always produces branches
of polynomial length. For a hypersequent H, let len(H) be its number of sequents (i.e., the
size of dom(H)), and |H| the number of distinct subformulæ occurring in H.

I Lemma 3.14 (small branch property). For any partial proof of a hypersequent H, any
branch of the proof is of length at most 2(|H|+ len(H) + 1) · |H|.

Proof. Let H be a hypersequent, P a partial proof of it, and B a branch of P. Remark
that the number of positions in hypersequents of β is bounded by |H| + len(H) + 1: we
have at most len(H) positions initially, and a new position may only be created once per
modal formula among at most |H| formulæ plus possibly one more (overall) to create an
immediately provable hypersequent. This is by definition of the annotation system for G
formulæ, and because a second cell created by (`H) on the same Hϕ would belong to an
immediately provable sequent. Any rule application adds some subformulæ among |H| to
the left or to the right of the turnstile at a position among |H| + len(H) + 1, hence with
2(|H|+ len(H) + 1) · |H| choices. Thus B is of length at most 2(|H|+ len(H) + 1) · |H|. J

We conclude that HKtL`.3 is complete, and also enjoys optimal complexity proof search.

I Theorem 3.15 (completeness). Every valid hypersequent H has a proof in HKtL`.3.

Proof. Assume that H is not provable. Consider a partial proof P of H that cannot be
expanded any more: its leaves cannot be obtained as the conclusion of a rule instance.
Such a partial proof exists by Lemma 3.14. Any unjustified leaf of that partial proof has a
counter-model by Proposition 3.13, and by invertibility it is also a counter-model of H. J

I Proposition 3.16. Proof search in HKtL`.3 is in coNP.

Proof. Proof search can be implemented in an alternating Turing machine maintaining the
current hypersequent on its tape, where existential states choose which rule to apply (and
how) and universal states choose a premise of the rule. By Lemma 3.14, the computation
branches are of length bounded by a polynomial. By Proposition 3.11, the non-deterministic
choices in existential states can be replaced by arbitrary deterministic choices, thus the
resulting Turing machine has only universal states, hence is in coNP. J
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4 Logic on Given Ordinals

We have designed a proof system that is sound and complete for KtL`.3, and enjoys optimal
complexity proof search. We now show that this system can easily be enriched to obtain
decision procedures not only for tense logic over arbitrary ordinals, but also for tense logic
over specific ordinals. We first observe that the logic can only distinguish ordinals up to ω2,
which should be contrasted with [12]. Then we show how to capture validity over ordinals
below some ω · k +m, and finally how to reason over a specific ordinal of this form.

I Proposition 4.1 (small model property). If a hypersequent H has a counter-model, then it
has a counter-model of order type α < ω · (|H|+ len(H) + 1).

Proof. This is a corollary of Theorem 3.15. By the proof of Lemma 3.14, the hypersequents in
a failure hypersequent – which are not immediately provable – have at most |H|+ len(H) non-
empty cells. The counter-model extracted in Proposition 3.13 from a failure hypersequent
H ′ is over o(H ′) < ω · (|H| + len(H) + 1). A counter-model for H is then obtained by
Proposition 3.11, with a different embedding but the same structure. J

In particular, for a formula ϕ, the hypersequent H = ` ϕ has |H| = |ϕ| and len(H) = 1,
hence the ω · (|ϕ|+ 2) bound announced in the introduction.

Next we observe that we can easily enrich our calculus to obtain a proof system for tense
logic over ordinals below a certain type α.

I Proposition 4.2. Let α be an ordinal. The proof system HKtL`.3 enriched with the
following axiom is sound and complete for tense logic over ordinals β ≤ α:

H
(ordα) if o(H) > α

Proof. The soundness argument for the rules of HKtL`.3 (Proposition 3.10) carries over to
the restricted semantics, since the underlying structure (and ordinal) is never modified in
the argument. Conversely, the completeness argument of Theorem 3.15 can be strengthened
because, thanks to the new rule, we can guarantee that any failure hypersequent H is such
that o(H) ≤ α, hence the extracted counter-model is also below this bound. J

I Example 4.3. When extending HKtL`.3 to check for validity below ω, the failing branch
of Figure 5 can be completed, as well as the other failing branches since they all involve
hypersequents of order type ω · 2, and S1 becomes provable.

We finally show how to capture validity at a fixed ordinal α < ω2. The basic idea is to
start with a hypersequent H such that o(H) = α = ω · k +m for some finite k and m, and
take rule (ordα) to forbid larger ordinals. The only catch is that we should check that the
formula of interest in valid in all possible positions. Let us write {`}k for {`}; · · · ; {`} with
k clusters containing the empty sequent, and (`)m for `; · · · ;` with m cells containing the
empty sequent.

I Proposition 4.4. The formula ϕ is valid in all structures of order type exactly α = ω ·k+m
if and only if HKtL`.3 extended with (ordα) proves all hypersequents of the form

{`}k1 ; ` ϕ ; {`}k2 ; (`)m and {`}k ; (`)m1 ; ` ϕ ; (`)m2

where k1 + k2 = k, k2 > 0 and m1 + m2 = m − 1. In other words, one must consider all
hypersequents H containing one sequent ` ϕ and otherwise only empty sequents, and such
that o(H) = ω · k +m.
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For instance, when k = m = 0, ϕ vacuously holds in all worlds of (0, V ). When k = 0 and
m = 1 we are checking ` ϕ only, and (ordα) closes any branch where a new cell is created,
rendering modal formulæ trivially true. When k = 1 and m = 0 we are checking ` ϕ ; {`}.

Proof. If ϕ holds in all worlds of all structures of the form (α, V ) for some V , the hyper-
sequents are valid and thus provable in HKtL`.3 with (ordα). We prove the converse by
contradiction. Assume that all the hypersequents hold and M, β 6|= ϕ for some M = (α, V )
and β < α. If ω · k1 ≤ β < ω · (k1 + 1) with k1 + 1 ≤ k we can build an embedding to obtain
a counter-model of the first kind of sequent. Otherwise, ω · k ≤ β < ω · k +m and we derive
a counter-model of the second kind of sequent. J

I Example 4.5. Consider the formula Gϕ for ϕ = G⊥ ⊃ ⊥. We cannot prove Gϕ in general,
since this formula is not satisfied over finite ordinals, as witnessed by the following partial
proof and its failure hypersequent (in the left branch) corresponding to a counter-model over
the ordinal 2:

(` ⊃)
` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ)
` Gϕ; ` ϕ (Gϕ)

` Gϕ ; { G⊥,⊥ ` ⊥, ϕ (Gϕ)}
(⊥)

` Gϕ ; { G⊥ ` ⊥, ϕ (Gϕ)}
({G`})

` Gϕ ; { ` ϕ (Gϕ)}
(` ⊃)

` Gϕ
(`G)

According to Proposition 4.4, over α = ω, i.e., k = 1 and m = 0, we need to prove
` Gϕ ; {`} in HKtL`.3 extended with (ordω), for which the presence of the cluster will be
crucial. The extra rule (ordω) is actually not necessary in this case, but simplifies the proof.
We start with an application of (`G), this time with three premises:

` Gϕ; ` ϕ (Gϕ) ; { ` } ` Gϕ ; { ` ϕ (Gϕ)} ; { ` } ` Gϕ ; { ` Gϕ}
` Gϕ ; { ` }

(`G)

The first premise is derived as follows:

` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ) ; {⊥ ` }
(⊥)

` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ) ; { ` }
(G`)

` Gϕ; ` ϕ (Gϕ) ; { ` }
(` ⊃)

The middle premise can simply be discharged by (ordω). For the last premise, we use
(`G) inside the cluster, which yields three premises: ` Gϕ ; { ` Gϕ} ; ` ϕ (Gϕ) and `
Gϕ ; { ` Gϕ} ; {` ϕ (Gϕ)} are discharged by (ordω), while the last one is derived as follows:

` Gϕ ; {⊥ ` Gϕ ‖ G⊥ ` ⊥, ϕ (Gϕ)}
(⊥)

` Gϕ ; { ` Gϕ ‖ G⊥ ` ⊥, ϕ (Gϕ)}
(G`)

` Gϕ ; { ` Gϕ ‖ ` ϕ (Gϕ)}
(` ⊃)

5 Related Work and Conclusion

We have designed the first proof system for KtL`.3, i.e. tense logic over ordinals. Thanks to
Indrzejczak’s ordered hypersequents [15], enriched with clusters and annotations as in [3], our
system enjoys optimal complexity proof search, allows to derive small model properties, and
can be extended into a proof system for variants of the logic over bounded or fixed ordinals.
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Our (`H) rule is broadly related to the rule that Avron uses in his system for KL [1].
Unlike Avron, we cannot work with standard sequents due to the presence of converse
modalities. In turn, this allows us to consider a somewhat simpler right introduction rule for
H , which does not have to take into account H Γ antecedents as they will remain available in
the principal cell when a new one is created.

The system most closely related to HKtL`.3 is obviously the calculus for Kt4.3 [3] in
which we introduced the notions of clusters and annotations. These were inspired by the
small model property of Kt4.3 [26], and it is notable that we could put them to work in the
considerably richer setting of KtL`.3; it is the main technical contribution of the present
paper. In retrospect, we believe that it is possible to present the semantics of HKtL`.3
hypersequents as a particular case of HKt4.3 hypersequents: the semantics µ(i) of a position
in a cluster would be infinite to the left and right for HKt4.3, but only infinite to the right
for HKtL`.3. This shift of perspective, together with the addition of rule ((Ḡ)), allows to get
rid of the somewhat awkward use of different semantics for the soundness and completeness
of HKt4.3. It also frees the proof-theoretic development from the small model property; in
fact, proof theory then allows to derive the small model property just as precisely. Of course,
there are also fundamental differences between HKtL`.3 and HKt4.3: well-foundedness
allows us to take Hϕ assumptions in rule (`H), which renders (Hϕ) annotations useless; this
benefit of well-foundedness for proof search is usual [1, 4].
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A Axiomatisation

For reference, the logic KtL`.3 can also be defined as the set of theorems generated by
necessitation, modus ponens and substitution from classical tautologies and the following
axioms [6, Ch. 4]:

G (p ⊃ q) ⊃ (G p ⊃ G q) (Kr)
H (p ⊃ q) ⊃ (H p ⊃ H q) (K`)

p ⊃ G P p (tr)
p ⊃ H F p (t`)

F p ∧ F q ⊃ F (p ∧ F q) ∨ F (p ∧ q) ∨ F (q ∧ F p) (.3r)
P p ∧ P q ⊃ P (p ∧ P q) ∨ P (p ∧ q) ∨ P (q ∧ P p) (.3`)

H (Hφ ⊃ φ) ⊃ Hφ (L`)

The first two axioms are simply the Kripke schema, given for each modality. Next we find
the t axioms, which force the two modalities to be converses of each other. The canonical
models of the trichotomy axioms .3 have accessibility relationships that are non-branching
to the left and to the right. Finally, the axiom (L`) of Gödel-Löb ensures that the models
are transitive and well-founded to the left.

B Detailed Proofs

I Proposition 3.10. The rules of HKtL`.3 are sound: if the premises of a rule instance
are valid, then so is its conclusion.

Proof. We show the contrapositive: considering an application of a rule with a conclusion
hypersequent H and a counter-model (M, µ) of H with M = (α, V ) and H ↪→µ α an
annotation-respecting embedding, we provide a counter-model of one of the premises (or a
contradiction when there is no premise).

Since we will often have to extend an embedding with a value for a new position, we
define µ + (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) = µ(k) for k < i and
µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

The case of propositional rules (Figure 1) is immediate: The usual reasoning applies to
the principal sequent, and the same embedding is used to obtain a counter-model of one of
the premises.

Next we turn to the modal rules of Figure 2:
Consider the case of (G`), applied with Gϕ,Γ ` ∆ at position i and Π ` Σ at position
j such that i - j. Remark that the rule ensures that i 6= j, but we do not need this
assumption to justify it. We show that (M, µ) is an annotation-respecting counter-model

http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1006/inco.1993.1006
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of the premise H ′, concentrating on the only difference with H, at position j. For clarity
we distinguish two cases:

When i ≺ j, we also have µ(i) < µ(j). Since (M, µ) is a counter-model of H, by taking
an arbitrary βi < µ(i) we obtain γi such that βi ≤ γi < µ(i) such that M, γi 6|= H(i).
In particular, M, γi |= Gϕ. Now, considering an arbitrary β < µ(j) we need to exhibit
γ such that β ≤ γ < µ(j) and M, γ 6|= H ′(j). By taking βj = max(β, µ(i)) < µ(j)
we obtain γj such that βj ≤ γj < µ(j) and M, γj 6|= H(j). Furthermore, since
γi < µ(i) ≤ βj ≤ γj , we also have M, γj |= ϕ and M, γj |= Gϕ, hence M, γj 6|= H ′(j).
When i ∼ j we have that µ(i) = µ(j) and it is a limit ordinal because we are considering
positions in a cluster. Consider an arbitrary β < µ(i). There exists γi such that
β ≤ γi < µ(i) and M, γi 6|= H(i). Because µ(i) is a limit ordinal, γi + 1 < µ(i) = µ(j).
Again, there exists γj such that γi + 1 ≤ γj < µ(j) and M, γj 6|= H(j). But, since
γi < γj we also have that γj satisfies ϕ and Gϕ, hence M, γj 6|= H ′(j).

The case of rule ({G`}) is covered by the second part of the previous argument, by taking
i = j. Indeed, we have i ∼ i when ({G`}) applies at position i.
Consider now an application of rule (H`) with Π ` Σ at position i and Hϕ,Γ ` ∆ at
j. We have i - j, hence µ(i) ≤ µ(j). Consider an arbitrary β < µ(i). There exists γi
such that β ≤ γi < µ(i) and M, γi 6|= H(i). We claim, as before, that there exists γj
such that γi < γj < µ(j) and M, γj 6|= H(j). Indeed, if µ(i) < µ(j) then there exists γj
with µ(i) ≤ γj < µ(j) that falsifies H(j). Otherwise µ(i) = µ(j) but then this must be
a limit ordinal and, by considering γi + 1 < µ(i) = µ(j) we obtain γi < γj < µ(j) that
invalidates H(j). Having M, γj 6|= H(j), we also have M, γj |= Hϕ. Thus γi satisfies ϕ
and Hϕ, and M, γi 6|= H ′(i) as needed.
The case of ({H`}) is covered by the previous argument.
Consider an application of (`G) with Γ ` ∆,Gϕ at position i. For any βi < µ(i) there
exists γi with βi ≤ γi < µ(i) such that M, γi 6|= H(i), and thus M, γi 6|= Gϕ. Hence there
also exists γ′i > γi such that M, γ′i 6|= ϕ. Let γ be the least ordinal that contains all such
γ′i. We have that µ(i) ≤ γ.
We now distinguish several cases regarding γ. When C ′;H2 is not empty let j be the first
position of the conclusion hypersequent that is in C ′.

If µ(i) = γ, then µ(i) must be a limit ordinal. Hence C 6= ? and the third premise H ′3
is available. We construct a counter-model (M, µ′) for it by taking µ′ = µ+ (k 7→ γ),
where k = i + 1 is the new position in H ′3. Indeed, we have that for any β′ < µ′(k)
there exists γ′ with β′ ≤ γ′ < µ′(k) and M, γ′ 6|= ϕ (the inequality can even be made
strict). Moreover, the annotation is respected by definition of γ: there cannot be any
λ ≥ γ such that M, λ 6|= ϕ.
If C ′ ;H2 is empty, or γ < µ(j), we conclude by observing that (M, µ′) is a counter-
model of one of the first two premises with µ′ = µ+ (k 7→ γ) where k is the position of
the new cell in these premises. We check that µ′ is monotone, because µ(i) < γ, and
γ < µ(j) when it is defined. If γ is a successor ordinal, (M, µ′) is a counter-model of
the first premise simply because the predecessor of γ invalidates ϕ and the annotation
is respected; both hold by construction. If γ is a limit ordinal we have a counter-model
(M, µ′) of the second premise: we do have that for any β′ < µ′(k) there exists γ′ with
β′ ≤ γ′ < µ′(k) that invalidates ϕ, and the annotation is respected by construction.
Otherwise µ(j) ≤ γ.
∗ If µ(j) < γ, we obtain a counter-model (M, µ) of the fourth premise H ′4. We check it

for the only position whose sequent has changed between H and H ′4, that is position
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j. Take any βj < µ(j). We know that there exists γj with βj ≤ γj < µ(j) such that
M, γj 6|= H(j). But, since γj < µ(j) < γ, there exists δ such that γj < δ < γ and
M, δ 6|= ϕ. Thus M, γj 6|= Gϕ, and M, γj 6|= H ′4(j).

∗ If µ(j) = γ and is a limit ordinal, we also obtain a counter-model (M, µ) of the
fourth premise. This time, for any βj < µ(j), we know that there exists γj with
βj ≤ γj < µ(j) such that M, γj 6|= H(j). But, since γj < γ and γ is a limit ordinal,
there still exists δ such that γj < δ < γ and M, δ 6|= ϕ. Thus M, γj 6|= Gϕ, and
M, γj 6|= H ′4(j).

∗ Finally, if µ(j) = γ and is not a limit ordinal, then the position j is not in a cluster,
so the fifth premise is available. We claim that it admits (M, µ) as a counter-model.
Let θ be the predecessor of γ = θ + 1, which satisfies M, θ 6|= ϕ by definition of γ.
Since (M, µ) is a counter-model of H we also have M, θ 6|= H(j). This allows us to
conclude, together with the fact that, as before, the new annotation is respected by
definition of γ (there cannot be any λ ≥ γ such that M, λ 6|= ϕ).

Finally we consider an application of rule (`H) with Γ ` ∆,Hϕ at position i. Let j be
the first position of C ′, if it exists. For any βi < µ(i) there exists γi with βi ≤ γi < µ(i)
that invalidates H(i), thus there exists γ′i < γi < µ(i) such that M, γ′i 6|= ϕ. Let γ be the
successor of the least ordinal among all such γ′i. We have γ < µ(i).

If H2;C ′ is empty, or µ(j) < γ, then (M, µ′) is a counter-model of the first premise
with µ′ = µ+ (k 7→ γ) where k is the new position in that premise. We do have that
the predecessor of γ satisfies Hϕ (by minimality) but not ϕ (by definition). Moreover,
µ′ is indeed annotation-respecting.
If µ(j) = γ then C ′ cannot be a cluster, because γ is a successor. In that case (M, µ)
directly yields a counter-model of the third premise.
Otherwise γ < µ(j) and (M, µ) is a counter-model of the second premise.

We finally consider the case of annotation rules (Figure 3):
Consider an application of ((G)), with H(i) = Γ ` ∆ (Gϕ) and H(j) = Π ` Σ,Gϕ,
and i ≺ j. By definition of an embedding, we have µ(i) < µ(j). Since (M, µ) is a
counter-model of H, there exists γj such that µ(i) ≤ γj < µ(j) and M, γj 6|= H(j). There
also exists γi < µ(i) such that M, γi 6|= H(i). Hence there exists γ′ > γj such that
M, γ′ 6|= ϕ. A fortiori, γ′ > γi, so µ does not respect the annotation on i, contradiction.
Consider an application of ({(G)}) with H(i) = Γ ` ∆,Gϕ (Gϕ). For any β < µ(i) there
exists γ with β < γ such that M, γ 6|= ϕ. Because µ is annotation-respecting, we must
have γ < µ(i), thus µ(i) is a limit ordinal. This contradicts the fact that i is not in a
cluster.
Consider an application of ((Ḡ)) with Γ ` ∆ (Gϕ) at position i and Π ` Σ at position
j, with i ≺ j. Since µ is annotation-respecting we have that, for all λ ≥ µ(i), M, λ |= ϕ.
Hence (M, µ) is a counter-model of the premise. J

I Proposition 3.13. Any failure hypersequent H has a counter-model.

Proof. Let α = o(H). We define µ : dom(H)→ α+ 1 \ {0} as follows:

µ(i) = m if i is the m-th cell of H and appears before its first cluster;
µ(i) = ω · k if i belongs to the k-th cluster of H;
µ(i) = ω · k +m if i is the m-th cell between the k-th and the next cluster (if any).

Now let pos : α→ dom(H) be a function such that:
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(a) ∀β < β′ < α, pos(β) - pos(β′)
(b) ∀β < α, ∀i ∈ dom(H), β < µ(i)⇔ (pos(β) - i or pos(β) = i)
(c) ∀β < α, ∀i ∈ dom(H), pos(β) - i⇒ ∃β < γ < µ(i), i = pos(γ)
There always exists one such function. Its choice is quite constrained due to the definitions
of α and µ. Positions i that are not in a cluster will be such that i = pos(β) for a single β,
typically the predecessor of µ(i). A position i appearing in a cluster must correspond to
an infinite sequence of ordinals of limit µ(i), so that for all i ∼ j and β, if pos(β) = i then
there exists γ with β < γ < µ(i) = µ(j) such that pos(γ) = j; informally, this ensures that
positions i and j inside a cluster are “infinitely interleaved” within µ(i) = µ(j).

We finally define a valuation V : Φ → ℘(α) by V (p) = {β < α | ∃Γ,∆ . H(pos(β)) =
(p,Γ ` ∆)} and let M = (α, V ). We now claim that M, γ 6|= H(pos(γ)) for all γ < α: we
prove by induction on ψ that, if ψ appears in the left-hand (resp. right-hand) side of the
turnstile in H(pos(γ)), then M, γ � ψ (resp. M, γ 2 ψ).

If ψ is an atom p ∈ Φ the results follow by definition of V , and because (ax) does not
apply to H. The propositional cases are obtained by induction hypothesis, because the
corresponding rules of Figure 1 have already been applied.
The cases of modal formulæ on the left-hand side are similar, we only detail that of H .
If ψ = Hϕ occurs on the left-hand side of H(pos(γ)) then by (H`) and ({H`}), the
formula ϕ must occur on the left-hand side of any H(i) with i - pos(γ). Moreover, for
all γ′ < γ, we have pos(γ′) - pos(γ) by a, so M, γ′ � ϕ, and thus M, γ � ψ.
Assume that ψ = Gϕ occurs on the right of H(pos(γ)). Since (`G) does not apply, an
annotation must already exist for Gϕ. By rules ((G)) and ({(G)}) this annotation must
be on a position i such that pos(γ) - i. By definition of annotations, ϕ occurs on the
right of H(i). By c, there exists γ′ > γ such that i = pos(γ′). We then have M, γ′ 2 ϕ,
thus M, γ 2 Gϕ.
Assume finally that ψ = Hϕ occurs on the right of H(pos(γ)). We prove by a sub-
induction on pos(γ) that M, γ 6|= Hϕ. Since (`H) does not apply, and since the first
premise necessarily differs from the conclusion, it must be that there is a cell C ′ preceding
the cell that contains pos(γ), and that the last two premises (if available) would coincide
with H. Let i be the first position in C ′. Take an arbitrary λ < µ(i) such that pos(λ) = i

(such a λ always exists, thanks to b and c instantiated with β = 0). Since i ≺ pos(γ) it
must be that λ < γ. As noted above, we have either that Hϕ belongs to the right-hand
side of H(i), or that ϕ belongs to its left-hand side. In the first case, we obtain M, λ 6|= Hϕ
by induction hypothesis on i < pos(γ). In the second case we directly have M, λ 6|= ϕ.
We conclude either way that M, γ 6|= Hϕ.

We can check that H ↪→µ α: the conditions of Definition 3.6 hold by construction.
We must also check that µ is annotation-respecting. Assume that H(i) carries the

annotation (Gϕ), and that there is a world M, β 6|= ϕ. Let j = pos(β). If j - i, then by c
there exists γ with β < γ < µ(i) such that i = pos(γ), so β < µ(i) as expected. If i ≺ j, then
by the rule ((Ḡ)) ϕ occurs on the left of H(j), contradicting M, β 6|= ϕ. Otherwise, i = j

and by b we have β < µ(pos(β)) = µ(i) as expected.
Finally, (M, µ) is a counter-model of H. Indeed, for all i ∈ dom(H) and β < µ(i) there

exists γ with β ≤ γ < µ(i) such that pos(γ) = i, and hence M, γ 6|= H(i): if pos(β) = i, we
can take γ = β, else b enforces pos(β) - i, and c provides one such γ. J
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