
Büchi Good-for-Games Automata Are Efficiently
Recognizable
Marc Bagnol1

LIP, École Normale Supérieure, Lyon, France

Denis Kuperberg
CNRS, LIP, École Normale Supérieure, Lyon, France

Abstract
Good-for-Games (GFG) automata offer a compromise between deterministic and nondetermin-
istic automata. They can resolve nondeterministic choices in a step-by-step fashion, without
needing any information about the remaining suffix of the word. These automata can be used
to solve games with ω -regular conditions, and in particular were introduced as a tool to solve
Church’s synthesis problem. We focus here on the problem of recognizing Büchi GFG automata,
that we call Büchi GFGness problem: given a nondeterministic Büchi automaton, is it GFG?
We show that this problem can be decided in P, and more precisely in O(n4m2|Σ|2) , where n
is the number of states, m the number of transitions and |Σ| is the size of the alphabet. We
conjecture that a very similar algorithm solves the problem in polynomial time for any fixed
parity acceptance condition.

2012 ACM Subject Classification Theory of computation → Models of computation, Theory
of computation → Formal languages and automata theory

Keywords and phrases Büchi, automata, games, polynomial time, nondeterminism

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.16

1 Introduction

The fundamental difference between determinism and nondeterminism is one of the deep
questions asked by theoretical computer science. The P versus NP problem is an emblematic
example of the fact that many basic questions about the power of nondeterminism are still
not well-understood. In this work, we investigate an automaton model that offers a middle
ground between determinism and nondeterminism, while retaining some advantages of both
paradigms in the framework of automata theory. Although this model was introduced as a
tool to solve a specific problem – Church’s synthesis – we believe that it is a natural stepping
stone on our way to get a better understanding of the power of nondeterminism in automata
theory.

We will start by mentioning the historical motivation for the model of Good-for-Games
(shortly GFG) automata. One of the classical problems of automata theory is synthesis –
given a specification, decide if there exists a system that fulfils it and if there is, automatically
construct one. The problem was posed by Church [5] and solved positively by Büchi and
Landweber [3] for the case of ω -regular specifications. Henzinger and Piterman [10] have
proposed the model of GFG automata, that can be seen as a weakening of determinism
while still preserving soundness and completeness when solving the synthesis problem. An
automaton is GFG if there exists a strategy that resolves the nondeterministic choices, by

1 This work has been funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 programme (CoVeCe, grant agreement No 678157).

© Marc Bagnol and Denis Kuperberg;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Büchi Good-for-Games Automata Are Efficiently Recognizable

taking into account only the prefix of the input ω -word read so far. The strategy is supposed
to construct an accepting run of the automaton whenever an ω -word from the language is
given. The notion of GFG automata was independently discovered in [6] under the name
history-determinism, in the more general framework of regular cost functions. It turns out
that deterministic cost automata have strictly smaller expressive power than nondeterministic
ones and therefore history-determinism is used whenever a sequential model is needed.

We emphasize the fact that although the model of GFG automata requires the existence
of a strategy resolving the nondeterminism, this strategy is not used in algorithms but only
in proofs. Therefore, it is not a part of the size of the input in computations based on
GFG automata. The model of GFG automata offers a compromise between determinism
and nondeterminism: in particular, as deterministic automata, it preverses soundness of
composition with games and trees [10, 1], while as nondeterministic automata, it can exhibit
exponential succinctness compared to deterministic automata [15]. Properties of GFG
automata are currently being actively investigated, and most of what we know about them
has been uncovered only very recently, with several important questions still open. A brief
history of recent advances in the understanding of GFG automata is given in Section 1.1
“Related works”.

A major challenge in the understanding of GFG automata is to be able to decide efficiently
whether an input automaton is GFG. If C is an accepting condition, for instance C ∈ {Büchi,
coBüchi, Parity} , we call C GFGness problem the following decision problem:

Input: A nondeterministic automaton A with accepting condition C
Output: Is A a GFG automaton ?

This problem has been posed in [10], where an EXPTIME algorithm is given for the
general case of parity automata. The algorithm makes use of a deterministic automaton for
L(A) , which can be built in exponential time. The problem is further studied in [15], where
the following results are obtained:

The coBüchi GFGness problem is in P.
The Büchi GFGness problem is in NP.
In general, the C GFGness problem is at least as hard as solving games with winning
condition C . This is tight for automata accepting all infinite words.

The precise complexity of the GFGness problem for Büchi and all higher parity conditions
remained open. In particular, even for parity conditions using only 3 ranks, the only known
upper bound is EXPTIME. In [14], an incremental algorithm to build GFG automata is given.
This algorithm uses as a subroutine an algorithm deciding the GFGness problem. This gives
an additional motivation to pinpoint the complexity of the GFGness problem, as it is a
bottleneck of the algorithm from [14].

In this work, we tackle the Büchi case, and we show that the Büchi GFGness problem is
in P. More precisely, we show that for a Büchi automaton A on alphabet Σ with n states
and m transitions, we can decide whether A is GFG in O(n4m2|Σ|2). We do so by reducing
the GFGness problem to a game where 3 tokens move in A . The correctness of the reduction
is showed using an intermediate construction using doubly exponentially many tokens.

1.1 Related Works
In the survey [7] two important results about GFG automata over finite words are mentioned:
first that every GFG automaton over finite words contains an equivalent deterministic
subautomaton, second that the GFGness problem is in P for automata on finite words.

M. Bagnol and D. Kuperberg 16:3

Additionally, a conjecture stating that every parity GFG automaton over ω -words contains
an equivalent deterministic subautomaton is posed. In [1], examples were given of Büchi and
coBüchi GFG automata which do not contain any equivalent deterministic subautomaton.
Moreover, a link between GFG and tree automata was established: an automaton for a
language L of ω -words is GFG if and only if its infinite tree version accepts the language
of trees that have all their branches in L . Experimental evaluation of GFG automata and
their applications to stochastic problems were discussed in [13]. In [15], it is shown that for
co-Büchi automata (and all higher parity conditions), GFG automata can be exponentially
more succinct than deterministic ones. For Büchi automata, this gap is not exponential,
and only a quadratic upper bound is known. Typeness properties of GFG automata are
established in [2], as well as complexities for changing between several acceptance conditions.
In [14], the model of GFG automata is generalized to the notion of width of a nondeterministic
automaton, GFG automata corresponding to width 1, and an incremental algorithm is given
to build GFG automata from nondeterministic automata. The games with tokens we define
in the present work are very similar in spirit to the k -simulation games introduced in [9].
However, our games cannot be seen directly as particular instances of k -simulation games,
as the specific dynamics of the games are different.

2 Definitions

We will use Σ to denote a finite alphabet. The empty word is denoted ε . If i ≤ j , the set
{ i , i+1 , i+2 , . . . , j } is denoted [i, j] . The cardinal of a set X is denoted |X| . If u ∈ Σ∗ is
a word and L ⊆ Σ∗ is a language, the left quotient of L by u is u−1L = { v ∈ Σ∗ | uv ∈ L } .

2.1 Automata
A nondeterministic automaton A is a tuple (Q,Σ, q0,∆, F) where Q is the set of states, Σ
is a finite alphabet, q0 ∈ Q is the initial state, ∆ : Q× Σ→ 2Q is the transition function,
and F ⊆ Q is the set of accepting states. We will often write p

a−→ q or p a−→ q ∈ ∆ to
signify that q ∈ ∆(p, a) , i.e. there is a transition from p to q labelled by a . If for all (p, a)
in Q × Σ, ∆(p, a) 6= ∅ , we say that the automaton is complete. In the following, we will
assume that all automata are complete, by adding a rejecting sink state ⊥ if needed. If
for all (p, a) ∈ Q× Σ, |∆(p, a)| = 1, we say that A is deterministic. If u = a1a2 . . . is an
infinite word of Σω , a run of A on u is a sequence q0q1q2 . . . such that for all i > 0, we
have qi ∈ ∆(qi−1, ai). A run is said to be Büchi accepting if it contains infinitely many
accepting states, and coBüchi accepting if it contains finitely many non-accepting states.
Automata on infinite words will be called Büchi and coBüchi automata, to specify their
acceptance condition. Finally, we define the parity condition on infinite runs: each state q
has a rank rk(q) ∈ N , and an infinite run is accepting if the highest rank appearing infinitely
often is even. An automaton on infinite words using this acceptance condition is a parity
automaton. The language of an automaton A , denoted L(A), is the set of words on which
the automaton A has an accepting run. If p is a state of A , the language accepted by A
with p as initial state will be denoted L(p) . A language is called ω -regular if it is recognized
by a nondeterministic Büchi automaton, or equivalently by a deterministic parity automaton.
Two automata are said equivalent if they recognise the same language.

An automaton A is Good-for-Games (GFG) if there exists a function σ : Σ∗ → Q (called
GFG strategy) that resolves the nondeterminism of A depending only on the prefix of the
input word read so far: over every word u = a1a2a3 . . . (finite or infinite depending on the

FSTTCS 2018

16:4 Büchi Good-for-Games Automata Are Efficiently Recognizable

type of automaton considered), the sequence of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a
run of A on u , and it is accepting whenever u ∈ L(A). For instance every deterministic
automaton is GFG. See [1] for more introductory material and examples on GFG automata.

2.2 Games

A game G = (VE , VA, vI , E,W) of infinite duration between two players Eve (Player E)
and Adam (Player A) consists of: a finite set of positions V being a disjoint union of VE
and VA ; an initial position vI ∈ V ; a set of edges E ⊆ V × V ; and a winning condition
W ⊆ V ω .

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N , (vn, vn+1) ∈ E . A play π ∈ V ω is winning for Eve if it belongs to W . Otherwise π
is winning for Adam.

A strategy for Eve (resp. Adam) is a function σE : V ∗×VE → V (resp. σA : V ∗×VA → V)
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy has to obey the edge relation, i.e. there has to be an edge in E

from v to σP (u, v) . A play π is consistent with a strategy σP of a player P ∈ {E,A} if for
every n such that π(n) ∈ VP we have π(n+ 1) = σP (v0 . . . vn−1, vn) .

A strategy for Eve (resp. Adam) is positional if it does not use the history of the play,
i.e. it is a function VE → V (resp. VA → V).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for player P . In this case, we say that P wins the game G .

A game is positionally determined if one of the players has a positional winning strategy in
the game. A game is half-positionally determined if whenever Eve wins, she has a positional
winning strategy.

A finite-memory strategy for Eve is a tuple (M,m0, σM , upd) where
M is a finite set called the memory, and m0 ∈M is the initial memory state.
σM is a function M × VE → V ,
upd is a function M × V →M called the update function.

Such a tuple induces a strategy σE : V ∗ × VE → V for Eve in the original sense as follows.
First, the function upd∗ : V ∗ → M is defined by upd∗(ε) = m0 , and if (~u, v) ∈ V ∗ × V ,
upd∗(~u · v) = upd(upd∗(~u), v) . We can now define σE by σE(~u · v) = σM (upd∗(~u), v).

A game is finite-memory determined if one of the players has a finite-memory winning
strategy.

I Remark 1. In the rest of the paper, for readability purposes, we will define games in a
slightly more informal manner. Namely we will allow sequences of moves of Eve and Adam
going through implicit states in the game. Note that it is always possible to come back to
the formal version defined in this section. We will also use examples of automata where the
acceptance condition is defined on transitions rather than on states, for clarity purposes.

2.2.1 Winning Conditions

A parity game is a game where W is a parity condition, i.e. where every position v has
rank rk(v) ∈ N , and the winning set W consists of infinite words for which the maximal
rank appearing infinitely often is even. The degree of a parity game is the number of ranks
used in its parity condition.

We will use the following results on parity games:

M. Bagnol and D. Kuperberg 16:5

I Theorem 2 ([8, 12, 4]). Parity games are positionally determined, and can be solved in
QuasiP.

I Theorem 3 ([16, 11, 17]). Parity games of fixed degree can be solved in polynomial time. In
particular, parity games of degree 3 with n positions and m edges can be solved in O(n ·m) .

If the winning set W is an ω -regular language of V ω , we say that the game is ω -regular.

I Theorem 4 ([3]). ω -regular games are finite-memory determined.

Solving an ω -regular game G = (V,E) can be costly: the classical procedure from [3] is
to build a deterministic automaton D recognizing W , and building a new game G ◦ D of
size |V | × |D| with winning condition inherited from the acceptance condition of D . Thus,
the idea is to simplify the winning condition of the game at the expense of a blowup in the
number of positions.

I Remark 5. The original motivation for GFG automata [10] is that it is sufficient for the
correctness of this algorithm to take D GFG instead of deterministic. This also explains
the name “good-for-games” introduced in [10]. Remarkably, D can be used in this algorithm
without any knowledge of the GFG strategy witnessing that D is GFG: as long as such a
strategy exists, D can be used in place of a deterministic automaton to solve any ω -regular
G with winning condition W .

3 Game Characterization of GFG Automata

The main goal of this paper is to give an efficient decision procedure for the Büchi GFGness
problem. In order to decide whether an input automaton is GFG, it is natural to replace the
abstract definition from Section 2.1 with a more operational one.

3.1 The GFG Game
If A = (Q,Σ, q0,∆, F) is a nondeterministic Büchi automaton recognizing a language L , let
us define the GFG game GGFG(A) on A . The game is played on arena Q , starting from
position q0 . Each round, from position p :
1. Adam chooses a letter a ∈ Σ,
2. Eve chooses a transition p

a−→ p′ ,
3. the position of the game moves to p′ .

The winning condition is the following: Eve wins if either the word u = a1a2a3 . . . chosen
by Adam is not in L(A) , or if the run ρ = p0p1p2 . . . she constructed is accepting (i.e. there
are infinitely many i such that pi ∈ F).

The GFG game actually corresponds to the original definition of GFG automata in [10]:
an automaton A is GFG if and only if Eve wins GGFG(A). It is shown in [1] that the
definition we gave in Section 2.1 for GFG automata is equivalent.

3.2 Solving the GFG Game
Notice that GGFG(A) is an ω -regular game. Therefore, by Remark 5, in order to solve it
we need a GFG automaton for the language W = {(u, ρ) ∈ Aω × Qω | u /∈ L or ρ Büchi
accepting} . The Büchi condition can be recognized easily by a deterministic 2-state au-
tomaton, but for the u /∈ L part, we need a GFG automaton for the complement of L . A
GFG automaton for L would also do, since we can consider the game where the roles of

FSTTCS 2018

16:6 Büchi Good-for-Games Automata Are Efficiently Recognizable

the players are reversed, thereby complementing the accepting condition. Thus, in order to
decide whether an automaton for L is GFG, we seem to need a GFG automaton for L . In
[15], this approach is actually used for the coBüchi GFGness problem: an auxiliary GFG
automaton for L is computed, allowing to decide whether the original input automaton is
itself GFG.

In the present work, we will circumvent this issue, and instead consider relaxations of
the GFG game GGFG(A), called token games that aim at mimicking the GFG game while
enjoying a simpler winning condition.

4 Token Games

Suppose we have fixed a Büchi automaton A = (Q,Σ, q0,∆, F) for the rest of this section.
We define associated token games that will help deciding whether A is GFG.

4.1 First Attempt: the Game G1

As seen in Section 3.2, the difficulty of solving the GFG game GGFG(A) comes from the
fact that L(A) appears in the winning condition of GGFG(A) .

A natural attempt to circumvent this difficulty is to replace the condition “u /∈ L(A)” by
“Adam cannot build an accepting run of A on u”. This would simplify the winning condition,
turning it into a boolean combination of Büchi conditions, thus making the game solvable in
polynomial time by Theorem 3.

We therefore define G1(A) as a modification of GGFG(A) , where in addition to choosing
letters, Adam must additionally build a run witnessing that u ∈ L(A). If he fails to do so,
Eve automatically wins the game. Therefore, we can view a play as Adam choosing letters,
and both Eve and Adam possessing a token, and moving it in the automaton in order to
build an accepting run. Here is a formal definition of G1(A) :

I Definition 6 (G1(A)). We define the game G1(A) as follows. The game is played on
arena Q2 , starting from (q0, q0) . Each turn, from position (p, q) :
1. Adam chooses a letter a ∈ Σ ,
2. Eve chooses a transition p

a−→ p′ ,
3. Adam chooses a transition q

a−→ q′ ,
4. The game moves to position (p′, q′) .
Eve wins the game if either the run ρ = p0p1 . . . she chose is accepting, or the run λ = q0q1 . . .

chosen by Adam is rejecting.

Notice that at each turn, Eve must choose a transition before Adam does. This is not
abritrary, as the other way around would trivialize the game: if Adam chooses q a−→ q′ before
Eve chooses p a−→ p′ , then Eve can simply copy all choices of Adam, and will always win
G1(A) even if A is not GFG.

I Lemma 7. If A is GFG, then Eve wins G1(A) .

Proof. If Eve has a winning strategy in GGFG(A), she can simply use the same strategy
in G1(A), ignoring the second component of the position. If the run λ built by Adam is
accepting, this means the word u that has been played is in L(A) , and therefore by definition
of the winning condition of GGFG(A) , the run ρ built by Eve is accepting. J

The hope behind the definition of G1(A) is that if Eve wins, then she can win without
using the extra information given by the second component of the position. This would

M. Bagnol and D. Kuperberg 16:7

make G1(A) equivalent to GGFG(A), and allow us to decide the Büchi GFGness problem
in polynomial time by Theorem 3.

Unfortunately, we can show that the converse of Lemma 7 does not hold: there is a Büchi
automaton B such that Eve wins G1(B) but B is not GFG.

Indeed, let B be the following automaton, recognizing L(B) = (a+ b)∗aω (the accepting
state is drawn with a double circle):

p q ⊥

a, b

a, b

a

b

a, b

I Lemma 8. The automaton B is not GFG, but Eve wins G1(B) .

Proof. Adam wins GGFG(B) with the following strategy: play the letter a until Eve decides
to move to the state q (if she never moves, she fails to build an accepting run for aω which is
accepted by the automaton), then play baω from there; Eve is forced into state ⊥ and cannot
build an accepting run for a word of the form ambaω which is accepted by the automaton.

On the other hand, the strategy for Eve to win G1(A) is to simply go where the token
of Adam currently is. J

This means that in general, if A is a Büchi automaton, G1(A) is not a good enough
approximation of GGFG(A) and does not characterize GFGness of A .

4.2 Allowing More Tokens
Since the game G1(A) is too easy for Eve compared to the GFG game, it is natural to try
to make the game harder for Eve, by allowing Adam to build several runs in parallel, some of
them being allowed to fail as long as one accepts. Indeed, it is sufficient that one accepting
run exists in order to guarantee that the input word chosen by Adam is in L(A) .

The game Gk(A) can be summed up as follows: Adam chooses a word, Eve moves a
token in the automaton while Adam moves k tokens. After ω moves, if one of Adam’s tokens
followed an accepting run, then Eve’s token must also have followed an accepting run. We
note simply Gk instead of Gk(A) in the rest of the document, in order to lighten notations.
Below is a formal definition of the game Gk .

I Definition 9 (Gk). For any integer k ≥ 2 , we define the game Gk as follows. The
game is played on arena Qk+1 , starting from (q0, q0, . . . , q0) . Each turn, from position
(p, q1, . . . , qk) :
1. Adam chooses a letter a ∈ Σ ,
2. Eve chooses a transition p

a−→ p′ ,
3. Adam chooses transitions q1

a−→ q′1, . . . , qk
a−→ q′k ,

4. The game moves to position (p′, q′1, . . . , q′k) .
Eve wins the game if either the run ρ = p0p1 . . . she chose is accepting, or all runs λ1, . . . , λk
chosen by Adam are rejecting.

I Lemma 10. Gk can be seen as a parity game with 3 parities.

Proof. We define a new parity condition on Gk as follows:

rk(p, q1, . . . qk) =


2 if p ∈ F
1 if p /∈ F and qi ∈ F for some i
0 otherwise.

FSTTCS 2018

16:8 Büchi Good-for-Games Automata Are Efficiently Recognizable

A play is won by Eve in Gk iff ρ is accepting or all runs λ1, . . . , λk are rejecting iff the
play contains infinitely many positions with rank 2 or finitely many positions with rank 1 iff
Eve wins according to the new parity condition. Notice that we use the fact that if infinitely
many positions have rank 1, then there is an i ∈ [1, k] such that the (1 + i)th component of
the position (corresponding to the ith token of Adam) is in F infinitely many times. J

By Theorem 2, this means that Gk is positionally determined for all k . We will now turn
to the particular case where k = 2, and obtain a precise upper bound on the complexity of
solving G2 . Let n be the number of states of A and m its number of transitions.

I Lemma 11. An explicit version of G2 has O(n3|Σ|) positions and O(nm2|Σ|) edges.

Proof. We can define an explicit version of G2 , where the last component specifies which
player owns the positions. Positions in this game are V = {(v0,Adam)} ∪

(
Q3 × Σ ×

{Eve,Adam}
)
, so |V | is in O(n3|Σ|) . Edges are

E = {(v0,Adam)→ (q0, q0, a,Eve) | a ∈ Σ}

∪ {(p, q1, q2, a,Eve)→ (p′, q1, q2, a,Adam) | p a−→ p′ ∈ ∆, (q1, q2) ∈ Q2}

∪ {(p, q1, q2, a,Adam)→ (p, q′1, q′2, b,Eve) | p ∈ Q, q1
a−→ q′1 ∈ ∆, q2

a−→ q′2 ∈ ∆, b ∈ Σ}.

We obtain |E| = |Σ|+n2m+nm2|Σ| . Since we assume our automata to be complete, n ≤ m
and |E| is in O(nm2)|Σ|). J

By combining Theorem 3, Lemma 10 and Lemma 11, we obtain the following result:

I Theorem 12. G2 can be solved in O(n4m2|Σ|2) .

4.3 Some Consequences of Winning G2

The main result of the present work will be that Eve winning G2 on A is equivalent to A
being GFG. One direction is actually trivial:

I Proposition 13. If A is GFG, then Eve has a winning strategy for all Gk .

Proof. Eve can ignore Adam’s tokens and play her GFG strategy. If the word played by
Adam is in L(A) she will build an accepting run, if not Adam will not be able to build one
with any of his tokens. J

One of the key steps of the proof is to show that if Eve wins against 2 tokens for Adam,
she can actually win against any number of tokens.

I Theorem 14. If Eve wins G2 then she wins Gk for any k .

Proof. Let σ2 be a positional winning strategy for Eve in G2 . We proceed by induction on
k , the idea being that σk+1 will be obtained by having σk play against the first k tokens
and then σ2 against the last token and the output of σk . More precisely:

If Eve wins Gk , by Theorem 2 and Lemma 10, she has a winning positional strategy
σk : Qk+1×Σ→ Q in Gk . Define the finite-memory strategy σ′k+1 = (M,m0, µ, upd) where

the memory M is the set of states Q , and the initial memory state m0 is q0

the update function is upd(m, (p, q1, . . . , qk+1)) = σk(m, q1, . . . , qk)
µ(m, (p, q1, . . . , qk+1)) = σ2(p,m, qk+1) picks the move actually played by Eve

M. Bagnol and D. Kuperberg 16:9

In a play using σ′k+1 , the memory m takes the value of σk playing against q1, . . . , qk so if
any of these tokens follows an accepting run, then so will m . The moves of Eve are chosen
by playing σ2 against m and qk+1 so that if either of these follow an accepting run, so will
Eve’s token. In the end, if any of Adam’s tokens follows an accepting run, then either qk+1
or m does as well and therefore, by correctness of σ2 , the strategy σ′k+1 is winning for Eve
in Gk+1 . Because Gk+1 is a parity game, there exists another winning strategy σk+1 for
Eve that is positional. Since Eve wins G2 , she wins Gk for all k ≥ 2 by induction. J

Winning G2 also implies an important property regarding residuals, that will be key in
the proof of our main theorem.

I Definition 15 (residual automaton). A transition p a−→ q is called residual if L(q) = a-1L(p)
(remember that only L(q) ⊆ a-1L(p) holds in general). An automaton is residual if all its
transitions are residual. Given an automaton A , we define the associated residual automaton
Ar as A where all non-residual transitions have been removed. An automaton is pre-residual
if it accepts the same language as its residual automaton.

I Lemma 16. If Eve wins G2 on A , we have:
A is pre-residual, i.e. L(A) = L(Ar)
Eve wins G2 on Ar
If Ar is GFG, then A is GFG

Proof. Assume that A is not pre-residual, i.e. L(A) 6= L(Ar). Since Ar is obtained from
A by removing transitions, we always have L(Ar) ⊆ L(A). So there is u ∈ L(A) \ L(Ar),
i.e. any accepting run for u must take a non-residual transition at some point. Then Adam
can win G2 in the following way: play the letters of u and have the first token follow Eve’s
token, and the second one follow an accepting run for u . If Eve never takes any non-residual
transition, she cannot build an accepting run for u and loses; if she eventually takes a
non-residual transition p

a−→ q , then Adam picks another transition p
a−→ q′ such that there

is v ∈ L(q′) \ L(q), move the first token to q′ and start playing the letters of v from there.
Adam can build an accepting run for v from q′ with the first token, while Eve is unable to
do so from q . Therefore, this is a winning strategy for Adam in G2 , a contradiction.

For the second property, we show that if Eve wins G2(A) with a strategy σ2 , then σ2
is actually well-defined and winning for G2(Ar). First note that any reachable position
(p, q, r) of G2(Ar) has the property that L(p) = L(q) = L(r) since the initial position is
(q0, q0, q0) and only residual transitions can be taken. But in a position (p, q, r) such that
L(p) = L(q) = L(r) , σ2 cannot pick a non-residual transition p

a−→ p′ , otherwise Adam can
start playing a word that is not in L(p′) and win the game. So σ2 is a valid strategy to play
in G2(Ar) . Moreover, any play of G2(Ar) is in particular a play of G2(A) , and we showed
that L(A) = L(Ar), so σ2 is a winning strategy in G2(Ar).

Finally, suppose Eve has a GFG strategy σ for Ar . Then this strategy is also well-defined
on A and wins the GFG game because L(A) = L(Ar). J

I Remark 17. Any GFG automaton is pre-residual, but the converse does not hold.
The proof that any GFG automaton is pre-residual is stated in the appendix of [15]. In

our setting, it is a corollary of Proposition 13 together with the first item of Lemma 16.
We give two counter-examples for the converse: a Büchi automaton B on Σ = {a, b, c}

with L(B) = (Σ∗abΣ∗c)ω , and a {1, 2, 3}-parity automaton C accepting (a+ b)ω . In both
cases, we label transitions with parity ranks.

FSTTCS 2018

16:10 Büchi Good-for-Games Automata Are Efficiently Recognizable

p q rB :

a, b, c : 1

a : 1
a, c : 1

b : 2
a, b : 1

c : 1

s tC :

a : 1

b : 2

a, b : 3 a : 2

b : 1a, b : 3

Automata B and C are pre-residual, and in fact residual: all their states accept the
language of the automaton, so all transitions are residual. However, they are not GFG: we
can give a winning strategy for Adam in the GFG game in both cases.2

For B , Adam first plays a . If Eve goes to q , then Adam plays abc , bringing Eve back to
p . If Eve stays in p , then Adam plays bc , leaving Eve in p . Repeating this process leads
Adam to build a word of L(B) , while preventing Eve from seeing any Büchi transition.

For C , Adam can play a whenever Eve is in s and b whenever she is in t .

5 Deciding GFGness

Before we get to the sequence of results leading to the proof of our main result, let us quickly
outline the approach.

We already know that if Eve is winning G2 then she wins Gk for any k (Theorem 14)
and the main idea is to find a k for which she will be able to move k tokens so that at least
one follows an accepting run, and then play σk against these virtual tokens. We can note
that by simply splitting tokens at any nondeterministic choice, she will be able to explore all
the possible runs, and as k grows bigger she can keep doing it for a longer time. The results
of subsection 5.1 (specifially Theorem 19) essentially guarantee there is a k large enough so
that following this approach, she will eventually reach accepting states.

It then remains to use this to precisely formulate Eve’s strategy to win against an hypo-
thetic winning strategy for Adam in the GFG game, reaching a contradiction (Theorem 20).

5.1 Powerset Automaton
We will assume here that A is residual. We review a few properties of the powerset automaton
that will be useful in our setting.

I Definition 18. Given a residual Büchi automaton A = (Q, q0,∆, F) we define the powerset
automaton of A , 2A = (2Q,Σ, {q0},∆′, F ′) where

∆′(q, a) =
⋃
p∈q ∆(p, a)

q ∈ F ′ when there is q ∈ q such that q ∈ F

Note that it is well known that as such 2A does not necessarily recognize the same
language as A . However, it is always true that L(A) ⊆ L(2A) . More precisely, for any state
p ∈ Q , we have L(p) ⊆ L({p}) . This property will be sufficient for our purpose. Let us write
q• w for the sequence of states visited by 2A when reading w from state q .

The following lemma will be crucial in the proof of the main theorem: it tells us that if
Adam is choosing letters according to a finite-memory winning strategy for the GFG game,

2 Actually, B has a stronger property: Eve could not win the GFG game even if she had k tokens instead
of one, for any k .

M. Bagnol and D. Kuperberg 16:11

then the number of turns before being able to see an accepting state while reading these
letters is bounded. This bound will allow to follow all the possible runs up to that accepting
state with a finite number of tokens.

I Lemma 19. If τ is a finite-memory winning strategy for Adam in GGFG(A) , then there
exists an integer Kτ such that: if w is a sequence of letters of length Kτ chosen by τ

from a state p0 (reached by playing τ from the starting position), and q is any state with
L(p0) = L(q) then {q}• w contains an accepting state.

Proof. Let M be the memory of τ and let Kτ = |Q×M × 2Q| . Let w = a1a2 . . . aKτ be a
word of length Kτ that can be played by τ in GGFG(A) from a position p0 reachable in
GGFG(A) with some memory m0 . Consider the sequence

(p0,m0, {q})
a1−→ (p1,m1,q1) a2−→ · · · aKτ−−−→ (pKτ ,mKτ ,qKτ)

where the pi ’s describe the states of A in this play, the mi ’s are Adam’s memory states,
and the qi ’s are the states of 2A reached upon reading the letters of w starting from {q} .
By choice of Kτ , there must be i < j such that (pi,mi,qi) = (pj ,mj ,qj). This means
that there is a prefix uv of w such that Eve can force the strategy τ to play uvω from
(p0,m0, {q}) , while guaranteeing that on the suffix vω , the run of 2A (corresponding to the
third component) repeats the same cycle C from qi to qj = qi .

Because τ is winning for Adam, and A is residual, we must have uvω ∈ L(p0) = L(q).
Since L(q) ⊆ L({q}), we have uvω ∈ L({q}), and therefore the cycle C must contain an
accepting state of 2A . Since the cycle C is present in {q}• w , this concludes the proof. J

5.2 Two Tokens Are Enough
I Theorem 20. If Eve wins G2 on a residual automaton A , then A is GFG.

Proof. Assume by contradiction that Eve wins G2 but Adam wins GGFG(A) . By Theorem
4, he can do so with a finite-memory strategy τ (with memory of size exponential in |Q|).
Let K = Kτ given by Theorem 19, and c = max{|∆(p, a)| | p ∈ Q, a ∈ Σ} be the degree of
nondeterminism of A . Let N = cK and T = N · |Q| , so that when moving T tokens on A ,
at least one state will hold N or more tokens at any given time. Recall that by Theorem 14,
Eve has a positional winning strategy σT : QT+1 × Σ→ Q in GT . Notice that T is doubly
exponential in |Q| .

We will now define a finite-memory strategy σ = (M,m0, σM , upd) for Eve in GGFG(A) .
The strategy σ will be defined according to the following intuition: Eve plays against τ by
simulating T tokens moving in A , and chooses her actual moves in GGFG(A) by playing
σT against these virtual tokens. The memory M of σ is QT , and its initial memory state is
m0 = (q0, . . . , q0) . We now describe the update function upd of σ . This amounts to giving
a strategy for moving T tokens in A , when letters are given by the opponent step-by-step.
We will consider that some tokens are active and the others are passive. Tokens are moved
according to the following rules:

Initially, the T tokens are in q0 , and are all active.
At each nondeterministic choice, active tokens are divided evenly between possible
successors.
Passive tokens are moved arbitrarily.
If an accepting state is reached by some token, then choose a state p containing at least
N tokens, and set the tokens in this state to active, and all others to passive. We call
this a reset point p .

FSTTCS 2018

16:12 Büchi Good-for-Games Automata Are Efficiently Recognizable

∴∴∴

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . ·

∴∴∴

∴

at most K steps

. . .

. . .

. . .

initial state

accepting state

≥ N tokens

passive tokens

reset point

Figure 1 Illustrating Eve’s strategy for moving the T tokens.

We will also consider that the initial position is a reset point. An illustration of this update
strategy is given in Figure 1.

Finally, we define σM : M × (Q× Σ)→ Q by σM (q, p, a) = σT (p,q, a) .
We can now consider the play ρ of σ against τ in GGFG(A) . Let pi,qi, ai be respectively

the state of Q , the memory state of σ , and the letter played by τ after i moves in ρ . Notice
that since A is residual, for all i and q ∈ qi , we have L(pi) = L(q). This allows us to use
Theorem 19 in the following.

We first show that there are infinitely many i such that qi contains an accepting state.
Consider p a reset point in the play. Starting from at least N = cK active tokens in p ,
and dividing them evenly at each step, the update strategy can cover all states reached by
2A from {p} with some active tokens during K steps. By Theorem 19, the memory will
reach an accepting state within these K steps, and can therefore restart at another reset
point without ever running out of active tokens. This shows that there are infinitely many
i such that qi contains an accepting state. Since M is a finite tuple, there is one of its
a components j such that the jth coordinate of qi is accepting for infinitely many i . By
correctness of σT , we obtain that there are infinitely many i such that pi is accepting. This
implies that the play ρ of GGFG(A) is won by Eve, a contradiction with the assumption
that τ is winning for Adam. J

I Corollary 21. On any Büchi automaton A , Eve wins G2 if and only if A is GFG.

Proof. A consequence of Theorem 16 and the above theorem: if Eve wins G2 on A , then
she also does on Ar , which implies that Ar is GFG, and therefore A is GFG as well. We
already saw the other direction in Theorem 13. J

By Theorem 12, we can now state our main result:

I Theorem 22. The Büchi GFGness problem is in P, and more precisely in O(n4m2|Σ|2) .

I Remark 23. Let us discuss briefly the possible extension of this proof to other parity cases.
On one hand Theorem 14 is true regardless of the acceptance condition (the proof does

not rely on the automaton being Büchi), which is quite promising. But on the other, the
adaptation of Theorem 19 proves problematic, and without this lemma it seems difficult to find
a way to move T virtual tokens so that at least one of them follows an accepting run, which
we rely on critically in the proof of Theorem 20. Already in the coBüchi case a substitute

M. Bagnol and D. Kuperberg 16:13

technique is missing, although our current work focuses on using some of the techniques from
[15] to prove Theorem 20 in this case, hoping this will eventually lead to a technique working
for any parity condition.

Conclusion

We showed that the Büchi GFGness problem can be decided in P, by introducing new
techniques using token games. While it seems that our proof cannot be directly used to
solve efficiently the parity GFGness problem, the game G2 could still be relevant in this
more general setting. We did not find any example of a non-GFG parity automaton A such
that Eve wins G2(A), so in our opinion it is plausible that Eve wins G2(A) if and only
if A is GFG for any parity automaton A . Since for any fixed acceptance condition (for
instance parity condition of fixed degree), the game G2 can be solved in P, this would put
the GFGness problem in P for any fixed acceptance condition, with an algorithm that is
already known.

References
1 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeterminism

in the Presence of a Diverse or Unknown Future. In Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part II, pages 89–100, 2013.

2 Udi Boker, Orna Kupferman, and Michał Skrzypczak. How Deterministic are Good-For-
Games Automata? In 37th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur,
India, pages 18:1–18:14, 2017.

3 J. Richard Buchi and Lawrence H. Landweber. Solving Sequential Conditions by Finite-
State Strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

4 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. De-
ciding parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 252–263, 2017.

5 Alonzo Church. Application of Recursive Arithmetic to the Problem of Circuit Synthesis.
Journal of Symbolic Logic, 28(4):289–290, 1963.

6 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Automata, languages and programming. Part II, volume 5556 of Lecture Notes in Comput.
Sci., pages 139–150, Berlin, 2009. Springer.

7 Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In 29th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2012, February
29th - March 3rd, 2012, Paris, France, pages 1–23, 2012.

8 E. Allen Emerson and Charanjit S. Jutla. Tree Automata, Mu-Calculus and Determinacy
(Extended Abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377, 1991.

9 Kousha Etessami. A Hierarchy of Polynomial-Time Computable Simulations for Automata.
In CONCUR 2002 - Concurrency Theory, 13th International Conference, Brno, Czech
Republic, August 20-23, 2002, Proceedings, pages 131–144, 2002.

10 Thomas A. Henzinger and Nir Piterman. Solving Games Without Determinization. In
Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference
of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 395–410, 2006.

FSTTCS 2018

16:14 Büchi Good-for-Games Automata Are Efficiently Recognizable

11 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, pages 290–301, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

12 Nils Klarlund. Progress Measures, Immediate Determinacy, and a Subset Construction for
Tree Automata. Ann. Pure Appl. Logic, 69(2-3):243–268, 1994.

13 Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz. Are Good-for-Games
Automata Good for Probabilistic Model Checking? In Language and Automata Theory
and Applications - 8th International Conference, LATA 2014, Madrid, Spain, March 10-14,
2014. Proceedings, pages 453–465, 2014.

14 Denis Kuperberg and Anirban Majumdar. Width of Non-deterministic Automata. In
35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28
to March 3, 2018, Caen, France, pages 47:1–47:14, 2018.

15 Denis Kuperberg and Michał Skrzypczak. On Determinisation of Good-for-Games Au-
tomata. In Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 299–310, 2015.

16 Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

17 Sven Schewe. Solving parity games in big steps. Journal of Computer and System Sciences,
84:243–262, 2017.

	Introduction
	Related Works

	Definitions
	Automata
	Games
	Winning Conditions

	Game Characterization of GFG Automata
	The GFG Game
	Solving the GFG Game

	Token Games
	First Attempt: the Game G_1
	Allowing More Tokens
	Some Consequences of Winning G_2

	Deciding GFGness
	Powerset Automaton
	Two Tokens Are Enough

