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Abstract
We consider a stochastic scheduling problem with both hard and soft tasks on a single machine.
Each task is described by a discrete probability distribution over possible execution times, and
possible inter-arrival times of the job, and a fixed deadline. Soft tasks also carry a penalty cost to
be paid when they miss a deadline. We ask to compute an online and non-clairvoyant scheduler
(i.e. one that must take decisions without knowing the future evolution of the system) that is
safe and efficient. Safety imposes that deadline of hard tasks are never violated while efficient
means that we want to minimise the mean cost of missing deadlines by soft tasks.

First, we show that the dynamics of such a system can be modelled as a finite Markov Decision
Process (MDP). Second, we show that our scheduling problem is PP-hard and in EXPTime.
Third, we report on a prototype tool that solves our scheduling problem by relying on the
Storm tool to analyse the corresponding MDP. We show how antichain techniques can be used
as a potential heuristic.
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1 Introduction

In modern real-time systems, we usually need to distinguish between two types of tasks: hard
tasks that ought to be scheduled so that they meet their deadline with absolute certainty and
soft tasks for which missing a deadline can be tolerated. Typically, hard tasks are vital for the
correct execution of the system and missing a deadline for such tasks may have catastrophic
consequences while missing a deadline of a soft task only degrades the overall performances
of the system (as in a video decoding system, for example, where missing a deadline means
skipping some video frames). An example of a system with both hard and soft tasks may
consist of the computer system of a commercial aircraft, that must, at the same time, run
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the avionics control, and the on-board entertainment system. Clearly, avionics controls are
vital and most of these tasks will be hard, while missing a few frames in the video stream of
the entertainment system only degrades the quality of the video; hence those tasks are soft.
It is also usual to distinguish between tasks for which the inter-arrival time is fixed (such
tasks are often called periodic tasks); and tasks for which the inter-arrival time is subject
to uncertainty and specified by an interval constraint (such task are often called sporadic
tasks). Most real systems naturally contain both periodic and sporadic tasks.

In this paper, we consider a rich formal model of infinite duration scheduling on a single
processor that is applicable to systems with both periodic/aperiodic and hard/soft tasks.
The tasks can be preempted. Additionally, we assume our schedulers to be non-clairvoyant
in the sense that the execution and inter-arrival times of tasks are not known in advance and
subject to uncertainty modelled by stochastic distributions. More precisely, each hard and
soft task is characterised by a fixed deadline, and two discrete finite support distributions
specifying its possible inter-arrival times and durations respectively. When a job associated
to a task (i.e. a new instance of the task) arrives in the system, its execution time and the
arrival time of the next job are not known but only the probability distribution over the
possible execution times and arrival times are known. In addition, each soft task comes with
a cost that is incurred each time a job of this task misses a deadline. The objective of a
scheduler in this model is two-fold:
(i) the deadline of all jobs corresponding to hard tasks must be met with certainty; and
(ii) the expected mean cost of missing deadlines of jobs associated to soft tasks must be

minimised.

Contributions. We define formally our scheduling problem as a non-standard optimisation
problem on an MDP. That is, we consider MDPs with two simultaneous objectives: a safety
objective asking that the deadline of each job associated to a hard task is met; and an
optimisation objective asking to minimise the expected mean-cost of missing job deadlines
associated to soft tasks. Second, we provide a worst-case exponential time algorithm (see
Theorem 4) that decides the existence of a safe and optimal schedule, and provide a PP-hard
lower bound1, which is an improvement on the NP-Complete and coNP-Complete lower
bounds that can be deduced from the literature (see related works below). Third, we propose
a heuristic based on antichain techniques [16]: we identify a naturally occurring ordering
on the states of the MDP, that can be used to prune the state space while computing the
set of safe states. Thanks to the antichain technique, this set of safe states can also be
described compactly. Finally, we have implemented a prototype tool for computing safe
schedules on top of the probabilistic model-checker Storm [13], which we use to solve the
optimisation part of our problem. We rely on the classical attractor algorithm to compute
the set of states of the MDP from which the safety objective can always be satisfied. We
also have implemented the antichain-based heuristic, and our experiments are encouraging:
using the compact description of the safe states, we manage to produce a much smaller input
file for Storm. Our algorithm works well for a small number of tasks and each task can
have infinitely many jobs. Further an optimal schedule can be implemented simply as a table
lookup and during runtime it requires minimal computation.

1 Recall that PP is the class of problems that can be solved by a probabilistic Turing machine that
operates in polynomial time [21].
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To the best of our knowledge, there does not exist any scheduling algorithm in the
literature that considers a cost model as ours as well as stochastic behaviour. In the
appendix, we show that adapting the classical EDF scheduling policy to our setting yields
scheduler that can be arbitrarily worse when compared to our optimal algorithm in terms of
the expected mean-costs.

Related work. The schedulability of (hard) periodic tasks is a classical problem that has
been studied in details in the literature, see e.g. [29, 26, 27, 14, 8]; and which has been shown
to be coNP-complete in [26, 8] (see also [34, 25, 24, 7] where the tasks are not strictly
periodic). It can be seen as a special case of our problem, where there are only hard tasks.

The clairvoyant scheduling of soft tasks (only) is also a classical problem that has attracted
ample attention in the scheduling literature, see e.g. [41, 28, 6]. In [30], the authors consider
a setting in which all the tasks have a mandatory (hard) part and an optional (soft) part
that incurs a penalty when not executed; and show that cost minimisation is NP-complete
when the optional tasks have arbitrary processing times. Again, this setting is a particular
case of ours.

Finally, there are works in the literature that consider scheduling problems with both
hard and soft tasks, see e.g. [10, 40, 11, 1]. A prominent line of works among them is based
on the notion of servers [10, 40] to handle soft tasks. Algorithms for preemptive uniprocessor
scheduling following this approach include Priority Exchange [40, 25], Sporadic Server [40, 38],
Total Bandwidth Server [40], Earliest Deadline Late (EDL) Server [11, 39, 40], Constant
Bandwidth Server [1], etc. However, those algorithms do not take into account a stochastic
model of the tasks as in our problem nor a notion of deadline and cost for the soft tasks. The
algorithm EDL is known to be optimal for dynamic priority assignment [11]. In Appendix B,
we show that a version of EDL adapted to our setting can be arbitrarily worse in terms of
the expected mean-cost when compared to our optimal algorithm.

The non-standard optimisation problem that we consider on MDP and which simultan-
eously asks for satisfying a safety and an expected mean-cost constraint is related to a recent
line of works that mixes two-player zero sum games and MDPs, see e.g. [9, 3, 12].

2 Preliminaries

We denote by IN the set of non-negative integer numbers, and by Q the set of rational
numbers. For n ∈ IN, we use [n] to denote {1, . . . , n} and [n]0 to denote {0, 1, . . . , n}. Given
a finite set A, a (rational) probability distribution over A is a function p : A→ [0, 1] ∩Q such
that

∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A). The

support of the probability distribution p on A is Supp(p) = {a ∈ A | p(a) > 0}. A distribution
is called Dirac if |Supp(p)| = 1.

Job Scheduling for both soft and hard tasks. We consider a system of n preemptive tasks
{τ1, . . . , τn} to be scheduled on a single processor. We identify all tasks τi with their unique
respective index i. We assume that the time is discrete and measured in CPU ticks. Each
task τi generates an infinite number of instances τi,j , that we call jobs, with j = 1, 2, . . . .
We assume that all tasks are either hard or soft and denote by F and H the set of indexes
of soft and hard tasks respectively (i.e. i ∈ F iff τi is a soft task). Jobs generated by both
hard and soft tasks are equipped with deadlines, which are relative to the respective arrival
times of the jobs in the system. Jobs generated by hard tasks must complete before their
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respective deadlines, but this is not mandatory for jobs generated by soft tasks. We also
assume that tasks are independent, i.e. the scheduling a job of one task does not depend on
another job belonging to some other task.

In order to make our model more realistic, we rely on a probabilistic model for the
computation times of the jobs and on the time between the arrival of two successive jobs of
the same task. Formally, for all i ∈ [n], task τi is defined as a tuple 〈Ii, Ci, Di,Ai〉, where:
(i) Ii ∈ IN is the arrival time of the first job of τi;
(ii) Ci is a discrete probability distribution on the (finitely many) possible computation

times of the jobs generated by τi;
(iii) Di ∈ IN is the deadline of all jobs generated by τi which is relative to the arrival time

of the jobs; and
(iv) Ai is a discrete probability distribution on the (finitely many) possible inter-arrival

times of the jobs generated by τi.
We note that max(Supp(Ci)) ≤ Di, and throughout the paper, we assume that Di ≤
min(Supp(Ai)) for all i ∈ [n]. In addition, we model the potential degradation in the quality
when a soft task misses its deadline by a cost function cost : F → Q≥0, that associates, to
each soft task τj , a cost c(j) which is incurred every time a job of τj misses its deadline.

One of the main contributions of this paper is to provide a formal model for such a system
(see Section 3). We provide an intuitive explanation for now: each task τi releases a first job
τi,1 at time Ii. This job, like all other jobs of τi will request a CPU time which is chosen
randomly according to Ci. The deadline of τi,1 is at time Ii +Di. The next job τi,2 will be
released by τi at a time Ii + δ2, where δ2 is chosen randomly according to Ai, and so forth.

I Example 1. Consider a system with one hard task τh = 〈0, Ch, 2,Ah〉 s.t. Ch(1) = 1 and
Ah(3) = 1; one soft task τs = 〈0, Cs, 2,As〉 s.t. Cs(1) = 0.4, Cs(2) = 0.6, and As(3) = 1; and
the cost function c s.t. c(τs) = 10. This means that both tasks will submit their first job at
time 0, both with deadlines at time 0 + 2 = 2. Then, τh,1 will have a computation time of 1,
while τs,1 will have a computation time which is either 1 (with probability 0.4) or 2 (with
probability 0.6). Both tasks will submit new jobs τh,2 and τs,2 at time 0 + 3 = 3. Each time
a job of τs misses its deadline, a cost of 10 will be incurred.

Our goal is to find a scheduler, i.e. a function that, given the current state of the system,
returns the identifier of the task that needs to be granted CPU access and ensuring that:
(i) no job of the hard tasks misses its respective deadline; and
(ii) the expected mean-cost incurred by the soft tasks missing their deadlines is minimised.
In Section 3, we model the problem as a game between two players: the Scheduler whose
objectives are sketched above, and TaskGen, the task generator that generates jobs according
to the semantics of the tasks, and whose goal is antagonistic to the scheduler’s. Then,
computing a scheduler will amount to computing a winning strategy of the Scheduler player.
We now introduce the necessary notions to model this game with stochastic features.

Labelled Directed Graphs. A labelled directed graph (or graph for short) is a tuple G =
〈V,E, L〉 where:
(i) V is the finite set of vertices;
(ii) E ⊆ V × V is the set of directed edges (sometimes called transitions); and
(iii) L : E → A is the function labelling the edges by elements from some set A.
For a transition e = (v, v′), v is its source, denoted src(e), and v′ its destination denoted
trg(e).
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Given v ∈ V , let Succ(v) = {v′ ∈ V | ∃(v, v′) ∈ E} be its set of successors, and
E(v) = {e | src(e) = v} be its set of outgoing edges. We assume that for all v ∈ V :
Succ(v) 6= ∅, i.e. there is no deadlock. A play in a graph G from an initial vertex vinit ∈ V is an
infinite sequence of transitions π = e0e1e2 . . . such that src(e0) = vinit and trg(ei) = src(ei+1)
for all i ≥ 0. The prefix up to the n-th vertex of π is the finite sequence π(n) = e0e1 . . . en.
We denote its last vertex by Last(π(n)) = trg(en). The set of plays of G is denoted by Plays(G)
and the corresponding set of prefixes is denoted by Prefs(G).

Weighted Markov Chains. A finite weighted Markov chain (MC, for short) is a tuple
M = 〈G, P rob〉, where G = 〈V,E, L〉 is a graph with L : E 7→ Q (i.e. edges are labelled by
rational numbers that we call the costs of the edges), and Prob : V → D(E) is a function
that assigns a probability distribution on the set E(v) of outgoing edges to all vertices
v ∈ V . Given an initial vertex vinit ∈ V , we define the set of possible outcomes in M as
OutsM (vinit) = {π = e0e1e2 . . . ∈ Plays(G) | src(e0) = vinit ∧ (∀n ∈ N, en+1 ∈ Supp(trg(en))}.
Let VOutsM (vinit) ⊆ V denote the set of vertices visited in the set of possible outcomes
OutsM (vinit). Finally, let us assume some measurable function f : Plays(G)→ IR≥0 associating
a rational value to each play of the MC. Since the set of plays of M forms a probability
space, f is a random variable, and we denote by EMvinit

(f) the expected value of f over the set
of plays starting from vinit.

Markov decision processes. A finite Markov decision process (MDP, for short) is a tuple
Γ = 〈V,E, L, (V2, V#), A, Prob〉, where:
(i) A is a finite set of actions;
(ii) 〈V,E, L〉 is a graph;
(iii) the set of vertices V is partitioned into V2 and V#;
(iv) the graph is bipartite i.e. E ⊆ (V2 × V#) ∪ (V# × V2), and the labeling function is s.t.

L(v, v′) ∈ A if v ∈ V2, and L(v, v′) ∈ Q if v ∈ V#; and
(v) Prob assigns to each vertex v ∈ V# a rational probability distribution on E(v).
For all edges e, we let cost(e) = L(e) if L(e) ∈ Q, and cost(e) = 0 otherwise. We further
assume that, for all v ∈ V2, for all e, e′ in E(v): L(e) = L(e′) implies e = e′, i.e. an action
identifies uniquely and outgoing edge.

An MDP can be interpreted as a game between two players: 2 and # (Scheduler and
TaskGen respectively), who own the vertices in V2 and V# respectively. A play in an MDP
is a play in its underlying graph 〈V,E,A∪Q〉. We say that a prefix π(n) of a play π belongs
to player i ∈ {2,#}, iff Last(π(n)) ∈ Vi. The set of prefixes that belong to player i is
denoted by Prefsi(G). A play in the MDP is then obtained by the interaction of the two
players as follows: if the current play prefix π(n) belongs to 2, she plays by picking an edge
e ∈ E(Last(π(n))) (or, equivalently, an action that labels a necessarily unique edge from
Last(π(n))). Otherwise, when π(n) belongs to #, the next edge e ∈ E(Last(π(n))) is chosen
randomly according to Prob(Last(π(n))). In both cases, the plays prefix is extended by e
and the game goes ad infinitum.

A strategy of 2 is a function σ2 : Prefs2(G) → E, such that σ2(ρ) ∈ E(Last(ρ)) for
all prefixes. A strategy σ2 is memoryless if for all finite prefixes ρ1 and ρ2 ∈ Prefs(G):
Last(ρ1) = Last(ρ2) implies σ2(ρ1) = σ2(ρ2). From now on, we will consider mainly
memoryless strategies. Let Γ = 〈V,E, L, (V2, V#), A, Prob〉 be an MDP and let σ2 be a
memoryless strategy. Then, assuming that 2 plays according to σ2, we can express the
behaviour of Γ as an MC Γ[σ2], where the probability distributions reflect the stochastic
choices of #. Formally, Γ[σ2] = 〈V#, E

′, L′, P rob′〉, where (v, v′) ∈ E′ iff there is v̂ s.t.:
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(i) (v, v̂) ∈ E;
(ii) σ2(v̂) = v′; and
(iii) Prob(v̂, v′) = Prob′(v, v′).
Further, for all e ∈ E′, we have L′(e) = L(e).

Safety synthesis. Given an MDP Γ = 〈V,E, L, (V2, V#), A, Prob〉, an initial vertex vinit ∈ V ,
and a set Vsafe ⊆ V of so-called safe vertices, the safety synthesis problem is to decide whether
2 has a strategy σ2 such that VOutsΓ[σ2](vinit) ⊆ Vsafe, that is, all the plays obtained when 2
plays according to σ2 visit only the safe vertices. The safety synthesis problem is decidable
in polynomial time for MDPs. Indeed, since probabilities do not matter for this problem,
the MDP can be regarded as a plain two-player game played on graphs (like in [42]), and the
classical attractor algorithm can be used (see Appendix A).

Expected mean cost threshold synthesis. Let us first associate a value, called the mean
cost MC(π) to all plays π in an MDP Γ = 〈V,E, L, (V2, V#), A, Prob〉. First, for a prefix
ρ = e0e1 . . . en−1, we define MC(ρ) = 1

n

∑i=n−1
i=0 cost(ei) (recall that cost(e) = 0 when L(e) is

an action). Then, for a play π = e0e1 . . ., we have MC(π) = lim supn→∞MC(π(n)). Observe
that MC is a measurable function. Then, the expected mean-payoff threshold synthesis
problem is to decide whether 2 has a strategy σ2 such that EΓ[σ2]

vinit (MC) ≤ λ for some initial
vertex vinit ∈ V and threshold λ ∈ Q. Such strategies are called optimal, and it is well-known
that, if such an optimal strategy exists, then, there is one which is memoryless. Moreover,
this problem can be solved in polynomial time through linear programming [17] or in practice
using value iteration (as implemented, for example, in the tool Storm [13]).

3 Modelling the system as an MDP

Let us fix a system of tasks τ = {τ1, τ2, . . . , τn} and a cost function cost and let us model our
scheduling problem by means of an MDP Γτ . This will provide us with a precise and formal
definition of the problem, and will allow us to rely on automatic tools (such as Storm [13],
see Section 6) to solve it. In order to define Γτ , it is easier to first build an infinite MDP
Γ = 〈V,E,L, (V2, V#), `, Prob〉. Then, Γτ will be the (finite) portion of Γ that is reachable
from some designated initial state vinit. In our model, 2 models the Scheduler and # models
the task generator (abbreviated TaskGen).

Modelling the system states. Since Di ≤ min(Supp(Ai)) for all tasks τi, there can be at
most one job of each task at a time t that can be scheduled at t or later. Thus when the
system executes, we keep information related to only one job per task. For each task τi, at
every time, in the vertices of the MDP we maintain the following information about the
current job in the system at that time:
(i) a distribution ci over the job’s possible remaining computation times (rct);
(ii) the time di up to its deadline; and
(iii) a distribution ai over the possible times up to the next arrival of a new job of τi.
We also have a special vertex ⊥ that will be reached when a hard task misses a deadline.
Formally: V2 =

(
D([Cmax]0)× [Dmax]0×D([Amax]0)

)n×{2}∪{⊥} and V# =
(
D([Cmax]0)×

[Dmax]0 × D([Amax]0)
)n × {#}; where Cmax = maxi(max(Supp(Ci))), Dmax = maxi({Di})

and Amax = maxi(max(Supp(Ai))). For a vertex v =
(
(c1, d1, a1), . . . (cn, dn, an)

)
, we let

active(v) = {i | ci(0) 6= 1 and di > 0} and dlmiss(v) = {i | ci(0) = 0 and di = 0}. Intuitively,
active(v) is the set of tasks that have an active job in v, that is one which has not finished



G. Geeraerts, S. Guha, and J.-F. Raskin 36:7

and whose deadline has not passed yet; and dlmiss(v) is the set of tasks that have missed
a deadline for sure in v (observe that for ci(0) > 0, the task could complete now and does
not miss a deadline for sure). In v, for every task i ∈ [n], the tuple (ci, di, ai) is called its
configuration.

Distribution updates. Let us now introduce the dec and norm functions that will be useful
when we will need to update the knowledge of the Scheduler. For example, consider a state
where ci(1) = 0.5, ci(4) = 0.1 and ci(5) = 0.4 for some i, and where τi is granted one CPU
time unit. Then, all elements in the support of ci should be decremented, yielding c′i with
c′i(0) = 0.5, c′i(3) = 0.1 and c′i(4) = 0.4. Since 0 ∈ Supp(c′i), the current job of τi could now
terminate with probability c′i(0) = 0.5, or continue running, which will be observed by the
Scheduler player. In the case where the job does not terminate, the probability mass must be
redistributed to update Scheduler’s knowledge, yielding the distribution c′′i with c′′i (3) = 0.2
and c′′i (4) = 0.8. Formally, let p and p′ be probability distributions on IN s.t. 0 6∈ Supp(p).
Then, we let dec(p) and norm(p′) be probability distributions on {x− 1 | x ∈ Supp(p)} and
Supp(p′) \ {0} respectively s.t.:

for all x ∈ Supp(p) : dec(p)(x− 1) = p(x)

for all x ∈ Supp(p′) \ {0} : norm(p′)(x) = p′(x)∑
x≥1 p

′(x) .

Observe that, when 0 6∈ Supp(p′), then norm(p′) = p′.

Possible moves of the Scheduler. The possible actions of Scheduler are to schedule an
active task or to idle the CPU. We model this by having, from all states v ∈ V2 one transition
labelled by some element from active(v), or by ε (no job gets scheduled). The effect of the
transition models the elapsing of one clock tick.

Formally, fix v =
(
(c1, d1, a1), . . . , (cn, dn, an),2

)
∈ V2 s.t. 0 6∈ Supp(ci) and 0 6∈

Supp(ai) for all i ∈ [n]. Then, there is e = (v, v′) ∈ E with L(e) ∈ [n] ∪ {ε} and v′ =(
(c′1, d′1, a′1), . . . , (c′n, d′n, a′n),#

)
iff the following four conditions hold:

(i) L(e) = i ∈ [n] implies that i ∈ active(v) and c′i = dec(ci), i.e. if a task is scheduled, it
must be active, and its rct is decremented;

(ii) for all j ∈ [n] \ {L(e)}: c′j = cj , i.e. the rct of all the other tasks does not change;
(iii) for all j ∈ [n]: d′j = max(dj − 1, 0), i.e. the deadline is one time unit closer, if not

reached yet;
(iv) for all j ∈ [n]: a′j = dec(aj), i.e. we decrement the time to next arrival of all tasks.
Observe that when a soft task misses a deadline, we maintain the positive rct of the job in
the next state: this will be used as a marker to ensure that the associated cost is paid when
a new job of the same task will arrive. For example, consider a state (with one soft task)(
(c, 0, a),2

)
with c(2) = 1 and a(1) = 1 i.e. the task has reached its deadline but still need 2

time units to complete and the next job arrives in 1 time unit. Then, the successor state will
be
(
(c, 0, a′),#

)
with a′(0) = 1, from which a new job will be submitted, which will incur a

cost (see action killANDsub in the next paragraph).

Possible moves of the Task Generator. The moves of TaskGen (modelled by #) consist
in selecting, for each task one possible action out of four: either nothing (ε); or
(i) to finish the current job without submitting a new one (fin); or
(ii) to submit a new job while the previous one is already finished (sub); or
(iii) to submit a new job and kill the previous one, in the case of a soft task (killANDsub),

which will incur a cost.
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Formally, let Actions = {fin, sub, killANDsub, ε}. To define Γτ , we introduce a function
L : (V#×V2) 7→ Actionsn, i.e. L(e, i) is the action of # corresponding to τi on edge e. Fix a
state v =

(
(c1, d1, a1), . . . , (cn, dn, an),#

)
∈ V#. Let v̂ =

(
(ĉ1, d̂1, â1), . . . , (ĉn, d̂n, ân),2

)
∈

V2 be such that that v̂ i−→ v. Note that there is a unique such v̂ from which action i can be
done to reach v. We consider two cases. Either dlmiss(v) ∩H 6= 0, i.e., a hard task has just
missed a deadline. In this case, the only transition from v is e = (v,⊥) with L(e, i) = ε for
all i ∈ [n]. Otherwise, there is an edge e = (v, v′) with v′ =

(
(c′1, d′1, a′1), . . . , (c′n, d′n, a′n),2

)
iff for all i ∈ [n], one of the following holds:
1. L(e, i) = fin, min(Supp(ĉi = 1)), ai(0) 6= 1, c′i(0) = 1, d′i = di, and a′i = norm(ai). The

current job of τi finishes now (ci(0) > 0) and the next arrival will occur in the future
(ai(0) 6= 1), according to the probability distribution norm(ai).

2. L(e, i) = sub, ci(0) > 0, ai(0) > 0, c′i = Ci, d′i = Di, and a′i = Ai. In this case, we assume
that the previous job of τi has completed (ci(0) > 0) and we let τi submit a new job (see
the new values c′i, d′i and a′i); or

3. L(e, i) = killANDsub, ci(0) 6= 1, ai(0) > 0, c′i = Ci, d′i = Di, and a′i = Ai. In this case,
τi (necessarily a soft task) submits a new job, and kills the previous one (there is possibly
some remaining rct as ci(0) 6= 1); or

4. L(e, i) = ε, ai(0) 6= 1, either c′i = norm(ci) or c′i(0) = ci(0) = ĉi(0) = 1 , d′i = di and
a′i = norm(ai). No action is performed on τi which must not submit a new job now
(ai(0) 6= 1) and does not finish now. For c′i(0) = ci(0) = ĉi(0) = 1, it denotes that the job
already finished during a previous clock tick. The knowledge of the scheduler (c′ and a′)
is updated accordingly.

The cost of and edge e is: L(e) = c =
∑
i:L(e,i)=killANDsub cost(i). As said earlier, the cost is

incurred when the killANDsub action is performed by some task τi, although the deadline
miss might have occurred earlier. Finally, the probability of an edge e is Prob(e) =

∏
i∈[n] pi,

where, for all i ∈ [n]:

pi =



ci(0) · (1− ai(0)) if L(e, i) = fin

ci(0) · ai(0) if L(e, i) = sub

(1− ci(0)) · ai(0) if L(e, i) = killANDsub

(1− ci(0)) · (1− ai(0)) if L(e, i) = ε and ci(0) 6= 1
1− ai(0) if L(e, i) = ε and ci(0) = 1.

Finally, the initial vertex is vinit =
(
(c0, d0, a0), . . . , (cn, dn, an),2

)
∈ V2 s.t. for all i ∈ [n]:

(ci, di, ai) = (Ci, Di,Ai) if Ii = 0; and (ci, di, ai) = (c, 0, a) with c(0) = 1 and a(Ii) = 1
otherwise. The finishes the definition of Γ. As explained above, the MDP Γτ modelling
our problem is the portion of Γ that is reachable from vinit. One can check, by a careful
inspection of the definitions, that Γτ is indeed finite. Let us now illustrate these definitions.

I Example 2. Figure 1 presents an excerpt of the MDP Γτ built from the set of tasks
τ = {τh, τs} of Example 1. We denote a distribution p with support {x1, x2, . . . , xn} by
[x1, p(x1);x2, p(x2); . . . ;xnp(xn)]. When p is s.t. p(x) = 1 for some x, we simply denote p
by x. States from V2 and V# are depicted by rectangles and rounded rectangles respectively.
Each state is labelled by (ch, dh, ah) on the top and (cs, ds, as) below.

A strategy to avoid missing a deadline of τh consists in first scheduling τs, then τh.
One then reaches the left-hand part of the graph from which 2 can avoid ⊥ irrespective of
whatever # does. Note that other safe strategies are possible: the first step of our algorithm
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(1,2,3)
([1:.4,2:.6],2,3)

(1,1,2)
([0:.4,1:.6],1,2)
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(1,1,2)
([1:.4,2:.6],1,2)

s h ε

(1,1,2)
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(1,1,2)
(1,1,2)
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(0, 0, 1)

(0, 0, 1)
(0, 0, 1)

(0, 0, 0)
(0, 0, 0)
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(fin, ε)

ε

(sub, sub)

(0, 0, 1)
(1,0,1)

(0, 0, 1)
(1,0,1)

(0, 0, 0)
(1,0,0)

hs ε

(fin, ε)

ε

(sub, killANDsub)
cost=10

s ε

(1,0,1)
([1:.4,2:.6],0,1)

⊥

εs h

ε

ε

Figure 1 An excerpt of the MDP for Example 1. Tasks in bold are active, tasks in italics have
missed a deadline.

is actually to compute all the safe nodes (i.e. those from which 2 can ensure to avoid ⊥),
and then to look for an optimal one (wrt to the cost of missing deadlines for soft tasks)
among those.

From state (1,1,2), ([0:.4,1:.6],1,2) , # chooses whether τs finishes or not with respective probabil-
ities 0.4 and 0.6. In the latter case, τs will miss its deadline, which incurs a cost on the edge
where the killANDsub action occurs.

Equipped with these definitions, we can define the problem that we want to solve. The
Safe and optimal scheduler synthesis problem is stated as, given a set of real-time tasks
τ partitioned into hard and soft tasks, and a rational threshold λ whether there exists, in
the MDP Γτ a strategy σ2 of 2 s.t.:
(i) ⊥ 6∈ VOutsΓτ [σ](vτinit), i.e. no hard task misses its deadline. Strategies that enforce this

objective are called safe strategies; and
(ii) EΓτ [σ]

vτinit
(MC) ≤ λ, i.e. the expectation of the mean-cost (due to the deadline misses by

the soft tasks) is at most λ.
This strategy σ2 constitutes our scheduler. We will see in the next section that when such a
strategy exists, then there exists one which is also memoryless.

I Example 3. Let us continue with Example 2. There are two optimal memoryless strategies,
one in which the Scheduler first chooses to execute τh, then τs; and another where τs is
scheduled for 1 time unit, and then preempted to let τh execute. Since the period of τs is 3
and the cost of missing a deadline is 10, for both of these optimal strategies, the soft task’s
deadline is missed with probability 0.6 during each period and hence the mean-cost is 2.
Observe that there is another safe schedule that is not optimal is one in which only τh is
granted CPU access, and τs is never scheduled thus giving a mean-cost of 10

3 .

4 Algorithm and Complexity

In this section, we show that the safe and optimal scheduler synthesis problem is PP-hard
and in EXPTime. We start with the upper bound first.

I Theorem 4. The safe and optimal scheduler synthesis problem can be solved in EXPTime.

FSTTCS 2018
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Proof. We sketch an exponential time algorithm that solves our problem. First, we build
the MDP Γτ = 〈V,E,A, Prob〉 according to the above definitions. Note that the supports
of the distributions and the deadline given in binary, the size of this MDP is exponential
in the size of the task set, hence Γτ can be built in exponential time. Then, we run the
attractor algorithm on Γτ (see Appendix A), using {⊥} as the set of unsafe vertices. This
takes polynomial time in the size of Γτ , hence exponential time in the size of τ . We obtain
a set Vunsafe ⊆ V of losing vertices. That is, Vunsafe contains all the vertices from which
2 cannot guarantee that all the hard tasks will never miss deadlines. We then prune Γτ
by removing all the vertices of Vunsafe, and obtain Γ′ = 〈V \ Vunsafe, E′, A, Prob〉. Observe
that, by definition of the attractor, whenever a vertex v ∈ V# has a successor in Vunsafe,
then v ∈ Vunsafe too. So, the pruning operation either keeps a vertex v ∈ V# with all
its successors, or remove it. The corresponding edges are also removed. Hence, the Prob
function is still a probability distribution and Γ′ is still an MDP. By property of the attractor,
the possible strategies for 2 in Γ′ are exactly all the safe strategies in Γτ . Hence, we can
now solve our problem by applying some classical polynomial time algorithm [36, 35] to solve
the mean-cost threshold synthesis problem in Γ′, and we have the guarantee that for all
strategies σ2: EΓ′[σ2]

vτinit
(MC) ≤ λ iff ⊥ 6∈ VOutsΓτ [σ2](vτinit) and EΓτ [σ2]

vτinit
(MC) ≤ λ.

Observe that those algorithms compute memoryless optimal strategies that map all
vertices in V2 to an action in [n] ∪ {ε}, representing which task (if any) should be granted
CPU access. This strategy is thus the actual scheduler, and we are done. J

Let us now turn our attention to a lower bound on the complexity. As explained in
the related works section, our problem subsumes classical scheduling problems that are
known to be coNP-complete, like the periodic (hard) task scheduling problem [26, 8],
and NP-complete, like the clairvoyant scheduling problem for soft tasks [30]. The proof
of task scheduling problem for sporadic hard tasks in [7] also applies to our case giving
coNP-completeness in a system with only hard tasks that are neither periodic nor sporadic2.
We now provide a stronger lower bound by establishing PP-hardnes. Recall that PP is the
class of languages L ⊆ Σ∗ recognised by a probabilistic polynomial-time Turing machine M
with access to a fair coin such that for all w ∈ Σ∗, we have w ∈ L if and only if M accepts w
with probability at least 1

2 . The class PP contains NP , is closed under complement [37] and
hence also contains the class coNP. Further, the class PP is contained in PSPACE.

I Theorem 5. The safe and optimal schedule synthesis problem is PP-hard.

Proof. We show a reduction from k-th largest subset which has recently been shown to
be PP-complete [22]. The k-th largest subset problem is stated as given a finite set A, a
size function h : A→ N assigning strictly positive integer values to elements of A, and two
naturals K,L ∈ N, decide if there exist K or more distinct subsets Sj ⊆ A, where 1 ≤ j ≤ K,
such that

∑
o∈Sj h(o) ≤ L for all these K or more subsets.

Let |A| = n, and B =
∑
o∈A h(o). Given an instance of k-th largest subset, we construct

a system of n hard tasks and one soft task. Let H denote the set of hard tasks. The first
instance of each hard task arrives at time 0. The computation time is ei = h(oi) with
probability 1

2 , and ei = 0 with probability 1
2 , the deadline d = B, and the inter-arrival time

pi = B for all 1 ≤ i ≤ n.
The arrival time of the first instance of the soft task is L, its computation time is B − L,

(relative) deadline is B − L and inter-arrival time is B.

2 Note that in sporadic tasks, only the minimum inter-arrival time for a task is specified.
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Suppose there is a solution to the instance of k-th largest subset problem, i.e. there are at
least r ≥ K subsets of A such that the sum of the elements in each Sj , where j ∈ [r] is less
than L. Hence in the system constructed above, there are r ≥ K subsets of the set H such
that corresponding to each subset Sj , where i ∈ [r], for each i ∈ [n], hard task i executes
with time h(oi) if oi ∈ Sj , else i executes with time 0.

Note that since each hard task has two possible computation times that are 0 and h(oj),
there are 2n combinations of computation times for all the hard tasks, each such combination
having a probability of 1

2n , and r of them finish before L and for each of these r combinations,
the soft task executes to completion. Thus the cost is 0 for r of these combinations, that is,
with probability r

2n , while the cost is 1 with probability 1 − r
2n . Hence the expected cost

is 1− r
2n over a time period B. The expected mean-cost is 1

B · (1−
r

2n ). So the expected
mean-cost is indeed less than or equal to 1

B · (1−
K
2n ) iff there are at least K subsets of A

each of whose elements sum up to L or less. J

As a consequence, our EXPTime upper bound cannot be improved substantially unless
P=PP. We note that our proof implies that we cannot have a short certificate indicating
the absence of a safe schedule that meets some minimal performance for the soft tasks unless
PP = coNP = NP.

Finally, we note that in our reduction, we associate a system with only one soft task to
each instance of the K-th largest subset sum problem. But our reduction can be adapted by
turning all hard tasks into soft tasks with costs > 1. In place of each hard task, we have a
soft task, each parameter of the soft task remains the same as the hard task, and the cost
of missing the deadline for the soft task is strictly greater than 1 while we have only one
soft task as in the previous case whose cost is 1. Arguing as above, we see that minimum
expected mean-cost is less than or equal to 1

B · (1−
K
2n ) iff there are at least K subsets of A

each of whose elements sum up to L or less. Hence, we obtain the same lower bound in the
case where we have only soft tasks:

I Corollary 6. The safe and optimal scheduler synthesis problem is PP-hard even in a system
with only soft tasks.

This shows that the non-clairvoyant scheduling of soft tasks where the tasks are described
using probability distributions is computationally more difficult than the clairvoyant version
(unless NP = PP ).

5 A symbolic data-structure for the safety game

Our last theoretical contribution is to propose an antichain-based [16] heuristic to mitigate
the high complexity of the problem, and solve the safety part of the game in an efficient way
(in practice). The core of this approach consists in identifying an ordering � ⊆ V2 × V2

on the vertices of 2 and that can be interpreted intuitively as follows: v1 � v2 means that
v1 is as difficult as v2 (from the point of view of 2, i.e. the Scheduler player). Thus, if 2
has a safe strategy from v1, then she also has a safe strategy from v2 (Theorem 9). This
implies that the set of safe 2 vertices, (that our algorithm computes in the first place) is
downward-closed for �, a special structure that we will exploit in our implementation (see
Section 6).

Let v1 =
(
(s1

1, s
1
2, . . . , s

1
n),2

)
, and v2 =

(
(s2

1, s
2
2, . . . , s

2
n),2

)
be two vertices of 2 where

sji = (cji , d
j
i , a

j
i ) for all j ∈ {1, 2} and i ∈ [n]. Intuitively, in order to make sure that, for all

tasks i ∈ [n] its configuration s1
i is at least as difficult as s2

i , we could request that:
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(i) for all e2
i ∈ Supp(c2i ), there is e1

i ∈ Supp(c1i ) s.t.: d2
i − e2

i ≥ d1
i − e1

i ; and
(ii) d1

i ≤ d2
i ; and

(iii) Supp(a1
i ) ⊇ Supp(a2

i ).
Indeed, condition (i) means that the amount of work needed for τi to complete in v1 is at
least the amount of work needed in v2, whatever the choices of the task generator (observe
that we ignore the probabilities here since we are only interested in safety). Condition (ii)
says that the deadline is closer in v1 than in s2. Condition (iii) ensures that all next arrivals
that can occur in v2 can also occur in v1, hence, all the actions that # will be able to play
from the successors of v2 should also be present from the successors of v1.

Let us now argue that we can actually simplify these conditions. Assume the three
conditions hold on v1 and v2, and consider (iii) i.e. Supp(a1

i ) ⊇ Supp(a2
i ). Since the ai

parameters of all tasks are initialised to the same value Ai, this implies that the job of τi in
v2 has been submitted earlier than the corresponding job in v1, which implies that d1

i ≥ d2
i .

This last inequality together with (ii) implies that d1
i = d2

i , which means that the two jobs of
τi in both states have actually been submitted at the same time, hence we must also have
a1
i = a2

i . This motivates our definition of the � order:

I Definition 7. Let v1 =
(
(s1

1, s
1
2, . . . , s

1
n),2

)
, and v2 =

(
(s2

1, s
2
2, . . . , s

2
n),2

)
be two states of

2 where sji = (cji , d
j
i , a

j
i ) for all j ∈ {1, 2} and i ∈ [n]. Then, v1 � v2 iff: for all i ∈ [n], there

exists an injective function f : Supp(c2i ) → Supp(c1i ) s.t. for all e2 ∈ Supp(c2i ): f(e2) ≥ e2,
d1
i = d2

i and a1
i = a2

i .

Observe that this ordering is defined on the structure of the states of the MDP, so it is easy to
test simply by inspecting v1 and v2. In order to show that � has the right properties, we rely
on a variation of the notion of alternating simulation [4], which we adapt to our setting. Fix
an MDP γτ = 〈V,E, L, (V2, V#), `, Prob〉. Then, a relation R ⊆ V2 × V2 is an alternating
simulation relation iff for all (v1, v2) ∈ R, the following holds. For all v′1 ∈ Succ(v1), there is
v′2 ∈ Succ(v2) s.t.:
(i) L(v2, v

′
2) ∈ {L(v1, v

′
1), ε}; and

(ii) for all v′′2 ∈ Succ(v′2) there is v′′1 ∈ Succ(v′1) s.t. L(v′1, v′′1 ) = L(v′2, v′′2 ) and (v′′1 , v′′2 ) ∈ R.
Then, we can show that:

I Lemma 8. � is an alternating simulation relation.

Proof. Let (v1, v2) ∈� with v1 = (s1,1, s2,1, . . . sn,1,2) and v1 = (s1,2, s2,2, . . . sn,2,2) Recall
that v1, v2 ∈ V2. Let i ∈ [n] ∪ {ε} be the action of 2 from v1, let v1

i−→ v′1, and let
si,1 = 〈c1, d, a〉 and si,2 = 〈c2, d, a〉. Since v1 � v2, by definition of �, there exists an injective
function f : Supp(c2) → Supp(c1) as defined above. Let e = min(Supp(c2)). Consider the
action from v2 as v2

ε−→ v′2 if f(e) > e, else v2
i−→ v′2.

Now since ai is the same in both v′1 and v′2, we see that for every action b of # such that
v′2

b−→ v′′2 , we have a v′′1 such that v′1
b−→ v′′1 , and v′′1 , v′′2 ∈ V2. From the transitions of the MDP

as defined in Section 3, it is not difficult to see that (v′′1 , v′′2 ) ∈ �, and we are done. J

From this Lemma, and from the fact that the objective of the safety part of the game is
to avoid reaching ⊥, we can now deduce that � has the desired property. More precisely, we
show that, if v1 � v2 and Scheduler can schedule all hard tasks from v1, then we can find a
so-called �-strategy σ′ that is also winning and that takes the same choices (when possible,
that is, when the same tasks are active) from all pairs of states which are comparable (in
particular, from s2). Formally, we call a strategy σ : V2 → [n] ∪ {ε} �-compatible iff for all
v1, v2 with v1 � v2: either σ(v1) = σ(v2) or σ(v2) = ε. That is, either σ schedules the same
task from both states, or it idles the CPU in the “easier” state v2.
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I Theorem 9. For all 2 vertices v1 and v2 with v1 � v2, if 2 (Scheduler player) has a safe
strategy from v1, then she has a �-compatible safe strategy σ from v2 (also safe from v1).

Proof. Let v1 =
(
(c11, d1

1, a
1
1), . . . , (c1n, d1

n, a
1
n),2

)
and v2 =

(
(c21, d2

1, a
2
1), . . . , (c2n, d2

n, a
2
n),2

)
respectively. Given a winning strategy σ′ from v1, we construct an �-compatible winning
strategy σ from v1 as follows. Consider VOutsΓ(σ′)(v1), the set of all vertices visited from
v1 when σ′ is played from v1. We define σ such that for all ṽ1 ∈ VOutsΓ(σ′)(v1), we have
σ(ṽ1) = σ′(ṽ1). For all vertices v̂1 =

(
(ĉ1, d̂1, â1), (ĉ2, d̂2, â2), . . . , (ĉn, d̂n, ân),2

)
∈ V2 s.t.

there exists a ṽ1 ∈ VOutsΓ(σ′)(v1) with ṽ1 � v̂1, we have σ(v̂1) = σ(ṽ1), when σ(ṽ1) = i for some
i ∈ [n] and f(min(Supp(ĉσ(ṽ1)))) = min(Supp(ĉσ(ṽ1))) for the injective function f defined
above and σ(v̂1) = ε otherwise. For all the remaining vertices v, we have σ(v) = σ′(v).
Clearly, σ is �-compatible. From Lemma 8, since � is an alternating simulation relation and
since an ε action can be scheduled from every 2 vertex, it is always possible to construct
such a strategy σ.

Now we show that σ is safe from v2. We show by induction on the length of the play that
playing σ from v2 does not visit ⊥. Let σ(v1) = a, and σ(v2) = α, where a, α ∈ [n] ∪ {ε}.
Let v1

a−→ v1,# and v2
α−→ v2,#. Recall that for all i ∈ [n], we have d1

i = d2
i and a1

i = a2
i .

Further from the definition of σ, we have that # player has the same set of actions from
both v2,# and v1,#. Let v2,#

b−→ v′2 and v1,#
b−→ v′1, where b is a # action and v′1, v′2 ∈ V2.

Clearly, v′1 � v′2, and since v′1 6= ⊥ then v′2 6= ⊥ too (because ⊥ is not comparable to any
other vertex). By induction hypothesis, σ is a �-compatible winning strategy from v′2, and
we are done. J

A consequence of this theorem is that the set V 2
safe = Vsafe ∩ V2 of safe 2 vertices has

a special structure wrt �. Formally, V 2
safe is downward-closed, i.e. if v1 ∈ V 2

safe, then for
all v2 ∈ V2: v1 � v2 implies that v2 ∈ V 2

safe as well. We can thus represent V 2
safe in a

compact way by keeping its maximal elements only. Formally, for a set S of vertices, we
let dSe = {v | @v′ ∈ S : v′ 6= v and v′ � v} be its maximal antichain. When the set S is
downward-closed, dSe can be regarded as a symbolic (compact) representation of S. In the
next section, we will rely on A2

safe = dV 2
safee.

6 Implementation and Experiments

In this section, we discuss a prototype tool implementing the techniques described so far.
The tool uses the networkx library [23] to build the pruned MDP (see the steps outlined in
the proof of Theorem 4 in Section 4) containing only the transitions that allow all possible
schedules in which no hard task misses a deadline. This is given as an input to the Storm
model-checker which analyses the MDP and finds an optimal schedule among the set of safe
schedules.

We have run our prototype on a small benchmark with different numbers of hard and
soft tasks. We measure the size of the system as the number of vertices in the MDP which is
analysed by Storm. We ran our experiments in a MacBook Air with 1.7 GHz Intel Core i5
processor with 2 cores and having 4GB memory. We ran three different experiments:
1. We compute the time taken by our tool to remove the unsafe schedules for increasing

number of hard tasks and increasing number of vertices. The results are shown in Table 1.
We have only hard tasks in these experiments and the values of all the parameters is less
than or equal to 12. We perform the following optimisation when constructing the set
of safe vertices. We call a vertex s = 〈s1, . . . , sn, X〉 with X ∈ {2,#} to be immediately
unsafe if there is a task j ∈ H s.t. sj = (cj , dj , aj) with max(Supp(cj)) > dj , i.e. in

FSTTCS 2018



36:14 Safe and Optimal Scheduling

Figure 2 Fraction of vertices in the antichain
(Y-axis) with increasing number of safe vertices
(X-axis).

Table 1 Removing the unsafe schedules for
a set of |H| hard tasks. |V | and |Vsafe| are the
number of initial and safe vertices in the MDP
respectively, TMDP is the time to compute the
entire MDP and Tsafe is the time required to
remove the unsafe vertices (all times in second)

|H| |V | |Vsafe| TMDP Tsafe

1 2 32 0 0.02 0.02

2 3 1,155 0 5.49 0.4

3 3 6,550 6,015 231.37 5.29

4 5 4,397 0 122.41 1.58

5 6 2,875 0 53.05 1.21

6 6 7,685 0 339.52 3.88

Table 2 Experiments where the number
|S| of soft tasks varies. |Vsafe| is the number
of safe vertices in the MDP that is analysed by
Storm and T is the running time of Storm
to compute the mean-cost C.

|S| |Vsafe| T C

1 1 230 0.03 0

2 2 5,369 0.39 0.07

3 3 150,895 73.09 0.28

Table 3 Experiments where the number
|H| of hard tasks varies. |Vsafe| is the number
of safe vertices in the MDP that is analysed by
Storm and T is the running time of Storm
to compute the mean-cost C.

|H| |Vsafe| T C

1 1 560 0.05 0

2 2 8,040 2.35 0

3 3 9,626 6.08 0

the rct distribution, the maximum remaining computation time exceeds the remaining
time before the deadline. While computing the set of reachable vertices, once we detect
that a vertex is immediately unsafe, we stop exploring from that node further. We note
that both TMDP and Tsafe are proportional to the number |V | of vertices rather than
the number of hard tasks in the system and the number of vertices may not be directly
related to the number of tasks in the system, but also depends on the parameters of the
tasks. Most of these experiments were designed so that a safe schedule does not exist for
the set of hard tasks considered, that is, all the vertices in V were found to be unsafe.
We however have one experiment (number 3 in which most of the vertices are safe and
we note that Tsafe is not negligible in this case.

2. We run our complete algorithm on examples where all the task parameters are less than or
equal to 10, we have only one hard task and the number of soft tasks varies, see Table 2.

3. Symmetrically, we run our complete algorithm on examples where all the task parameters
are less than or equal to 9, we have only one soft task and the number of hard tasks
varies, see Table 3.

Symbolic vertices and transitions with antichain. Finally, let us explain how we have
exploited the relation defined in Section 5 in our prototype. As explained earlier, the
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set V 2
safe of safe 2 vertices of Γτ is downward-closed for the relation �, and can be thus

represented by its maximal antichain A2
safe = dV 2

safee. Our experiments show that A2
safe

is, in practice, much smaller that V 2
safe, as can be seen in Figure 2, where we plot the ratio

|A2
safe|
|V 2
safe
| against |V

2
safe| on a set of randomly generated systems where some have only hard

tasks while some are with both hard and soft tasks. The number of different tasks varies
from 1 to 6. We notice that the fraction reduces with increasing number of vertices and it
reduces to less than 10% when the number of safe vertices is a few thousands.

We then exploit A2
safe to obtain a more succinct and more structured input file to the

Storm model checker. The input syntax of Storm uses a guarded command language,
where the states of the system are described by means of variables that are tested and
updated by a transition. So, a possible transition could be of the form:

rct1_1=1 & d1=3 & p1_1=4 & ... -> (rct1_1’=1) & (d1’=2) & (p1_1’=3) & ...;

where rct1_1, d1, etc are the variables that encode the system state, and their primed
versions characterise the successors from V2, as the vertices from V# are not explicitly
encoded in the Storm models. In the experiments we have described above, this is how we
have encoded the Storm models: all transitions from all safe states are encoded explicitly
by means of conjunctions of equalities on the systems states.

Now that we have a compact representation A2
safe = {v1, v2, . . . , vn} of the safe states, we

further improve the encoding of the Storm model, by testing, in the guard of the transition,
whether the potential successor state v′ is s.t. vi � v′ for some i. We then use inequalities in
the guards of the transition and describe several possible transitions at once, for example:

rct1_1>=0 & d1=3 & ... &
((rct1_1<=1 & rct2_1-1<=2 & rct2_2-1<=4) | (rct1_1<=2 & ...) | ...)
-> (rct1_1’=rct1_1) & ...;

Observe that now we test that variable rct_1 is ≥ 0 and constrain that it is unmodified
(rct1_1’=rct1_1), so the guard is satisfied by potentially several vertices at once. The part
of the guard that appears on the second line tests whether for a vertex v that is reached
after the transition, there exists a v′ ∈ A2

safe such that v′ � v. See Appendix C for a more
detailed discussion of this new encoding. We however noted that though this approach
produces a succinct input file for Storm, the latter constructs an MDP with all the vertices
and transitions among them appearing explicitly in the MDP.

Another possible optimisation that our preorder � allows would be to compute A2
safe

directly by maintaining, during the fix point computation of the attractor, sets that are
antichains only, in the spirit of [20]. This has the potential to speed up the computation of
the safe states. We leave this implementation for future works.

7 Discussion and Future Work

In this paper, given a set of hard and soft tasks, we described an algorithm to compute a
strategy that is safe and has the minimal expected mean-cost. We formalise the construction
of an MDP and show that a safe and optimal schedule can be implemented as a simple table
lookup unlike many of the existing scheduling algorithm that requires more computations
during scheduling the tasks. We also implemented a prototype of a tool and use Storm
model-checker to show that our approach can indeed be used in practice.
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Using reinforcement learning. Our algorithm relies on a stochastic model for the arrival of
the tasks and the duration of the tasks. If this stochastic model is not available, techniques
like reinforcement learning can be used for the online construction of a stochastic model
during interaction with the tasks. The challenge here is to combine reinforcement learning
with techniques to maintain the safety for the deadline of the hard tasks. Algorithms to
combine learning with hard guarantees are currently explored [44].
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A Attractor algorithm for Safety Synthesis

The algorithm consists of computing all the vertices from which 2 cannot avoid reaching the
unsafe vertices. To this end, the algorithm computes a sequence of sets of vertices (Ai)i≥0
defined as follows:
(i) A0 = V \ Vsafe; and
(ii) for all i ≥ 0: Ai+1 = Ai ∪ {v ∈ V2 | Succ(v) ⊆ Ai} ∪ {v ∈ V# | Succ(v) ∩Ai 6= ∅}.

That is, the sequence (Ai)i≥0 is initialised to the set of unsafe vertices. Then, the algorithm
grows this set of vertices by adding:
(i) vertices belonging to 2 whose set of successors has been entirely identified as unsafe in

a previous step; and
(ii) vertices belonging to # having at least one unsafe successor.

It is easy to check that this sequence converges after at most |V | steps (the graph of
the MDP being finite) and returns the set of vertices Attr(V \ Vsafe) from which 2 has no
strategy to stay within Vsafe. Hence, 2 has a strategy σ2 to stay within Vsafe from all vertices
in which is s.t. σ2(v) 6∈ Attr(V \ Vsafe) (any successor of v satisfying this criterion yields a
safe strategy).

B Comparison with Relevant Scheduling Algorithms

Several works in the literature consider real-time scheduling of systems with both soft and
hard tasks. A prominent line of works among them is based on the notion of servers [10, 40] to
handle soft tasks. Algorithms for preemptive uniprocessor scheduling following this approach

http://dx.doi.org/10.1007/3-540-59042-0_57
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include Priority Exchange [40, 25], Sporadic Server [40, 38], Total Bandwidth Server [40],
Earliest Deadline Late (EDL) Server [11, 39, 40], Constant Bandwidth Server [1], etc. Their
performance are measured according to the responsiveness to each of the soft task requests
without compromising the schedulability of the hard tasks. The responsiveness is defined as
the difference between the time of completion of a request and the time of its arrival in the
system. However, those algorithms do not take into account a stochastic model of the tasks
as in our problem nor a notion of deadline and cost for the soft tasks. Hence they do not
provide solutions to the problem that we consider in this paper.

The algorithm EDL is known to be optimal for dynamic priority assignment [11]. An
EDL server algorithm is a dynamic slack-stealing algorithm in which the active periodic
tasks are processed as late as possible. The basic idea behind the EDL server is to use the
idle times of an EDL schedule to execute aperiodic requests (soft tasks) as soon as possible.
When there are no aperiodic activities in the system, periodic tasks are scheduled according
to the earliest deadline first (EDF) algorithm. An important property of EDL is that it
guarantees the maximum available idle time that is used for an optimal server mechanism
for soft aperiodic activities.

In order to evaluate the potential of those solutions for our problem, we consider the
following modified version of EDL:

The hard tasks are scheduled as late as possible following an EDF among the hard tasks,
without compromising their schedulability.
At every time, when a hard task is not scheduled, the active soft tasks are also scheduled
according to EDF.

The algorithm is preemptive as in the original setting.
The example below shows that in our setting, the ratio of the expected costs obtained

with the modified EDL and the the expected cost of the optimal strategy can be arbitrarily
large.

I Example 10. Consider a system with three tasks: one hard task h and two soft tasks s1
and s2. The hard task h has execution time, deadline and a period of 2, 3 and 3 respectively.
The execution time, deadline and period of s1 are 1, 3 and 3 respectively. For s2, the
execution time and the deadline are 1 and 2 respectively while the inter-arrival time is 3 with
probability 0.1 and 6 with probability 0.9. Let the cost of missing the deadline for an instance
of s1 and s2 be c1 and c2 respectively and let c2 > c1. The first instance of each of h and s1
arrives at time 0 while the first instance of s2 arrives at time 1. We divide the entire timeline
into blocks of 3 time units with consecutive odd and even blocks and the first block is an odd
block. In every even block, an instance of task s2 appears with probability 0.1 while in every
odd block excluding the first block, it appears with probability 0.9. Thus in the optimal
strategy, in every even block, s1 misses its deadline with probability 0.1 while in every odd
block it misses its deadline with probability 0.9. The optimal schedule prioritises scheduling
s2 over scheduling s1 since c2 > c1. A strategy that produces the minimum expected mean
cost thus has an associated cost proportional to 0.1 · c1 + 0.9 · c1 = c1.

The modified version of the EDL, on the other hand, in both odd and even blocks,
schedules the soft task s1. Thus with probability 0.1, an instance of the soft task s2 misses
its deadline in every even interval and with probability 0.9, it misses its deadline in every
odd interval and hence the minimum expected mean cost is proportional to c2.

As we increase c2, we see that the ratio of the costs obtained from using the modified
EDL and the optimal strategy cannot be bounded above.
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Note that the above example could be simplified by considering a Dirac distribution on
the inter-arrival time of task s2 that can be set to 3. However, the example above illustrates
the robustness of our approach in the sense that it can find an optimal schedule even when we
consider arbitrary probability distributions. The optimal schedule generated by our approach
indeed changes with the change in the distribution. We thus have the following proposition.

I Proposition 11. There exists a family of systems S in which the ratio of the expected mean
costs of missing the deadlines of the soft tasks by using the modified EDL and the optimal
strategy (as obtained by our algorithm) can be arbitrarily large.

Further, EDL suffers from the following problems. Although optimal with respect to the
finishing time of the soft tasks, it involves a heavy overload for the computation of the idle
times (slacks) that makes it less practical [10]. As seen in Proposition 11, since EDL does
not consider any cost associated to missing deadlines of the soft tasks, it is not optimal for
our setting. Furthermore, it does not take advantage of the information that is given by the
stochastic model of the tasks.

We also consider a simple adaptation of the EDF algorithm to schedule hard and soft
tasks to our setting that we call the two- stage EDF.

Two-stage EDF. The two-stage EDF is described as follows. Among the set of safe
strategies, first the hard tasks are scheduled by EDF strategy. Next the soft tasks are
scheduled by EDF strategy only when there does not exist an active hard task in the system.
We show that in the worst case, the two-stage EDF algorithm can be arbitrarily bad in terms
of the mean cost.

I Proposition 12. There exists a family of systems S in which the ratio of the expected
mean costs of missing the deadlines of the soft tasks by using the two-stage EDF algorithm
and the optimal strategy (as obtained by our algorithm) can be arbitrarily large.

Proof. Consider a deterministic system with one hard and one soft task. Let the execution
time, deadline and period of the hard task be 1, 2 and 2 respectively. The parameters for the
soft task are 1, 1 and 2 respectively. The first instance of both the hard and the soft task
arrives the system at time 0 and let the cost of missing the deadline for each job of the soft
task be 20. The two-phase EDF first schedules the hard task and thus for every instance
of the soft task, it misses the deadline. Since the period is 2, the expected mean cost for
missing the deadline for the soft task instances is 10.

On the other hand, the optimal schedule generated by our approach always schedules the
soft task before the hard task and hence the soft task always finishes execution before the
deadline and hence the mean cost is 0 and we are done. J

We also have an implementation of the two-stage-EDF and compare the time taken to
compute the mean-cost by our optimal algorithm and the two-stage EDF. Given a specific
schedule (two-stage EDF in our experiments) it corresponds to a fixed strategy of Scheduler,
and hence the state space of the MDP that is analysed by Storm to compute the expected
mean-cost for this particular strategy is usually only a small part entire state space of the
MDP that is given as an input to Storm. Computing the cost corresponding to an optimal
schedule giving the minimum expected mean-cost, on the other hand, requires Storm to find
the corresponding optimal strategy of Scheduler which involves exploring the entire state
space of this MDP.

In Table 4, |Soft| denotes the number of soft tasks, SEDF denotes the number of vertices
in the system that is analysed by Storm when we consider the two-stage EDF schedule and
TEDF is the time required to analyse the system for two-stage EDF and CEDF denotes the
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Table 4 Comparison between two-stage EDF and our optimal algorithm with different number
of soft tasks.

|Soft| SEDF SOP T TEDF TOP T CEDF COP T

1 1 71 230 0.03 0.03 0.18 0

2 2 876 5369 0.08 0.39 0.22 0.07

3 3 18273 150895 4.93 73.09 0.68 0.28

Table 5 Comparison between two-stage EDF and our optimal algorithm with different number
of hard tasks.

|Hard| SEDF SOP T TEDF TOP T CEDF COP T

1 1 109 560 0.04 0.05 0.07 0

2 2 810 8040 0.38 2.35 0.26 0

3 3 808 9626 0.93 6.08 0.24 0

mean-cost that we obtain for two-stage EDF. Similarly, we have SOPT , TOPT and COPT for
our optimal algorithm. The columns SOPT , TOPT and COPT are the same as Ssafe, T and
C in Table 2 and Table 3 respectively. In these experiments, all the parameters, that is, the
supports in the execution time distribution, the deadline and the supports in the inter-arrival
time distribution for every task have values less than or equal to 10.

In Table 5, the first column |Hard| denotes the number of hard tasks in the system. We
use one soft task. The trends of the results are similar to those in Table 4. The values of all
the parameters used in these experiments is less than or equal to 9.

Further, there have been several studies to analyse quality of service driven applications.
These studies use stochastic tools to analyse the execution times of different tasks and their
effects on the quality of service [15, 43, 18, 19, 5, 2, 32, 31, 33]. Those methods do not
propose synthesis techniques and consider that the scheduler preexists.

C Optimising the Storm input file with antichains

An example of a transition using concrete vertices is like the following. Here every state is
represented concretely. [hard2] is the task that is executed, that is, it corresponds to the
second hard task as specified in the input file.

[hard2] rct1_1=1 & d1=3 & p1_1=4 & p1_2=5 &
rct2_1=3 & rct2_2=5 & d2=5 & p2_1=6 & p2_2=7 ->
(rct1_1’=1) & (d1’=2) & (p1_1’=3) & (p1_2’=4) &
(rct2_1’=2) & (rct2_2’=4) & (d2’=4) & (p2_1’=5) & (p2_2’=6);

The variable [rct1_1] denotes the first element in the support of the rct distribution of task
τ1 when the elements of the support are arranged in an increasing order, while [rct2_1]
denotes the first element of the support in the rct distribution of task τ2 and so on. d1 is
the remaining deadline of task τ1, and d2 denotes the remaining deadline for task τ2. p1_1
and p1_2 respectively denote the first and the second elements in an increasing order in the
support of the remaining time before the arrival of the next job for task τ1. The part of
the transition on the left side of -> is the guard while the part on its right is the new state
reached. Note that in this particular example, we have only state that is reached following
the transition.
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A transition using symbolic states is the following.

[hard2] rct1_1>=0 & d1=3 & p1_1=4 & p1_2=5 & rct2_1>=2 &
rct2_2>=4 & d2=5 & p2_1=6 & p2_2=7 &
((rct1_1<=1 & rct2_1-1<=2 & rct2_2-1<=4) |
(rct1_1<=2 & rct2_1-1<=1 & rct2_2-1<=3)) ->
(rct1_1’=rct1_1) & (d1’=2) & (p1_1’=3) & (p1_2’=4) &
(rct2_1’=rct2_1-1) & (rct2_2’=rct2_2-1) & (d2’=4) & (p2_1’=5) & (p2_2’=6);

Note that in the rct distributions, we have inequalities instead of equalities and hence trans-
itions corresponding to several concrete states are represented by this. The part ((rct1_1<=1
& rct2_1-1<=2 & rct2_2-1<=4) | (rct1_1<=2 & rct2_1-1<=1 & rct2_2-1<=3)) de-
notes that the state reachable following the transition should be less difficult than at
least one of the two elements of the antichain. Each disjunct corresponds to a comparison
with an element of the antichain.
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