
The ∆-Framework
Furio Honsell
Dept. of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze,
206, 33100 Udine, Italy
furio.honsell@uniud.it

Luigi Liquori
Université Côte d’Azur, INRIA Sophia Antipolis – Méditerranée 2004 Route des Lucioles – BP
93 FR-06902 Sophia Antipolis, France
Luigi.Liquori@inria.fr

Claude Stolze
Université Côte d’Azur, INRIA Sophia Antipolis – Méditerranée 2004 Route des Lucioles – BP
93 FR-06902 Sophia Antipolis, France
Claude.Stolze@inria.fr

Ivan Scagnetto
Dept. of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze,
206, 33100 Udine, Italy
ivan.scagnetto@uniud.it

Abstract
We introduce the ∆-framework, LF∆, a dependent type theory based on the Edinburgh Logical
Framework LF, extended with the strong proof-functional connectives, i.e. strong intersection,
minimal relevant implication and strong union. Strong proof-functional connectives take into
account the shape of logical proofs, thus reflecting polymorphic features of proofs in formulæ.
This is in contrast to classical or intuitionistic connectives where the meaning of a compound
formula depends only on the truth value or the provability of its subformulæ. Our framework
encompasses a wide range of type disciplines. Moreover, since relevant implication permits to
express subtyping, LF∆ subsumes also Pfenning’s refinement types. We discuss the design de-
cisions which have led us to the formulation of LF∆, study its metatheory, and provide various
examples of applications. Our strong proof-functional type theory can be plugged in existing
common proof assistants.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Logic of programs, type theory, λ-calculus

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.37

1 Introduction

This paper provides a unifying framework for two hitherto unreconciled understandings of
types: i.e. types-as-predicates à la Curry and types-as-propositions (sets) à la Church. The
key to our unification consists in introducing strong proof-functional connectives [40, 3, 4]
in a dependent type theory such as the Edinburgh Logical Framework (LF) [22]. Both
Logical Frameworks and Proof-Functional Logics consider proofs as first class citizens, albeit
differently. Strong proof-functional connectives take seriously into account the shape of
logical proofs, thus allowing for polymorphic features of proofs to be made explicit in formulæ.
Hence they provide a finer semantics than classical/intuitionistic connectives, where the
meaning of a compound formula depends only on the truth value or the provability of its

© Furio Honsell, Luigi Liquori, Claude Stolze, and Ivan Scagnetto;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 37; pp. 37:1–37:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:furio.honsell@uniud.it
mailto:Luigi.Liquori@inria.fr
mailto:Claude.Stolze@inria.fr
mailto:ivan.scagnetto@uniud.it
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 The ∆-Framework

subformulæ. However, existing approaches to strong proof-functional connectives are all
quite idiosyncratic in mentioning proofs. Existing Logical Frameworks, on the other hand,
provide a uniform approach to proof terms in object logics, but they do not fully capitalize
on subtyping.

This situation calls for a natural combination of the two understandings of types, which
should benefit both worlds. On the side of Logical Frameworks, the expressive power of
the metalanguage would be enhanced thus allowing for shallower encodings of logics, a
more principled use of subtypes [37], and new possibilities for formal reasoning in existing
interactive theorem provers. On the side of type disciplines for programming languages, a
principled framework for proofs would be provided, thus supporting a uniform approach to
“proof reuse” practices based on type theory [38, 12, 20, 9, 6].

Therefore, in this paper, we extend LF with the connectives of strong intersection, strong
union, and minimal relevant implication of Proof-Functional Logics [40, 3, 4]. We call this
extension the ∆-framework (LF∆), since it builds on the ∆-calculus [31]. Moreover, we
illustrate by way of examples, that LF∆ subsumes many expressive type disciplines in the
literature [37, 3, 4, 38, 12].

It is not immediate to extend the judgments-as-type, Curry-Howard paradigm to logics
supporting strong proof-functional connectives, since these connectives need to compare the
shapes of derivations and do not just take into account the provability of propositions, i.e.
the inhabitation of the corresponding type. In order to capture successfully strong logical
connectives such as ∩ or ∪, we need to be able to express the rules:

D1 : A D2 : B D1 ≡ D2
A ∩B (∩I) D1 : A ⊃ C D2 : B ⊃ C A ∪B D1 ≡ D2

C
(∪E)

where ≡ is a suitable equivalence between logical proofs. Notice that the above rules suggest
immediately intriguing applications in polymorphic constructions, i.e. the same evidence can
be used as a proof for different statements. Pottinger [40] was the first to study the strong
connective ∩. He contrasted it to the intuitionistic connective ∧ as follows: “The intuitive
meaning of ∩ can be explained by saying that to assert A ∩ B is to assert that one has a
reason for asserting A which is also a reason for asserting B ... (while) ... to assert A ∧B
is to assert that one has a pair of reasons, the first of which is a reason for asserting A and
the second of which is a reason for asserting B”. A logical theorem involving intuitionistic
conjunction which does not hold for strong conjunction is (A ⊃ A)∧ (A ⊃ B ⊃ A), otherwise
there should exist a closed λ-term having simultaneously both one and two abstractions.
Lopez-Escobar [32] and Mints [35] investigated extensively logics featuring both strong and
intuitionistic connectives especially in the context of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following
Pottinger, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for
(A ∪B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives differ
since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪, otherwise
there would exist a term which behaves both as I and as K.

Following Barbanera and Martini [4], Minimal Relevant Implication, ⊃r, can be viewed
as a special case of implication whose related function space is the simplest possible one,
namely the one containing only the identity function. The operators ⊃ and ⊃r differ, since
A ⊃r B ⊃r A is not derivable. Relevant implication allows for a natural introduction of
subtyping, in that A ⊃r B morally means A 6 B. Relevant implication amounts to a notion
of “proof-reuse”. Combining the remarks in [4, 3], minimal relevant implication, strong

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:3

B `M : σ B `M : τ
B `M : σ ∩ τ (∩I) B `M : σ ∩ τ

B `M : σ (∩Ei) B `M : σ ∩ τ
B `M : τ (∩Er)

B `M : σ
B `M : σ ∪ τ (∪Il) B `M : τ

B `M : σ ∪ τ (∪Ir)

B, x:σ `M : ρ B, x:τ `M : ρ B ` N : σ ∪ τ
B `M [N/x] : ρ

(∪E) B `M : σ σ ≤ τ
B `M : τ (Sub)

x:σ ∈ B
B ` x : σ (V ar) B `M : σ → τ B ` N : σ

B `M N : τ (App) B, x:σ `M : τ
B ` λx.M : σ → τ

(Abs)

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 ω (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) ω 6 ω → ω

(7) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 (14) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 1 The type assignment system B of [3] and the subtype theory Ξ.

intersection and strong union correspond respectively to the implication, conjunction and
disjunction operators of Meyer and Routley’s Minimal Relevant Logic B+ [34]1.

Strong connectives arise naturally in investigating the propositions-as-types analogy for
intersection and union type assignment systems. Intersection types were introduced by Coppo,
Dezani et al. in the late 70’s [13, 15, 16, 5] to support a form of ad hoc polymorphism, for
untyped λ-calculi, à la Curry. Intersection types were used originally as an (undecidable) type
assignment system for pure λ-calculi, i.e. for finitary descriptions of denotational semantics
[14]. This line of research was later explored by Abramsky [1] in a full-fledged Stone duality.
Union types were introduced semantically, by MacQueen, Plotkin, and Sethi [33, 3]. In [3]
strong intersection, union and subtyping were thoroughly studied in the context of type-
assignment systems, see Figure 1. A classical example of the expressiveness of union types is
due to Pierce [38]: without union types, the best information we can get for (Is_0Test) is a
boolean type.

Test def= if b then 1 else−1 : Pos ∪Neg
Is_0 : (Neg → F) ∩ (Zero→ T) ∩ (Pos→ F)

(Is_0 Test) : F

1 A terminological comment is in order. We refer to (⊃r) as “relevant implication” in order to be faithful
to the original logical literature, since this constructor satisfies the logical properties of implication in
the minimal relevant logical system introduced in [34]. And precisely in this sense it was used later in
[4]. This use of the word “relevant” is therefore considerably stronger than, but not totally unrelated to,
the one arising in the context of λI−calculus and linear logic, where it expresses the requirement that
the variable “is used at least once” in the function, in contrast to affine “at most one use” and linear
“exactly one use”.

FSTTCS 2018

37:4 The ∆-Framework

x:σ ` x:σ (Var)

` λx:σ.x:σ → σ
(→I) x:τ ` x:τ (Var)

` λx:τ .x:τ → τ
(→I)

` λx:???.x:(σ → σ) ∩ (τ → τ)
(∩I)

Figure 2 Polymorphic identity.

Designing a λ-calculus à la Church with intersection and union types is problematic. The
usual approach of simply adding types to binders does not work, as shown in Figure 2. Same
difficulties can be found with union types. Intersection and union type disciplines started to
be investigated in a explicitly typed programming language settings à la Church, much later
by Reynolds and Pierce [41, 38], Wells et al. [48, 49], Liquori et al. [29, 18], Frisch et al. [21]
and Dunfield [19]. From a logical point of view, there are many proposals to find a suitable
logics to fit intersection: among them we cite [35, 37, 47, 42, 36, 11, 10, 39].

The LF∆, introduced in this paper extends [31] with union types, dependent types and
minimal relevant implication. The novelty of LF∆ in the context of Logical Frameworks, lies
in the full-fledged use of strong proof-functional connectives, which to our knowledge has
never been explored before. Clearly, all ∆-terms have a computational counterpart.

Pfenning’s work on Refinement Types [37] pioneered an extension of the Edinburgh
Logical Framework with subtyping and intersection types. His approach capitalises on a
tame and essentially ad hoc notion of subtyping, but the logical strength of that system
does not go beyond the LF (i.e. simple types). The logical power of LF∆ allows to type all
strongly normalizing terms. Furthermore, subtyping in LF∆ arises naturally as a derived
notion from the more fundamental concept of minimal relevant implication, as illustrated in
Section 2.

Miquel [36] discusses an extension of the Calculus of Constructions with implicit typing,
which subsumes a kind of proof-functional intersection. His approach has opposite motivations
to ours. While LF∆ provides a Church-style version of Curry-style type assignment systems,
Miquel’s Implicit Calculus of Constructions encompasses some features of Curry-style systems
in an otherwise Church-style Calculus of Constructions. In LF∆ we can discuss also ad
hoc polymorphism, while in the Implicit Calculus only structural polymorphism is encoded.
Indeed, he cannot assign the type ((σ ∩ τ) → σ) ∩ (ρ → ρ)) to the identity λx.x [28].
Kopylov [27] adds a dependent intersection type constructor x:A ∩B[x] to NuPRL, allowing
the resulting system to support dependent records (which are a very useful data structure to
encode mathematics). The implicit product-type of Miquel, together with the dependent
intersection type of Kopylov, and a suitable equality-type is used by Stump [46] to enrich
the impredicative second-order system λP2, in order to derive induction.

In order to achieve our goals, we could have carried out simply the encoding of LF∆ in
LF. But, due to the side-conditions characterizing proof-functional connectives, this would
have be achieved only through a deep encoding. As an example of this, in Figure 8, we give
an encoding of a subsystem of [3], where subtyping has been simulated using relevant arrows.
This encoding illustrates the expressive power of LF in treating proofs as first-class citizens,
and it was also a source of inspiration for LF∆.

All the examples discussed in this paper have been checked by an experimental proof
development environment for LF∆ [45] (see Bull and Bull-Subtyping in [44]).

Synopsis. In Section 2, we introduce LF∆ and outline its metatheory, together with a
discussion of the main design decisions. In Section 3, we provide the motivating examples.
In Section 4, we outline the details of the implementation and future work.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:5

Kinds
K ::= Type | Πx:σ.K as in LF

Families
σ, τ ::= a | Πx:σ.τ | σ∆ | as in LF

σ →r τ | relevant family
σ ∩ τ | intersection family
σ ∪ τ union family

Objects
∆ ::= c | x | λx:σ.∆ | ∆ ∆ | as in LF

λrx:σ.∆ | relevant abstraction
∆ r ∆ | relevant application
〈∆ , ∆〉 | intersection objects
[∆ , ∆] | union objects
prl ∆ | prr ∆ | projections objects
inσl ∆ | inσr ∆ injections objects

Figure 3 The syntax of the ∆-framework.

o 〈∆1 , ∆2〉 o
def= o∆1 o

oλrx:σ.∆ o def= λx.o∆ o

oλx:σ.∆ o def= λx.o∆ o

o [∆1 , ∆2] o def= o∆1 o

o∆1 ∆2 o
def= o∆1 o o∆2 o

o∆1 r ∆2 o
def= o∆2 o

o pri ∆ o def= o∆ o

o ini ∆ o def= o∆ o

o c o def= c

ox o def= x

Figure 4 The essence function.

2 The ∆-framework: LF with proof-functional operators

The syntax of LF∆ pseudo-terms is given in Figure 3. For the sake of simplicity, we suppose
that α-convertible terms are equal. Signatures and contexts are defined as finite sequence of
declarations, like in LF. Observe that we could formulate LF∆ in the style of [23], using only
canonical forms and without reductions, but we prefer to use the standard LF format to
support better intuition. There are three proof-functional objects, namely strong conjunction
(typed with σ ∩ τ) with two corresponding projections, strong disjunction (typed with σ ∪ τ)
with two corresponding injections, and strong (or relevant) λ-abstraction (typed with →r).
Indeed, a relevant implication is not a dependent one because the essence of the inhabitants
of type σ →r τ is essentially the identity function as enforced in the typing rules. Note that
injections ini need to be decorated with the injected type σ in order to ensure the unicity of
typing.

We need to generalize the notion of essence, introduced in [17, 30] to syntactically connect
pure λ-terms (denoted by M) and type annotated LF∆ terms (denoted by ∆). The essence
function compositionally erases all type annotations, see Figure 4.

One could argue that the choice of ∆1 in the definition of strong pairs/co-pairs is arbitrary
and could have been replaced with ∆2: however, the typing rules will ensure that, if 〈∆1 , ∆2〉
(resp. [∆1 , ∆2]) is typable, then we have that o∆1 o =η o∆2 o. Thus, strong pairs/co-pairs
are constrained. The rule for the essence of a relevant application is justified by the fact that
the operator amounts to just a type decoration.

The six basic reductions for LF∆ objects appear on the left in Figure 5. Congruence
rules are as usual, except for the two cases dealing with pairs and co-pairs which appear on
the right of Figure 5. Here redexes need to be reduced “in parallel” in order to preserve
identity of essences in the components. We denote by =∆ the symmetric, reflexive, and
transitive closure of →∆, i.e. the compatible closure of the reduction induced by the first six

FSTTCS 2018

37:6 The ∆-Framework

(λx:σ.∆1) ∆2 −→β ∆1[∆2/x]

prl 〈∆1 , ∆2〉 −→prl ∆1

prr 〈∆1 , ∆2〉 −→prr ∆2

[∆1 , ∆2] inσl ∆3 −→inl ∆1 ∆3

[∆1 , ∆2] inσr ∆3 −→inr ∆2 ∆3

(λrx:σ.∆1) r ∆2 −→βr ∆1[∆2/x]

∆1 →∆ ∆′
1 ∆2 →∆ ∆′

2 o∆′
1 o ≡ o∆′

2 o
〈∆1 , ∆2〉 →∆ 〈∆′

1 , ∆′
2〉

(Congr∩)

∆1 →∆ ∆′
1 ∆2 →∆ ∆′

2 o∆′
1 o ≡ o∆′

2 o
[∆1 , ∆2]→∆ [∆′

1 , ∆′
2]

(Congr∪)

Figure 5 The reduction semantics.

rules on the left in Figure 5, with the addition of the last two congruence rules in the same
figure. In order to make this definition truly functional as well as to be able to prove a simple
subject reduction result, we need to constrain pairs and co-pairs, i.e. objects of the form
〈∆i , ∆j〉 and [∆i , ∆j] to have congruent components up-to erasure of type annotations.
This is achieved by imposing o∆i o ≡ o∆j o in both constructs. We will therefore assume
that such pairs and co-pairs are simply not well defined terms, if the components have a
different “infrastructure”. The effects of this choice are reflected in the congruence rules in
the reduction relation, in order to ensure that reductions can only be carried out in parallel
along the two components.

The restriction on reductions in pairs/co-pairs and the new constructs do not cause any
problems in showing that →∆ is locally confluent:

I Theorem 1 (Local confluence).
The reduction relation on well-formed LF∆-terms is locally confluent.

The extended type theory LF∆ is a formal system for deriving judgements of the forms:

` Σ Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ ∆ : σ ∆ has type σ in Γ and Σ

The set of rules for object formation is defined in Figure 6, while the sets of rules for
signatures, contexts, kinds and families are defined as usual in the Appendix: all typing rules
are syntax-directed. Note that proof-functionality is enforced by the essence side-conditions
in rules (→rI), (∩I), and (∪E). In the rule (Conv) we rely on the external notion of equality
=∆. An option could have be to add an internal notion of equality directly in the type
system (Γ `Σ σ =∆ τ), and prove that the external and the internal definitions of equality
are equivalent, as was proved for semi-full Pure Type Systems [43]. Yet another possibility
could be to compare type essences oσ o =∆ o τ o, for a suitable extension of essence to types
and kinds. Unfortunately, this would lead to undecidability of type checking, in connection
with relevant implication, as the following example shows. Consider two constants c1 of type
σ →r (Πy:σ.σ) and c2 of type (Πy:σ.σ)→r σ: the following ∆-term is typable with σ and its
essence is Ω.

∆Ω
def= (λx:σ.c1 r xx) (c2 r (λx:σ.c1 r xx)) o∆Ω o = Ω

Since the intended meaning of relevant implication is “essentially” the identity, introducing
variables or constants whose type is a relevant implication, amounts to assuming axioms

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:7

Valid Objects

`Σ Γ c:σ ∈ Σ
Γ `Σ c : σ (Const) `Σ Γ x:σ ∈ Γ

Γ `Σ x : σ (Var)

Γ, x:σ `Σ ∆ : τ
Γ `Σ λx:σ.∆ : Πx:σ.τ (ΠI) Γ `Σ ∆1 : Πx:σ.τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 ∆2 : τ [∆2/x]
(ΠE)

Γ, x:σ `Σ ∆ : τ o∆ o =η x

Γ `Σ λrx:σ.∆ : σ →r τ
(→rI) Γ `Σ ∆1 : σ →r τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 r ∆2 : τ (ΠrE)

Γ `Σ ∆1 : σ Γ `Σ ∆2 : τ o∆1 o =η o∆2 o
Γ `Σ 〈∆1 , ∆2〉 : σ ∩ τ

(∩I) Γ `Σ ∆ : σ ∩ τ
Γ `Σ prl ∆ : σ (∩El)

Γ `Σ ∆ : σ ∩ τ
Γ `Σ prr ∆ : τ (∩Er)

Γ `Σ ∆ : σ Γ `Σ σ ∪ τ : Type
Γ `Σ inτl ∆ : σ ∪ τ (∪Il)

Γ `Σ ∆ : τ Γ `Σ σ ∪ τ : Type
Γ `Σ inσr ∆ : σ ∪ τ (∪Ir)

Γ `Σ ∆1 : Πy:σ.ρ[inτl y/x] o∆1 o =η o∆2 o
Γ `Σ ∆2 : Πy:τ.ρ[inσr y/x] Γ, x:σ ∪ τ `Σ ρ : Type

Γ `Σ [∆1 , ∆2] : Πx:σ ∪ τ.ρ
(∪E)

Γ `Σ ∆ : σ
Γ `Σ τ : Type σ =∆ τ

Γ `Σ ∆ : τ (Conv)

Figure 6 The type rules for valid objects.

corresponding to type inclusions such as those that equate σ and σ → σ. As a consequence,
β-equality of essences becomes undecidable. Thus, we rule out such options in relating
relevant implications in LF∆ to subtypes in the type assignment system B of [3].

2.1 Relating LF∆ to B
We compare and contrast certain design decisions of LF∆ to the type assignment system B
of [3]. The proof of strong normalization for LF∆ will rely, in fact, on a forgetful mapping
from LF∆ to B. As pointed out in [3], the elimination rule for union types in B breaks
subject reduction for one-step β-reduction, but this can be recovered using a suitable parallel
β-reduction. The well-known counter-example for one-step reduction, due to Pierce is

x ((I y) z) ((I y) z) −→β

1β x (y z) ((I y) z) %β

%β x ((I y) z) (y z) 1β
x (y z) (y z),

where I is the identity. In the typing context B def= x:(σ1 → σ1 → τ) ∩ (σ2 → σ2 → τ), y:ρ→
(σ1 ∪ σ2), z:ρ, the first and the last terms can be typed with τ , while the terms in the fork
cannot. The reason is that the subject in the conclusion of the (∪E) rule uses a context
which can have more than one hole, as in the present case2. In LF∆, the formulation of the
(∪E) rule takes a different route which does not trigger the counterexample. Indeed, we have
introduction and elimination constructs inl , inr and [,] which allow to reduce the term

2 The problem would not arise if (∪E) is replaced by the rule schema
B, x1:σ, . . . , xn:σ `M : ρ B, x1:τ, . . . , xn:τ `M : ρ B ` Ni : σ ∪ τ Ni =β Nj i, j = 1 . . . n

B `M [N1/x1 . . . Nn/xn] : ρ
(∪E′)

Removing the non-static clause on the Ni’s would yield a more permissive type system than B.

FSTTCS 2018

37:8 The ∆-Framework

only if we know that the argument, stripped of the introduction construct, has one of the
types of the disjunction. Pierce’s critical term can be expressed and typed in LF∆ with the
following judgment (the full derivation is in the Appendix):

Γ `Σ [(λx1:σ1.(prl x)x1 x1)︸ ︷︷ ︸
∆1

, (λx2:σ2.(prr x)x2 x2)︸ ︷︷ ︸
∆2

] ((λx3:ρ→ σ1 ∪ σ2.x3)︸ ︷︷ ︸
∆3

y z) : τ

where Γ def= x:(Πx1:σ1.Πx2:σ1.τ) ∩ (Πx1:σ2.Πx2:σ2.τ), y:ρ→ σ1 ∪ σ2, z:ρ, and Σ def= τ :Type.
Notice that there is only one redex, namely ∆3 y, and the reduction of this redex leads to
[∆1,∆2] (y z), and no other intermediate (untypable) ∆-terms are possible.

The following result will be useful in the following section.

I Theorem 2. The system B without ω gives types only to strongly normalizing terms.

A proof is embedded in Theorem 4.8 of [3]. It can also be obtained using the general
computability method presented in [25] Section 4, by interpreting intersection and union
types precisely as intersections and unions in the lattice of computability sets.

2.2 LF∆ metatheory
LF∆ can play the role of a Logical Framework only if decidable. Due to the lack of space,
we list here only the main results: the complete list appears in the Appendix. The first
important step states that if a ∆-term is typable, then its type is unique up to =∆.

I Theorem 3 (Unicity of types and kinds).
1. If Γ `Σ ∆ : σ and Γ `Σ ∆ : τ , then σ =∆ τ .
2. If Γ `Σ σ : K and Γ `Σ σ : K ′, then K =∆ K ′.

Strong normalization is proved as in LF. First we encode LF∆-terms into terms of the type
assignment system B such that redexes in the source language correspond to redexes in the
target language and we use Theorem 2. Then, we introduce two forgetful mappings, namely
|| · || and | · |, defined in Figure 11 of the Appendix, to erase dependencies in types and to drop
proof-functional constructors in ∆-terms and we conclude. Special care is needed in dealing
with redexes occurring in type-dependencies, because these need to be flattened at the level
of terms.

I Theorem 4 (Strong normalization).
1. LF∆ is strongly normalizing, i.e.,

a. If Γ `Σ K, then K is strongly normalizing.
b. If Γ `Σ σ : K, then σ is strongly normalizing.
c. If Γ `Σ ∆ : σ, then ∆ is strongly normalizing.

2. Every strongly normalizing pure λ-term can be annotated so as to be the essence of a
∆-term.

Local confluence and strong normalization entail confluence, so we have

I Theorem 5 (Confluence). LF∆ is confluent, i.e.:
1. If K1 −→∗∆ K2 and K1 −→∗∆ K3, then ∃K4 such that K2 −→∗∆ K4 and K3 −→∗∆ K4.
2. If σ1 −→∗∆ σ2 and σ1 −→∗∆ σ3, then ∃σ4 such that σ2 −→∗∆ σ4 and σ3 −→∗∆ σ4.
3. If ∆1 −→∗∆ ∆2 and ∆1 −→∗∆ ∆3, then ∃∆4 such that ∆2 −→∗∆ ∆4 and ∆3 −→∗∆ ∆4.
Then, we have subject reduction, whose proof relies on technical lemmas about inversion
and subderivation properties (see Appendix).

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:9

I Theorem 6 (Subject reduction of LF∆).
1. If Γ `Σ K and K →∆ K ′, then Γ `Σ K ′.
2. If Γ `Σ σ : K and σ →∆ σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ ∆ : σ and ∆→∆ ∆′, then Γ `Σ ∆′ : σ.

Finally, we define a possible algorithm for checking judgements in LF∆ by computing
a type or a kind for a term, and then testing for definitional equality, i.e. =∆, against the
given type or kind. This is achieved by reducing both to their unique normal forms and
checking that they are identical up to α-conversion. Therefore we finally have:

I Theorem 7 (Decidability). All the type judgments of LF∆ are recursively decidable.

Minimal Relevant Implications and Type Inclusion. Type inclusion and the rules of sub-
typing are related to the notion of minimal relevant implication, see [4, 17]. The insight is
quite subtle, but ultimately very simple. This is what makes it appealing. The apparently
intricate rules of subtyping and type inclusion, which occur in many systems, and might even
appear ad hoc at times, can all be explained away in our principled approach, by proving that
the relevant implication type is inhabited by a term whose essence is essentially a variable.

In the following theorem we show how relevant implication subsumes the type-inclusion
rules of the theory Ξ of [3], without rules (5) and (13) (dealing with ω) and rule (10)
(distributing ∩ over ∪) in Figure 1: we call Ξ′ such restricted subtype theory. Note that
the reason to drop subtype rule (10) is due to the fact that we cannot inhabit the type
σ ∩ (τ ∪ ρ)→r (σ ∩ τ) ∪ (σ ∩ ρ)3.

I Theorem 8 (Type Inclusion). The judgement 〈〉 `Σ ∆ : σ →r τ (where both σ and τ do not
contain dependencies or relevant families) holds iff σ ≤ τ holds in the subtype theory Ξ′ of B
enriched with new axioms of the form σ1 ≤ σ2 for each constant c : σ1 →r σ2 ∈ Σ.

As far as the λΠ& system of Refinement Types introduced by Pfenning in [37], we have the
following theorem:

I Corollary 9 (Pfenning’s Refinement Types). The judgment `Σ σ ≤ τ in λΠ& can be encoded
in LF∆ by adding a constant of type σ →r τ to Σ′, where the latter is the signature obtained
from Σ by replacing each clause of the form a1 :: a2 or a1 ≤ a2 in Σ by a constant of type
a1 →r a2.

Moreover, while Pfenning needs to add explicitly the rules of subtyping (i.e. the theory of ≤)
in λΠ&, we inherit them naturally in LF∆ from the rules for minimal relevant implication.

3 Examples

As we have argued in the previous sections, the point of this paper is a uniform and
principled approach to the encoding of a plethora of type disciplines and systems which
ultimately stem or can capitalize from strong proof-functional connectives and subtyping.

3 To encompass also the subtype rule (10) of the type theory Ξ, besides adding a special constant, we can
strengthen the form of the (∪E) type rule as follows:

Γ `Σ ∆1 : Πy:χ ∩ σ.ρ 〈prl y , in
τ
l prr y〉 o∆1 o =η o∆2 o

Γ `Σ ∆2 : Πy:χ ∩ τ.ρ 〈prl y , in
σ
r prr y〉 Γ `Σ ρ : Πy:χ ∩ (σ ∪ τ).Type

Γ `Σ [∆1 , ∆2] : Πx:χ ∩ (σ ∪ τ).ρ x
(∪E)

Similarly we can treat the remaining rules of the type theory Π in [3].

FSTTCS 2018

37:10 The ∆-Framework

Atomic propositions, non-atomic goals and non-atomic programs: α, γ0, π0 : Type
Goals and programs: γ = α ∪ γ0 π = α ∪ π0

Constructors (implication, conjunction, disjunction).
impl : (π → γ → γ0) ∩ (γ → π → π0)

impl1 = λx:π.λy:γ.inαr (prl impl x y) impl2 = λx:γ.λy:π.inαr (prr impl x y)
and : (γ → γ → γ0) ∩ (π → π → π0)

and1 = λx:γ.λy:γ.inαr (prl and x y) and2 = λx:π.λy:π.inαr (prr and x y)
or : (γ → γ → γ0) or1 = λx:γ.λy:γ.inαr (or x y)

solve p g indicates that the judgment p ` g is valid.
bchain p a g indicates that, if p ` g is valid, then p ` a is valid.
solve : π → γ → Type bchain : π → α→ γ → Type
Rules for solve:
− : Π(p:π)(g1,g2:γ)solve p g1 → solve p g2 → solve p (and1 g1 g2)
− : Π(p:π)(g1,g2:γ)solve p g1 → solve p (or1 g1 g2)
− : Π(p:π)(g1,g2:γ)solve p g2 → solve p (or1 g1 g2)
− : Π(p1,p2:π)(g:γ)solve (and2 p1 p2) g → solve p1 (impl1 p2 g)
− : Π(p:π)(a:α)(g:γ)bchain p a g → solve p g → solve p (inγ0

l a)
Rules for bchain:
− : Π(a:α)(g:γ)bchain (impl2 g (inl π0a)) a g
− : Π(p1,p2:π)(a:α)(g:γ)bchain p1 a g → bchain (and2 p1 p2) a g
− : Π(p1,p2:π)(a:α)(g:γ)bchain p2 a g → bchain (and2 p1 p2) a g
− : Π(p:π)(a:α)(g,g1,g2:γ)bchain (impl2 (and1 g1 g2) p) a g → bchain (impl2 g1 (impl2 g2 p)) a g
− : Π(p1,p2:π)(a:α)(g,g1:γ)bchain (impl2 g1 p1) a g → bchain (impl2 g1 (and2 p1 p2)) a g
− : Π(p1,p2:π)(a:α)(g,g1:γ), bchain (impl2 g1 p2) a g → bchain (impl2 g1 (and2 p1 p2)) a g

Figure 7 The LF∆ encoding of Hereditary Harrop Formulæ.

The framework LF∆, presented in this paper, is the first to accommodate all the examples
and counterexamples that have appeared in the literature. The complete developments of
both the implementation of the ∆-framework and example encodings can be found in [44].

We start the section showing the expressive power of LF∆ in encoding classical features
of typing disciplines with strong intersection and union.

Auto application. The judgement `B λx.x x : σ ∩ (σ → τ) → τ in B, is rendered in LF∆
by the LF∆-judgement `Σ λx:σ ∩ (σ → τ).(prr x) (prl x) : σ ∩ (σ → τ)→ τ .

Polymorphic identity. The judgement `B λx.x : (σ → σ) ∩ (τ → τ) in B, is rendered in
LF∆ by the judgement `〈〉 〈λx:σ.x , λx:τ.x〉 : (σ → σ) ∩ (τ → τ).

Commutativity of union. The judgement λx.x : (σ ∪ τ)→ (τ ∪ σ) in B is rendered in LF∆
by the judgement λx:σ∪τ.[λy:σ.inτr y , λy:τ.inσl y]x : (σ ∪ τ)→ (τ ∪ σ).

Pierce’s expression of page 2. The expressive power of union types highlighted by Pierce
is rendered in LF∆ by

Neg : Type Zero : Type Pos : Type T : Type F : Type Test : Pos ∪Neg
Is_0 : (Neg → F) ∩ (Zero→ T) ∩ (Pos→ F)

Is_0_Test def= [λx:Neg.(prl prl Is_0)x , λx:Pos.(prr Is_0)x]Test

The above example illustrates the advantages of taking LF∆ as a framework. In LF we would
render it only encoding B deeply, ending up with the verbose code in pierce_program.v [44].

https://github.com/cstolze/Bull/blob/master/coq_encodings/pierce_program.v

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:11

Hereditary Harrop Formulæ. The encoding of Hereditary Harrop’s Formulæ is one of the
motivating examples given by Pfenning for introducing refinement types in [37]. In LF∆ it
can be expressed as in Figure 7 and type checked in the environment [45] using our concrete
syntax (file pfenning_harrop.bull [44]), without any reference to intersection types, by a
subtle use of union types. We add also rules for solving and backchaining. Hereditary Harrop
formulæ can be recursively defined using two mutually recursive syntactical objects called
programs (π) and goals (γ):

γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ π := α | π ∧ π | γ ⇒ π

Using Corollary 9, we can provide an alternative encoding of atoms, goals and programs
which is more faithful to the one by Pfenning. Namely, we can introduce in the signature
the constants c1 : α→r γ and c2 : α→r π in order to represent the axioms atom ≤ goal and
atom ≤ prog in Pfenning’s encoding. Our approach based on union types, while retaining
the same expressivity permits to shortcut certain inclusions and to rule out also certain
exotic goals and exotic programs. Indeed, for the purpose of establishing the adequacy of the
encoding, it is sufficient to avoid variables involving union types in the derivation contexts.

Natural Deductions in Normal Form. The second motivating example for intersection
types given in [37] is natural deductions in normal form. We recall that a natural deduction
is in normal form if there are no applications of elimination rules of a logical connective
immediately following their corresponding introduction, in the main branch of a subderivation.

The encoding we give in LF∆ is a slightly improved version of the one in [37]: as Pfenning,
we restrict to the purely implicational fragment.

o : Type ⊃: o→ o→ o Elim,Nf0 : o→ Type
Nf ≡ ΠA:o.Nf0(A) ∪ Elim(A)
⊃I : ΠA,B:o.(Elim(A)→ Nf(B))→ Nf0(A ⊃ B)
⊃E : ΠA,B:o.Elim(A ⊃ B)→ Nf0(A)→ Elim(B).

As in the previous example, we use union types to define normal forms (Nf(A)) either as
pure elimination-deductions from hypotheses (Elim(A)) or normal form-deductions (Nf0(A)).
As above we could have used also intersection types. This example is interesting in itself,
being the prototype of the encoding of type systems using canonical and atomic syntactic
categories [23] and also of Fitch Set Theory [26].

Adequacy, Canonical Forms, Exotic terms. In the presence of union types, we have to
pay special attention to the exact formulation of Adequacy Theorems, as in the Harrop’s
formulæ example above. Otherwise exotic terms arise, such as [λx:σ.C(x) , λx:τ.D(x)] y,
where C(·) and D(·) are distinct contexts (i.e. terms with holes), which cannot be naturally
simplified even if oC o ≡ oD o. More work needs to be done to streamline how to exclude, or
even capitalize on exotic terms.

Metacircular Encodings. The following diagram summarizes the network of adequate
encodings/inclusions between LF∆, LF, and B that can be defined.

LF sh +3 LF∆
dp +3 LF

B

sh

8@

dp +3 LF
?�

OO

FSTTCS 2018

https://github.com/cstolze/Bull/blob/master/bull/pfenning_harrop.bull

37:12 The ∆-Framework

(* Define our types *)
Axiom o : Set.
(* Axiom omegatype : o. *)
Axioms (arrow inter union : o → o → o).

(* Transform our types into LF types *)
Axiom OK : o → Set.

(* Define the essence equality as an equivalence relation *)
Axiom Eq : forall (s t : o), OK s → OK t → Prop.
Axiom Eqrefl : forall (s : o) (M : OK s), Eq s s M M.
Axiom Eqsymm : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N → Eq t s N M.
Axiom Eqtrans : forall (s t u : o) (M : OK s) (N : OK t) (O : OK u), Eq s t M N → Eq t u N O → Eq s u M O.

(* constructors for arrow (→ I and → E) *)
Axiom Abst : forall (s t : o), ((OK s) → (OK t)) → OK (arrow s t).
Axiom App : forall (s t : o), OK (arrow s t) → OK s → OK t.

(* constructors for intersection *)
Axiom Proj_l : forall (s t : o), OK (inter s t) → OK s.
Axiom Proj_r : forall (s t : o), OK (inter s t) → OK t.
Axiom Pair : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N → OK (inter s t).

(* constructors for union *)
Axiom Inj_l : forall (s t : o), OK s → OK (union s t).
Axiom Inj_r : forall (s t : o), OK t → OK (union s t).
Axiom Copair : forall (s t u : o) (X : OK (arrow s u)) (Y : OK (arrow t u)), OK (union s t) →
Eq (arrow s u) (arrow t u) X Y → OK u.

(* define equality wrt arrow constructors *)
Axiom Eqabst : forall (s t s’ t’ : o) (M : OK s → OK t) (N : OK s’ → OK t’),
(forall (x : OK s) (y : OK s’), Eq s s’ x y → Eq t t’ (M x) (N y)) →
Eq (arrow s t) (arrow s’ t’) (Abst s t M) (Abst s’ t’ N).

Axiom Eqapp : forall (s t s’ t’ : o) (M : OK (arrow s t)) (N : OK s) (M’ : OK (arrow s’ t’)) (N’ : OK s’),
Eq (arrow s t) (arrow s’ t’) M M’ → Eq s s’ N N’ → Eq t t’ (App s t M N) (App s’ t’ M’ N’).

(* define equality wrt intersection constructors *)
Axiom Eqpair : forall (s t : o) (M : OK s) (N : OK t) (pf : Eq s t M N), Eq (inter s t) s (Pair s t M N pf) M.
Axiom Eqproj_l : forall (s t : o) (M : OK (inter s t)), Eq (inter s t) s M (Proj_l s t M).
Axiom Eqproj_r : forall (s t : o) (M : OK (inter s t)), Eq (inter s t) t M (Proj_r s t M).

(* define equality wrt union *)
Axiom Eqinj_l : forall (s t : o) (M : OK s), Eq (union s t) s (Inj_l s t M) M.
Axiom Eqinj_r : forall (s t : o) (M : OK t), Eq (union s t) t (Inj_r s t M) M.
Axiom Eqcopair : forall (s t u : o) (M : OK (arrow s u)) (N : OK (arrow t u)) (O : OK (union s t))
(pf: Eq (arrow s u) (arrow t u) M N) (x : OK s),
Eq s (union s t) x O → Eq u u (App s u M x) (Copair s t u M N O pf).

Figure 8 The LF encoding of B (Coq syntax).

We denote by S1 =⇒ S2 the encoding of system S1 in system S2, where the label sh (resp.
dp), denotes a shallow (resp. deep) embedding. The notation S1 ↪→ S2 denotes that S2 is an
extension of S1. Due to lack of space, but with the intention of providing a better formal
understanding of the semantics of strong intersection and union types in a logical framework,
we provide in Figure 8 a deep LF encoding of a presentation of B à la Church [17]. A shallow
encoding of B in LF∆ (file intersection_union.bull [44]) can be mechanically type checked in
the environment [45]. A shallow encoding of LF in LF∆ (file lf.bull) making essential use of
intersection types can be also type checked.

LF encoding of B. Figure 8 presents a pure LF encoding of a presentation of B à la Church
in Coq syntax using HOAS. We use HOAS in order to take advantage of the higher-order
features of the frameworks: other abstract syntax representation techniques would not be
much different, but more verbose. The Eq predicate plays the same role of the essence
function in LF∆, namely, it encodes the judgement that two proofs (i.e. two terms of type
(OK _)) have the same structure. This is crucial in the Pair axiom (i.e. the introduction

https://github.com/cstolze/Bull/blob/master/bull/intersection_union.bull
https://github.com/cstolze/Bull/blob/master/bull/lf.bull

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:13

rule of the intersection type constructor) where we can inhabit the type (inter s t) only
when the proofs of its component types s and t share the same structure (i.e. we have a
witness of type (Eq s t M N), where M has type (OK s) and N has type (OK t)). A similar
role is played by the Eq premise in the Copair axiom (i.e. the elimination rule of the union
type constructor). We have an Eq axiom for each proof rule. Examples of this encoding can
be found in intersection_union.v [44].

4 Implementation and Future Work

In a previous paper [45], we have implemented in OCaml suitable algorithms for type
reconstruction, as well as type checking. In [30] we have implemented the subtyping algorithm
which extends the well-known Hindley algorithm for intersection types [24] with union types.
The subtyping algorithm has been mechanically proved correct in Coq, extending the Bessai’s
mechanized proof of a subtyping algorithm for intersection types [8].

A Read-Eval-Print-Loop allows to define axioms and definitions, and performs some basic
terminal-style features like error pretty-printing, subexpressions highlighting, and file loading.
Moreover, it can type-check a proof or normalize it, using a strong reduction evaluator. We
use the syntax of Pure Type Systems [7] to improve the compactness and the modularity of
the kernel. Binders are implemented using de Brujin indexes. We implemented the conversion
rule in the simplest way possible: when we need to compare types, we syntactically compare
their normal form. Abstract and concrete syntax are mostly aligned: the concrete syntax is
similar to the concrete syntax of Coq (see Bull and Bull-Subtyping [44]).

We are currently designing a higher-order unification algorithm for ∆-terms and a
bidirectional refinement algorithm, similar to the one found in [2]. The refinement can be
split into two parts: the essence refinement and the typing refinement. In the same way,
there will be a unification algorithm for the essence terms, and a unification algorithm for
∆-terms. The bidirectional refinement algorithm aims to have partial type inference, and to
give as much information as possible to a hypothetical solver, or the unifier. For instance, if
we want to find a ?y such that `Σ 〈λx:σ.x , λx:τ.?y〉 : (σ → σ) ∩ (τ → τ), we can infer that
x:τ `?y : τ and that o ?y o = x.

LF∆ in Canonical Form. We presented LF∆ in the standard LF format in order to support
intuition. It would be worthwhile however, to attempt to formulate LF∆ in the style of [23],
using only canonical forms without reductions, especially in view of Adequacy Theorems.
The term constructs peculiar to LF∆ would then introduce new clauses in the definition
of canonical and atomic terms. The principle to follow in this task is that atomic terms
synthesize their type, while canonical terms are checked against their type. We are currently
exploring with the following extension:

M ::= . . . | λrx.M | 〈M , M〉 | [M , M] | inlM | inrM
R ::= . . . | prlR | prr R | R rM

Notice the somewhat surprising treatment of the [,] constructor, which is not really an
elimination construct but rather behaves as another form of abstraction. Accordingly
hereditary substitution needs to be extended.

An intriguing issue raised by one of the referees is to explore the connections between
strong implication and the singleton type of the identity function. This could lead also to an
internalization of the essence function.

FSTTCS 2018

https://github.com/cstolze/Bull/blob/master/coq_encodings/intersection_union.v
https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping

37:14 The ∆-Framework

References

1 Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51(1):1–77, 1991.

2 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. A Bi-
Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions. Logical
Methods in Computer Science, 8(1), 2012.

3 Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection and
union types: syntax and semantics. Inf. Comput., 119(2):202–230, 1995.

4 Franco Barbanera and Simone Martini. Proof-functional connectives and realizability.
Archive for Mathematical Logic, 33:189–211, 1994.

5 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A Filter lambda
model and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

6 Gilles Barthe and Olivier Pons. Type Isomorphisms and Proof Reuse in Dependent Type
Theory. In Foundations of Software Science and Computation Structures, 4th International
Conference, FOSSACS 2001, pages 57–71, 2001.

7 Stefano Berardi. Towards a mathematical analysis of the Coquand–Huet calculus of con-
structions and the other systems in Barendregt’s cube. PhD thesis, Dipartimento Matem-
atica, Universita di Torino, 1988.

8 Jan Bessai. Extracting a formally verified Subtyping Algorithm for Intersection Types from
Ideals and Filters. Talk at COST Types, 2016.

9 Olivier Boite. Proof Reuse with Extended Inductive Types. In Theorem Proving in Higher
Order Logics, 17th International Conference, TPHOLs 2004, pages 50–65, 2004.

10 Viviana Bono, Betti Venneri, and Lorenzo Bettini. A typed lambda calculus with intersec-
tion types. Theor. Comput. Sci., 398(1-3):95–113, 2008.

11 Beatrice Capitani, Michele Loreti, and Betti Venneri. Hyperformulae, Parallel Deductions
and Intersection Types. BOTH, Electr. Notes Theor. Comput. Sci., 50(2):180–198, 2001.

12 Joshua E. Caplan and Mehdi T. Harandi. A Logical Framework for Software Proof Reuse.
In SSR, pages 106–113, 1995.

13 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms.
Arch. Math. Log., 19(1):139–156, 1978.

14 Mario Coppo, Mariangiola Dezani-Ciancaglini, Honsell Furio, and Longo Giuseppe. Ex-
tended Type Structures and Filter Lambda Models. In Logic Colloquium, pages 241–262,
1983.

15 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characteriza-
tion of some semantic equalities inside λ-calculus. In International Colloquium on Automata,
Languages, and Programming, pages 133–146. Springer-Verlag, 1979.

16 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters
of solvable terms. Zietschrift für Mathematische Logik und Grundlagen der Mathematik,
27(2-6):45–58, 1981.

17 Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze. A Realizability
Interpretation for Intersection and Union Types. In APLAS, volume 10017 of Lecture
Notes in Computer Science, pages 187–205. Springer-Verlag, 2016.

18 Daniel J. Dougherty and Luigi Liquori. Logic and Computation in a Lambda Calculus
with Intersection and Union Types. In LPAR, volume 6355 of Lecture Notes in Computer
Science, pages 173–191. Springer-Verlag, 2010.

19 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-
3):133–165, 2014.

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:15

20 Amy P. Felty and Douglas J. Howe. Generalization and Reuse of Tactic Proofs. In Proc. of
Logic Programming and Automated Reasoning, 5th International Conference, LPAR, pages
1–15, 1994.

21 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing
set-theoretically with function, union, intersection, and negation types. Journal of the
ACM (JACM), 55(4):19, 2008.

22 Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defining Logics. J.
ACM, 40(1):143–184, 1993.

23 Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. J.
Funct. Program., 17(4-5):613–673, 2007.

24 J. Roger Hindley. The simple semantics for Coppo-Dezani-Sallé types. In International
Symposium on Programming, pages 212–226, 1982.

25 Furio Honsell and Marina Lenisa. Semantical Analysis of Perpetual Strategies in lambda-
Calculus. Theor. Comput. Sci., 212(1-2):183–209, 1999.

26 Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto. Implementing Cantor’s
Paradise. In Proc. of Programming Languages and Systems - 14th Asian Symposium,
APLAS, pages 229–250, 2016.

27 Alexei Kopylov. Dependent intersection: a new way of defining records in type theory. In
Proc. of 18th Annual IEEE Symposium of Logic in Computer Science, LICS, pages 86–95,
2003.

28 Luigi Liquori, Andreas Nuyts, and Claude Stolze. Privates communications, 2017.
29 Luigi Liquori and Simona Ronchi Della Rocca. Intersection Typed System à la Church.

Information and Computation, 9(205):1371–1386, 2007.
30 Luigi Liquori and Claude Stolze. A Decidable Subtyping Logic for Intersection and Union

Types. In Proc of TTCS, volume 10608 of Lecture Notes in Computer Science, pages 74–90.
Springer-Verlag, 2017.

31 Luigi Liquori and Claude Stolze. The Delta-calculus: syntax and types. Research report,
Inria, July 2018. URL: https://arxiv.org/abs/1803.09660.

32 Edgar G. K. Lopez-Escobar. Proof functional connectives. In Methods in Mathematical
Logic, volume 1130 of Lecture Notes in Mathematics, pages 208–221. Springer-Verlag, 1985.

33 David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. Information and Control, 71(1/2):95–130, 1986.

34 Robert K Meyer and Richard Routley. Algebraic analysis of entailment I. Logique et
Analyse, 15:407–428, 1972.

35 Grigori Mints. The Completeness of Provable Realizability. Notre Dame Journal of Formal
Logic, 30(3):420–441, 1989.

36 Alexandre Miquel. The Implicit Calculus of Constructions. In TLCA, pages 344–359, 2001.
37 Frank Pfenning. Refinement Types for Logical Frameworks. In TYPES, pages 285–299,

1993.
38 Benjamin C. Pierce. Programming with intersection types, union types, and bounded poly-

morphism. PhD thesis, Technical Report CMU-CS-91-205. Carnegie Mellon University,
1991.

39 Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. Intersection Types from
a Proof-theoretic Perspective. Fundam. Inform., 121(1-4):253–274, 2012.

40 Garrel Pottinger. A Type Assignment for the Strongly Normalizable λ-terms. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 561–577.
Academic Press, 1980.

41 John C. Reynolds. Preliminary Design of the Programming Language Forsythe. Report
CMU–CS–88–159, Carnegie Mellon University, 1988.

FSTTCS 2018

https://arxiv.org/abs/1803.09660

37:16 The ∆-Framework

42 Simona Ronchi Della Rocca and Luca Roversi. Intersection logic. In CSL, volume 2142 of
Lecture Notes in Computer Science, pages 421–428. Springer-Verlag, 2001.

43 Vincent Siles and Hugo Herbelin. Equality Is Typable in Semi-full Pure Type Systems.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS,
pages 21–30, 2010.

44 Claude Stolze. ∆-framework implementation. Bull and Bull-Subtyping, 2017.
45 Claude Stolze, Luigi Liquori, Furio Honsell, and Ivan Scagnetto. Towards a Logical Frame-

work with Intersection and Union Types. In 11th International Workshop on Logical Frame-
works and Meta-languages, LFMTP, pages 1–9, 2017.

46 Aaron Stump. From realizability to induction via dependent intersection. Annals of Pure
and Applied Logic, 169(7):637–655, 2018.

47 Betti Venneri. Intersection Types as Logical Formulae. J. Log. Comput., 4(2):109–124,
1994.

48 Joe B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A calculus with poly-
morphic and polyvariant flow types. J. Funct. Program., 12(3):183–227, 2002.

49 Joe B. Wells and Christian Haack. Branching Types. In ESOP, volume 2305 of Lecture
Notes in Computer Science, pages 115–132. Springer-Verlag, 2002.

A Appendix

Let Figure 9 denote Valid Signatures and Contexts and Figure 10 denote Valid Kinds and
Families.

LF∆ can play the role of a logical framework only if decidable. The road map which
we follow to establish decidability is the standard one, see e.g. [22]. In particular, we prove
in order: uniqueness of types and kinds, structural properties, normalization for raw well-
formed terms, and hence confluence. Then we prove the inversion property, the subderivation
property, subject reduction, and finally decidability.

I Lemma 10. Let α be either σ : K or ∆ : σ. Then:
1. Weakening: If Γ `Σ α and `Σ Γ,Γ′, then Γ,Γ′ `Σ α.
2. Strengthening: If Γ, x:σ,Γ′ `Σ α, then Γ,Γ′ `Σ α, provided that x 6∈ FV (Γ′) ∪ FV (α).
3. Transitivity: If Γ `Σ ∆ : σ and Γ, x:σ,Γ′ `Σ α, then Γ,Γ′[∆/x] `Σ α[∆/x].
4. Permutation: If Γ, x1:σ,Γ′, x2:τ,Γ′′ `Σ α, then Γ, x2:τ,Γ′, x1:σ,Γ′′
`Σ α, provided that x1 does not occur free in Γ′ or in τ , and that τ is valid in Γ.

I Theorem 3 (Unicity of Types and Kinds).
1. If Γ `Σ ∆ : σ and Γ `Σ ∆ : τ , then σ =∆ τ .
2. If Γ `Σ σ : K and Γ `Σ σ : K ′, then K =∆ K ′.

In order to prove strong normalization we follow the pattern used for pure LF. Namely, we
map LF∆-terms into terms of the system B in such a way that redexes in the source language
are mapped into redexes in the target language, and then take advantage of Theorem 2.
Special care is needed in dealing with redexes occurring in type-dependencies, because these
need to be flattened at the level of terms.

I Definition 11. Let the forgetful mappings || · || and | · | be defined as in Figure 11.

The forgetful mappings are extended to contexts and signatures in the obvious way. The
clauses for strong pairs/co-pairs are justified by the following lemma:

I Lemma 12. If Γ `Σ 〈∆1 , ∆2〉 : σ or Γ `Σ [∆1 , ∆2] : σ, then |∆1 |=β |∆2 |.

The following lemmas are proved by straightforward structural induction.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:17

Let Γ def= {x1:σ1, . . . , xn:σn} (i 6= j implies xi 6≡ xj), and Γ, x:σ def= Γ ∪ {x:σ}

Let Σ def= {c1:σ1, . . . , cn:σn}, and Σ, c:σ def= Σ ∪ {c:σ}

Valid Signatures

〈〉 sig
(εΣ) Σ sig `Σ K a 6∈ dom(Σ)

Σ, a:K sig (KΣ)
Σ sig `Σ σ : Type c 6∈ dom(Σ)

Σ, c:σ sig (σΣ)

Valid Contexts
Σ sig
`Σ 〈〉

(εΓ) `Σ Γ Γ `Σ σ : Type x 6∈ dom(Γ)
`Σ Γ, x:σ (σΓ)

Figure 9 Valid Signatures and Contexts.

Valid Kinds
`Σ Γ

Γ `Σ Type (Type) Γ, x:σ `Σ K

Γ `Σ Πx:σ.K (ΠK)

Valid Families
`Σ Γ a:K ∈ Σ

Γ `Σ a : K (Const) Γ `Σ σ : K1 Γ `Σ K2 K1 =∆ K2
Γ `Σ σ : K2

(Conv)

Γ, x:σ `Σ τ : Type
Γ `Σ Πx:σ.τ : Type (ΠI)

Γ `Σ σ : Πx:τ.K Γ `Σ ∆ : τ
Γ `Σ σ∆ : K[∆/x]

(ΠE)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ →r τ : Type (→r I)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ ∩ τ : Type (∩I) Γ `Σ σ : Type Γ `Σ τ : Type

Γ `Σ σ ∪ τ : Type (∪I)

Figure 10 Valid Kinds and Families.

I Lemma 13.
1. If σ =∆ τ , then ||σ ||=β ||τ ||.
2. If K1 =∆ K2, then ||K1 ||=β ||K2 ||.

I Lemma 14.
1. |∆1[∆2/x] |=β |∆1 | [|∆2 | /x].
2. |σ[∆/x] |=β |σ | [|∆ | /x].

I Lemma 15.
1. If Γ `Σ σ : K, then ||Γ ||`B+ |σ | : ||K ||.
2. If Γ `Σ ∆ : σ, then ||Γ ||`B+ |∆ | : ||σ ||.
where `B+ denotes the type system B, augmented by c× : > → > → > and the infinite set of
axioms c||σ|| : > → (||σ ||→ >)→ >, for each type σ.

Notice that the function o o and | | treat differently relevant implication.

FSTTCS 2018

37:18 The ∆-Framework

||Type || = > (a special constant)
||Πx:σ.K || = ||σ ||→||K ||

||a || = a

||Πx:σ.τ || = ||σ ||→||τ ||

	σ →r τ		=		σ		→		τ	
	σ∆		=		σ					
	σ ∩ τ		=		σ		∩		τ	
	σ ∪ τ		=		σ		∪		τ	

|a | = a

|c | = c

|x | = x

|σ∆ | = |σ | |∆ |

|∆1 ∆2 | = |∆1 | |∆2 |

|∆1 r∆2 | = |∆1 | |∆2 |

|λx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ fv(∆)

|λrx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ fv(∆)

|Πx:σ.τ | = c||σ|| |σ | (λx. |τ |)

|σ →r τ | = c× |σ | |τ |

|σ ∩ τ | = c× |σ | |τ |

|σ ∪ τ | = c× |σ | |τ |

| 〈∆1 , ∆2〉 | = |∆1 |

| [∆1 , ∆2] | = |∆1 |

|prl ∆ | = |∆ |

|prr ∆ | = |∆ |

| inσl ∆ | = (λx. |∆ |) |σ | x 6∈ fv(∆)

| inσr ∆ | = (λx. |∆ |) |σ | x 6∈ fv(∆)

Figure 11 The forgetful mappings || · || and | · |

I Lemma 16.
1. If σ −→β τ , then |σ |−→+

β |τ |.
2. if ∆1 −→β ∆2, then |∆1 |−→+

β |∆2 |.

Parallel reduction enjoys the strong normalization property, i.e.

I Theorem 4 (Strong normalization).
1. The LF∆ is strongly normalizing, i.e.,

a. If Γ `Σ K, then K is strongly normalizing.
b. If Γ `Σ σ : K, then σ is strongly normalizing.
c. If Γ `Σ ∆ : σ, then ∆ is strongly normalizing.

2. Every strongly normalizing pure λ-term can be annotated so as to be the essence of a
∆-term.

Proof. 1) Strong normalization derives directly from Lemmas 15, 16 and Theorem 2.
2) By induction on the specification of strongly normalizing terms which can be inductively
defined as i) ∆1 . . .∆n ∈ SN ⇒ λx1, . . . , xn.x∆1 . . .∆n ∈ SN for x possibly among the xi’s,
ii) ∆[∆′/x] ∆1 . . .∆n ∈ SN , and iii) ∆′ ∈ SN ⇒ (λx:σ.∆) ∆′∆1 . . . ∆n ∈ SN . J

Local confluence (Proposition 1) and strong normalization (Theorem 4) entail confluence,
so we have

I Theorem 5 (Confluence). LF∆ is confluent, i.e.:
1. If K1 −→∗∆ K2 and K1 −→∗∆ K3, then ∃K4 such that K2 −→∗∆ K4 and K3 −→∗∆ K4.
2. If σ1 −→∗∆ σ2 and σ1 −→∗∆ σ3, then ∃σ4 such that σ2 −→∗∆ σ4 and σ3 −→∗∆ σ4.
3. If ∆1 −→∗∆ ∆2 and ∆1 −→∗∆ ∆3, then ∃∆4 such that ∆2 −→∗∆ ∆4 and ∆3 −→∗∆ ∆4.

The following lemmas are proved by structural induction.

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:19

I Lemma 17 (Inversion properties).
1. If Πx:σ.τ =∆ τ ′′, then τ ′′ ≡ Πx:σ′.τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
2. If σ →r τ =∆ τ ′′, then τ ′′ ≡ σ′ →r τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
3. If σ ∩ τ =∆ ρ, then ρ ≡ σ′ ∩ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
4. If σ ∪ τ =∆ ρ, then ρ ≡ σ′ ∪ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
5. If Γ `Σ λx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ .
6. If Γ `Σ λrx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ and o∆ o =η x.
7. If Γ `Σ 〈∆1 , ∆2〉 : σ ∩ τ , then Γ `Σ ∆1 : σ, Γ `Σ ∆2 : τ , and o∆1 o =β o∆2 o.
8. If Γ `Σ [∆1 , ∆2] : Πx:σ ∪ τ.ρ, then Γ `Σ ∆1 : Πy:σ.ρ (inτl y), Γ `Σ ∆2 : Πy:τ.ρ (inσr y),

and o∆1 o =β o∆2 o.
9. If Γ `Σ prl ∆ : σ, then Γ `Σ ∆:σ ∩ τ , for some τ .

10. If Γ `Σ prr ∆ : τ , then Γ `Σ ∆:σ ∩ τ , for some σ.
11. If Γ `Σ inτl ∆ : σ ∪ τ , then Γ `Σ ∆ : σ and Γ `Σ σ ∪ τ : Type.
12. If Γ `Σ inσr ∆ : σ ∪ τ , then Γ `Σ ∆ : τ and Γ `Σ σ ∪ τ : Type.

I Proposition 18 (Subderivation).
1. A derivation of `Σ 〈〉 has a subderivation of Σ sig.
2. A derivation of Σ, a:K sig has subderivations of Σ sig and `Σ K.
3. A derivation of Σ, f :σ sig has subderivations of Σ sig and `Σ σ:Type.
4. A derivation of `Σ Γ, x:σ has subderivations of Σ sig, `Σ Γ, and Γ `Σ σ:Type.
5. A derivation of Γ `Σ α has subderivations of Σ sig and `Σ Γ.
6. Given a derivation of the judgement Γ `Σ α, and a subterm occurring in the subject of

this judgement, there exists a derivation of a judgement having this subterm as a subject.

I Theorem 6 (Subject reduction of LF∆).
1. If Γ `Σ K, and K →∆ K ′, then Γ `Σ K ′.
2. If Γ `Σ σ : K, and σ →∆ σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ ∆ : σ, and ∆→∆ ∆′, then Γ `Σ ∆′ : σ.

Finally, we define a possible algorithm for checking judgements in LF∆ by computing a
type or a kind for a term, and then testing for definitional equality, i.e. =∆, against the given
type or kind. This is achieved by reducing both to their unique normal forms and checking
that they are identical up to α-conversion. Therefore we finally have:

I Theorem 7 (Decidability). All the type judgments of LF∆ are recursively decidable.

Minimal Relevant Implications and Type Inclusion. Type inclusion and the rules of sub-
typing are related to the notion of minimal relevant implication, see [4, 17]. The insight is
quite subtle, but ultimately very simple. This is what makes it appealing. The apparently
intricate rules of subtyping and type inclusion, which occur in many systems, and might even
appear ad hoc at times, can all be explained away in our principled approach, by proving that
the relevant implication type is inhabited by a term whose essence is essentially a variable.

The following theorem we show how relevant implication subsumes the type-inclusion
rules of the theory Ξ of [3], without rule (10): we call Ξ′ the resulting set.

I Theorem 8 (Type Inclusion). The judgement 〈〉 `Σ ∆ : σ →r τ (where both σ and τ do not
contain dependencies or relevant families) holds iff σ ≤ τ holds in the subtype theory Ξ′ of B
enriched with new axioms of the form σ1 ≤ σ2 for each constant c : σ1 →r σ2 ∈ Σ.

Proof.
(if). Follows directly from Lemma 17.

FSTTCS 2018

37:20 The ∆-Framework

(only if). It is possible to write a ∆-term whose essence is an η−expansion of the identity
(λx.x) corresponding to each of the axioms and rules in Ξ′. The ∆-term is obtained by
defining a function ‖σ ≤ τ‖∆, where σ ≤ τ is a subtyping derivation tree in the type
theory Ξ′, which coerce a ∆-term from type σ to type τ :

(1) ‖σ 6 σ ∩ σ‖∆
def= 〈∆ , ∆〉

(2) ‖σ ∪ σ 6 σ‖∆
def= [λx:σ.x , λx:σ.x] ∆

(3) ‖σ1 ∩ σ2 6 σi‖∆
def= pri ∆

(4) ‖σi 6 σ1 ∪ σ2‖∆
def= ini ∆

(6) ‖σ 6 σ‖∆
def= ∆

(7)
∥∥∥σ1 6 σ2 τ1 6 τ2
σ1 ∩ τ1 6 σ2 ∩ τ2

∥∥∥
∆

def= 〈‖σ1 6 σ2‖(prl ∆) , ‖τ1 6 τ2‖(prr ∆)〉

(8)
∥∥∥σ1 6 σ2 τ1 6 τ2
σ1 ∪ τ1 6 σ2 ∪ τ2

∥∥∥
∆

def= [λx:σ1.in
τ2
l ‖σ1 6 σ2‖x , λx:τ1.inσ2

r ‖τ1 6 τ2‖x] ∆

(9)
∥∥∥σ 6 τ τ 6 ρ

σ 6 ρ

∥∥∥
∆

def= ‖τ 6 ρ‖(‖σ6τ‖∆)

(11) ‖(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)‖∆
def= λx:σ.〈(prl ∆)x , (prr ∆)x〉

(12) ‖(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ‖∆
def= λx:σ ∪ τ.[λy:σ.(prl ∆) y , λy:τ.(prr ∆) y]x

(14)
∥∥∥ σ2 6 σ1 τ1 6 τ2
σ1 → τ1 6 σ2 → τ2

∥∥∥
∆

def= λx:σ2. ‖τ1 6 τ2‖(∆ ‖σ26σ1‖x)

J

F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:21

A
.1

Ty
pe

d
de
riv

at
io
n
of

P
ie
rc
e’
s
ex
am

pl
e
of

Su
bs
ec
tio

n
2.
1

Γ
` Σ

λ
x

1:
σ

1.
(p
r l
x

)x
1
x

1
:Π

x
1:
σ

1.
(a
x

4
x

4)
[in

σ
2
l
x

1/
x

4]
Γ
` Σ

λ
x

2:
σ

2.
(p
r r
x

)x
2
x

2
:Π

x
2:
σ

2.
(a
x

4
x

4)
[in

σ
1
r
x

2/
x

4]
Γ,
x

4:
σ

1
∪
σ

2
` Σ

a
x

4
x

4
:T

yp
e

oλ
x

1:
σ

1.
(p
r l
x

)x
1
x

1
o=

η
oλ
x

2:
σ

2.
(p
r r
x

)x
2
x

2)
o

Γ
` Σ

[λ
x

1:
σ

1.
(p
r l
x

)x
1
x

1
,
λ
x

2:
σ

2.
(p
r r
x

)x
2
x

2]
:Π

x
4:
σ

1
∪
σ

2.
a
x

4
x

4
(∪
E

)
Γ
` Σ

(λ
x

3:
ρ
→
σ

1
∪
σ

2.
x

3)
y
z

:σ
1
∪
σ

2

Γ
` Σ

[(λ
x

1:
σ

1.
(p
r l
x

)x
1
x

1)
,

(λ
x

2:
σ

2.
(p
r r
x

)x
2
x

2)
](

(λ
x

3:
ρ
→
σ

1
∪
σ

2.
x

3)
y
z
):
a

((
λ
x

3:
ρ
→
σ

1
∪
σ

2.
x

3)
y
z
)(

(λ
x

3:
ρ
→
σ

1
∪
σ

2.
x

3)
y
z
)

(Π
E

)

Γ
` Σ

[λ
x

1:
σ

1.
(p
r l
x

)x
1
x

1)
,
λ
x

2:
σ

2.
(p
r r
x

)x
2
x

2)
](

(λ
x

3:
ρ
→
σ

1
∪
σ

2.
x

3)
y
z
):
a

(y
z
)(
y
z
)

(C
on
v
)

w
he
re Γ

de
f =
x

:Π
x

1:
σ

1.
Π
x

2:
σ

1.
a

(i
n
σ

2
l
x

1)
(i
n
σ

2
l
x

2)
∩

Π
x

1:
σ

2.
Π
x

2:
σ

2.
a

(i
n
σ

1
r
x

1)
(i
n
σ

1
r
x

2)
,y

:ρ
→
σ

1
∪
σ

2,
z
:ρ

an
d Σ

de
f =
a
:σ

1
∪
σ

2
→
σ

1
∪
σ

2
→

Ty
pe

FSTTCS 2018

	Introduction
	The Delta-framework: LF with proof-functional operators
	Relating LF_Delta to B
	LF_Delta metatheory

	Examples
	Implementation and Future Work
	Appendix
	Typed derivation of Pierce's example of Subsection 2.1

