
Deterministic Algorithms for Maximum Matching
on General Graphs in the Semi-Streaming Model
Sumedh Tirodkar1

IDSIA, USI-SUPSI, Manno, Switzerland
sumedh.tirodkar@idsia.ch

Abstract
We present an improved deterministic algorithm for Maximum Cardinality Matching on general
graphs in the Semi-Streaming Model. In the Semi-Streaming Model, a graph is presented as a
sequence of edges, and an algorithm must access the edges in the given sequence. It can only use
O(n polylogn) space to perform computations, where n is the number of vertices of the graph.
If the algorithm goes over the stream k times, it is called a k-pass algorithm. In this model,
McGregor [28] gave the currently best known randomized (1 + ε)-approximation algorithm for
maximum cardinality matching on general graphs, that uses (1/ε)O(1/ε) passes. Ahn and Guha [1]
later gave the currently best known deterministic (1+ε)-approximation algorithms for maximum
cardinality matching: one on bipartite graphs that uses O

(
log log(1/ε)/ε2) passes, and the other

on general graphs that uses O(logn ·poly(1/ε)) passes (note that, for general graphs, the number
of passes is dependent on the size of the input). We present the first deterministic algorithm that
achieves a (1 + ε)-approximation on general graphs in only a constant number

(
(1/ε)O(1/ε)) of

passes.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Semi Streaming, Maximum Matching

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.39

Acknowledgements The author thanks Ashish Chiplunkar, Sagar Kale, Sundar Vishwanathan,
and anonymous reviewers for their helpful feedback on the writeup.

1 Introduction

Matching is one of the most well-studied problems in combinatorial optimization. See
Schrijver’s book [31] and references therein for a comprehensive overview of the classical
work. There are polynomial time algorithms known for both weighted and unweighted
maximum matching on general graphs [29]. With the advancement of internet and social
networks, large amount of data is generated, and often the input graph is so huge that the
entire graph may not fit even inside large size RAMs. One way to tackle this problem is
to provide the input to the algorithm in pieces. For instance, edges can be provided to
the algorithm one by one, or vertices can be provided one by one along with all the edges
from that vertex to the previously revealed vertices. The maximum matching problem has
been studied in various models in which the input is provided piecewise, for instance, the
online preemptive/non-preemptive model (vertex/edge arrival) [15, 11, 23, 7], the dynamic
graph model [5, 6, 4, 32], the streaming model [18, 28, 33, 14], etc. In these models, random
order [25, 26] arrivals have also been considered.

1 This work was done when the author was a Post Doctoral Fellow in the School of Technology and
Computer Science at TIFR, Mumbai, India.

© Sumedh Tirodkar;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sumedh.tirodkar@idsia.ch
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Maximum Matching in Graph Streams

We study the maximum matching2 problem in the semi-streaming model. Feigenbaum
et al. [18] were the first to consider this problem in the semi-streaming model. A graph
stream is an (adversarial) sequence of the edges of a graph, and a semi-streaming algorithm
must access the edges in the given order. A semi-streaming algorithm can use O(n polylogn)
space only, where n is the number of vertices in the input graph. Note that a matching
can have size Ω(n), so Ω(n logn) space is necessary. If a semi-streaming algorithm goes
over the stream k times, it is called a k-pass algorithm. We say that an algorithm is an
α-approximation algorithm if the size of the matching output by the algorithm is at least 1

α

times the size of an optimum matching, and we say that the matching is α-approximate.
McGregor [28] gave the first (1 + ε)-approximation algorithm for maximum match-

ing in this model. This algorithm is randomized, and uses a constant number of passes(
(1/ε)O(1/ε)). Eggert et al. [13] later improved this result on bipartite graphs by giving a

(1 + ε)-approximation deterministic algorithm that uses O(1/ε5) passes. Ahn and Guha [1]
also gave linear programming based (1+ε)-approximation deterministic algorithms. For bipar-
tite graphs, they further improved the results. Their algorithm uses only O(log log(1/ε)/ε2)
passes. But for general graphs, their algorithm uses O(logn · poly(1/ε)) passes. The number
of passes is dependent on the size of the input. There are no known (1 + ε)-approximation
deterministic algorithms on general graphs that use a constant number of passes, and it is not
clear how to extend the deterministic algorithms on bipartite graphs [13, 1], to deterministic
algorithms on general graphs that use only a constant number of passes. In this paper, we
present the first (1 + ε)-approximation deterministic algorithm for maximum matching on
general graphs that uses only a constant number

(
(1/ε)O(1/ε)) of passes.

We first present a (1 + ε)-approximation deterministic algorithm for maximum matching
on bipartite graphs, that uses (1/ε)O(1/ε)-passes, which will help in understanding the main
techniques behind the algorithm on general graphs. Note that the algorithm on bipartite
graphs in itself does not hold much value, as we have already mentioned earlier that there
exist poly(1/ε)-pass (1 + ε)-approximation algorithms on bipartite graphs.

These algorithms build on the techniques used in the two-pass algorithm for maximum
matching presented in [20]. In the first pass, the algorithm [20] finds a maximal matching,
and in the second pass, it finds a semi-matching between matched and unmatched vertices
from the first pass. A (λX , λY) Semi-Matching is defined as a set of edges such that at most
λX edges are incident on any vertex in X, and at most λY edges are incident on any vertex
in Y , when X ∩ Y = ∅. The algorithm uses this semi-matching to find length 3-augmenting
paths in the maximal matching. In the following paragraph, we give a brief overview of how
these techniques can be used to find longer augmenting paths in bipartite graphs, and some
of the difficulties in extending them to general graphs.

Technical Overview

Let M∗ denote some optimal matching in the given graph, and let M denote some maximal
matching. For any integer ` ≥ 1, a connected component of M ∪M∗ that has a path of
length (2`+ 1) is called a length (2`+ 1)-augmenting path (non-augmenting otherwise) with
respect to M∗. In general, a length (2`+ 1)-augmenting path contains ` edges in M , and
(`+ 1) edges not in M . We call an edge in M (2`+ 1)-augmentable, if it belongs to a length
(2`+ 1)-augmenting path. A length (2`+ 1)-augmentation is a replacement of edges in M ,
by edges not in M , from a length (2`+ 1)-augmenting path.

2 Unless explicitly mentioned, Maximum Matching means Maximum Cardinality Matching.

S. Tirodkar 39:3

It is widely known, and can also be easily proved that in a maximal matching M , if there
are no augmenting paths of length less than (2/ε+1) with respect to some optimum matching
M∗, then the matching M is (1 + ε)-approximate. We present deterministic algorithms which
output a matching M , that contains a negligible number of augmenting paths of length less
than (1/ε + 1) with respect to some optimum matching M∗. We use Lemma 1 to prove
that this matching is an (1 + O(ε))-approximation to the optimum matching. Informally,
the lemma states that if there exist a negligible number of augmenting paths of length less
that (1/ε+ 1) in a maximal matching M , then M is a good approximation to any optimum
matching.

The algorithms for bipartite graphs and general graphs have a common high level idea.
Each algorithm begins by finding a maximal matching M in the first pass. Then it first
carries out length 3-augmentations of some edges in M , such that after a constant number of
passes, the number of remaining 3-augmentable edges in M with respect to any fixed optimal
matching M∗ is negligible. Then it similarly carries out length 5-augmentations, followed by
length 7-augmentations, and so on, up to length (1/ε)-augmentations.

Suppose there are no augmenting paths in M of length less than (2`+ 1). Then, a length
(2` + 1)-augmenting path is found as follows. Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes
some length (2`+ 1)-augmenting path in M with respect to M∗. (Note that edges uivi ∈M ,
for all 1 ≤ i ≤ `.) In one pass, (a constant fraction of) the outermost edges of any length
(2`+1)-augmenting path (for instance au1 and v`b) are added to a semi-matching S. Now that
the algorithm already knows the outermost four edges (for instance au1, u1v1, u`v`, v`b) in
the augmenting path, it tries to find the length (2`− 3)-augmenting path v1u2v2u3 . . . v`−1u`.
Using this length (2`− 3)-augmenting path v1u2v2u3 . . . v`−1u`, and edges in M and S, the
algorithm finds a length (2`+ 1)-augmenting path.

For general graphs, suppose such a procedure is successful in finding a middle length
(2`′ − 3) path of some length (2`+ 1)-augmenting path. Then how to ensure that the edges
stored in the semi-matchings, along with the edges in M , do not form an odd length cycle
with this middle length (2`′ − 3) path? We do not face this issue for bipartite graphs as they
do not contain any odd length cycles, and so we require new ideas (Directed Semi-Matchings
– defined in Section 2) to extend the described techniques to find longer augmenting paths in
general graphs.

A Comparison with McGregor’s Randomized Algorithm

McGregor’s algorithm [28] begins by finding a maximal matching M . To find length (2`+ 1)-
augmenting paths (for all ` ≤ (1/(2ε))), the algorithm randomly partitions the vertices
in G into (` + 2) layers L0, L1, . . . , L`, L`+1. The unmatched vertices in G are added to
either L0 or L`+1, and the matched vertices are added at random to the layers L1, . . . , L`.
The algorithm only stores the edges between two consecutive layers. This makes the graph
bipartite, and removes the possibility of any odd length cycle. The algorithm works by
finding maximal matchings, first between the first and second levels and then between the
vertices in the second that were matched in the first matching, and the third level, and then
between the nodes in the third level that were matched in the second matching and the
fourth level and so on. This gives node-disjoint (`+ 1)-paths, which correspond to length
(2`+ 1)-augmenting paths in G. The random partitioning operation keeps roughly a (1/`)O(`)

fraction of the length (2`+ 1)-augmenting paths, as each such augmenting path “survives”
the partitioning by this probability. By repeating this process by a factor of `O(`), almost
all length (2`+ 1)-augmenting paths are found. The algorithm finds a (1 + ε)-approximate
matching with probability (1− f) by running O(log(1/f)) copies of this procedure in parallel.

FSTTCS 2018

39:4 Maximum Matching in Graph Streams

Like McGregor’s algorithm, our algorithm also ensures that a negligible number of
(2`+ 1)-augmentable edges remain in M (for all ` ≤ (1/(2ε))). As pointed out earlier, the
main difficulty in finding augmenting paths in general graphs is due to the existence of
odd length cycles (this challenge is present in nearly all variants of the matching problem
in non-bipartite graphs, including in the polynomial time algorithms for this problem in
the offline setting [29]). McGregor’s algorithm handles this issue by considering a random
bipartite subgraph of the original graph in each augmentation phase. We rely on the use of
directed semi-matchings. The major technical challenge lies in finding which edges need to
be stored in the directed semi-matchings. The algorithm needs to recognize and ensure that
it does not store edges (in the directed semi-matchings) that form an odd length cycle. This
turns out to be non-trivial. Section 4 gives more details.

Note. The random bipartitioning operation (from McGregor’s algorithm [28]) in general
graphs, keeps roughly a (1/`)O(`) fraction of the length (2`+1)-augmenting paths. And hence,
this process has to be repeated `O(`) times to find almost all length (2`+1)-augmenting paths.
So, it is unlikely that this idea can be extended to get a poly(1/ε)-pass (1 + ε)-approximation
algorithm on general graphs. Our deterministic algorithm explicitly bypasses the barrier of
“blossoms” (hereafter, we refer to an odd length alternating (edges not in M and edges in M)
cycle that starts and ends at an unmatched vertex as a blossom), and hence can be viewed
as a step towards achieving a poly(1/ε)-pass (1 + ε)-approximation algorithm for general
graphs.

Related Work

The algorithm that finds a maximal matching (in which an edge is added to the matchingM if
there are no edges inM incident on any of its endpoints) is a trivial one-pass 2-approximation
algorithm, and no (randomized/deterministic) one-pass algorithm with approximation ratio
better than 2 is known for maximum matching although this model was introduced over a
decade ago. It remains as one of the major open problems in the streaming community [27].
Goel, Kapralov, and Khanna [19], using connection between streaming complexity and
communication complexity, proved that for any ε > 0, a one-pass semi-streaming (3/2− ε)-
approximation algorithm does not exist. Later, Kapralov [21], building on those techniques,
showed the non-existence of a one-pass semi-streaming (e/(e−1)−ε)-approximation algorithms
for any ε > 0. Konrad et al. [25] showed that if the algorithm is allowed one extra pass, then a
better than 2-approximate matching can be obtained, by giving a two-pass algorithm. Later,
Esfandiari et al. [16] improved these results for bipartite graphs, and Kale and Tirodkar [20]
gave improved results on triangle-free as well as general graphs.

Feigenbaum et al. [18] gave a (3/2 + ε)-approximation deterministic algorithm on bi-
partite graphs that uses O(log(1/ε)/ε) passes. Later, Ahn and Guha [1] gave a (3/2 + ε)-
approximation deterministic algorithm on general graphs that uses O(log(1/ε)/ε2) passes.
Kale and Tirodkar [20] improved both these results by giving a (3/2 + ε)-approximation
deterministic algorithm on general graphs that use only O(1/ε) passes.

Feigenbaum et al. [18] gave the first one-pass algorithm for maximum weight matching,
with an approximation ratio 6. Subsequent results improved this approximation ratio.
Recently in a breakthrough, Paz and Schwartzman [30] gave a (2+ε)-approximation algorithm.
The multi-pass version of the problem was considered first by McGregor [28], then by Ahn
and Guha [1]. Chakrabarti and Kale [9] and Chekuri et al. [10] consider a more general
version of the matching problem where a submodular function is defined on the edges of the
input graph.

S. Tirodkar 39:5

The problem of estimating the size of a maximum matching (instead of outputting the
actual matching) has been well studied [22, 17, 8, 2]. The Maximum Matching problem has
also been studied on dynamic streams (in which edges can be added as well as deleted) [24,
3, 12].

1.1 Organization of the paper

After setting up notation in Section 2, we see a (1 + ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs in Section 3. Then in Section 4, we see our
main result – a (1 + ε)-approximation deterministic algorithm on general graphs that uses a
constant number of passes.

2 Preliminaries

Let M∗ denote some optimal matching in the given graph, and let M denote some maximal
matching. We define the following terms which are used in the subsequent sections.

I Definition 2.1. A (λX , λY) Directed Semi-Matching is defined as a set of directed edges
such that at most λX incoming edges are incident on any vertex in X, and at most λY
outgoing edges are incident on any vertex in Y .

For a (λX , λY) Semi-Matching S, let degS(x) represent the number of edges in S incident on
vertex x. For a directed semi-matching S, let degOS (x) and degIS(x) represent the number of
outgoing and incoming edges, respectively, in S incident on vertex x. For an edge xy in the
input stream, both the directed edges xy and yx are considered while finding the directed
semi-matchings.

I Definition 2.2. While finding the middle length (2`′ + 1) path of the length (2` + 1)-
augmenting paths, the end points of M which have a length (`− `′) alternating path (with
edges in M and edges in the semi-matchings) to unmatched vertices, are called free vertices.

(For instance, the green vertices in Figure 1 are free vertices while finding the middle length
(2` − 3)-augmenting path.) Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes some augmenting
path of length (2` + 1) in M with respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . .

u(`+`′)/2 v(`+`′)/2u(`+`′)/2+1 denotes the middle length (2`′ + 1) path of the augmenting
path. Vertex u(`−`′)/2 (or v(`+`′)/2+1) is a free vertex if there exists a length (`− `′) path to
unmatched vertices starting from u(`−`′)/2 (or v(`+`′)/2+1) via alternate edges in M and the
semi-matchings maintained by the algorithm. When `′ = `, V \ V (M) are the free vertices.

We use the following lemma (similar to Lemma 1 in [28]) in analyzing the performance of
the algorithms described in this paper.

I Lemma 1. Let M∗ be a maximum matching in G. If there are at most ε2|M | (2`+ 1)-
augmentable edges in a maximal matching M with respect to M∗, for any ` ≤ (1/ε− 1)/2,
then M is a (1 + 3ε)-approximate maximum matching.

Proof. Let k` denote the number of (2`+ 1)-augmentable edges in M . In any length (2`+ 1)-
augmenting path, the ratio of number of edges in M∗ to the number of edges in M is l+1

l .

FSTTCS 2018

39:6 Maximum Matching in Graph Streams

.

semi-matching used for length (2` + 1)-augmentations

semi-matching used for length (2`− 3)-augmentations

Figure 1 Length (2` + 1)-augmentations. Solid red lines represent edges in M , and dashed orange
lines represent edges that belong to S during the recursive steps.

Then,

|M∗| ≤ 2k1 + 3
2k2 + 4

3k3 + · · ·+ (1/ε− 1)/2 + 1
(1/ε− 1)/2 k(1/ε−1)/2

+ (1/ε+ 1)/2 + 1
(1/ε+ 1)/2 (|M | − k1 − k2 − · · · − k(1/ε−1)/2)

=
(

1 + 2
1/ε+ 1

)
|M |+

(
2− 1/ε+ 3

1/ε+ 1

)
k1 +

(
4
3 −

1/ε+ 3
1/ε+ 1

)
k3 + . . .

+
(

1/ε+ 1
1/ε− 1 −

1/ε+ 3
1/ε+ 1

)
k(1/ε−1)/2

≤ (1 + 2ε)|M |+ ε2 · |M |+ ε2 · |M |+ · · ·+ ε2 · |M |
≤ (1 + 3ε)|M |. J

For the sake of exposition, we ignore floors and ceilings during the analyses of the
algorithms presented in Sections 3 and 4.

3 Warming Up: An Algorithm on Bipartite Graphs

In this section, we present a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs.

The high level idea for the algorithm is already described in Section 1. What remains
to be described is how the length (2`+ 1)-augmentations are performed. The function call
for length (2` + 1)-augmentations in the matching M assumes that there are no shorter
augmenting paths (although there is a small number of them). For each function call, the
algorithm finds a (1/ε4, 1) semi-matching S in one pass, between the free and matched
vertices. For an edge e ∈ M , if there are no edges in S, incident on any of the endpoints
of e, add e to M ′. For an edge e ∈ M , if there is an edge in S, incident on one of the
end points of e, add the other endpoint to the set V1. Then, the function recursively calls
Augment(`− 2, V1,M

′) to find length (2`− 3)-augmenting paths for the matching M ′ in
the graph induced on V1 ∪ V (M ′). For the recursive call, vertices in V1 are the free vertices,
and vertices in V (M ′) are the matched vertices. Using these length (2` − 3)-augmenting
paths, and edges in S, the algorithm finds length (2`+ 1)-augmenting paths in M . Figure 1
gives an illustration of the semi-matchings stored by the algorithm which are used for length
(2`+ 1)-augmentations.

Algorithm 1 gives a formal description.

S. Tirodkar 39:7

Algorithm 1 Deterministic Algorithm on Bipartite Graphs.
1: Find Maximal Matching M in the first pass.
2: for ` = 1 to 1/(2ε) do . To Remove almost all (2`+ 1)-augmenting paths
3: for Phase p = 1 to 1/ε5` do
4: M ← Augment(`, V,M).
5: Output M .
6: function Augment(`, V,M) . Function of length (2`+ 1)-augmentations.
7: if ` = 0 then
8: Find Maximal Matching M ′ on vertex set V in one pass.
9: M ←M ′.
10: else
11: S ← ∅, M ′ ← ∅.
12: V1 ← V \ V (M). . Set of free vertices.
13: S ← Semi(1, V (M), 1/ε4, V1).
14: if ` > 1 then . For longer than length 3-augmentations
15: V1 ← ∅
16: for all edges uv ∈M do
17: if ∃au ∈ S then
18: V1 ← V1 ∪ {v}. . Free Vertices in the recursive call.
19: if @ edge in S on either u or v then
20: M ′ ←M ′ ∪ {uv}.
21: M ′ ← Augment(`− 2, V1,M

′). . Find length (2`− 3)-augmentations.
22: (2`+ 1)-augment M greedily using edges in S and M ′.

return M .
23: function Semi(λX , X, λY , Y) . Finds a semi-matching in one pass.
24: S ← ∅.
25: for all edges xy such that x ∈ X, y ∈ Y do
26: if degS(x) < λX and degS(y) < λY then
27: S ← S ∪ {xy}

return S.

We begin the analysis for any length (2`+ 1)-augmentations for the matching M . The
function assumes that there are no shorter length augmenting paths in M with respect to any
optimal matching. Let E` denote the set of (2`+ 1)-augmentable edges in M with respect to
an optimal matching M∗, such that |E`| is maximum.

Bad Edges

Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes any length (2`+ 1)-augmenting path in M with
respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . . u(`+`′)/2v(`+`′)/2 u(`+`′)/2+1 denotes
the middle length (2`′ + 1) path of the augmenting path. Edge u(`−`′)/2+1v(`−`′)/2+1 ∈M ′
(or u(`+`′)/2v(`+`′)/2 ∈M ′) is called a bad edge, if there is no edge in S from u(`−`′)/2+1 (or
v(`+`′)/2) to a free vertex, during the recursive call Augment(`′, V1,M

′). Note that V1 is
the set of free vertices during a function call Augment(`′, V1,M

′).
Let E`B1

denote a set of bad edges u1v1 (or u`v`) if no edge is added to S during a function
call Augment(`, V,M) that is incident from the vertex u1 (or v`) to some free vertex (in
this case V1 = V \ V (M) are the free vertices).

FSTTCS 2018

39:8 Maximum Matching in Graph Streams

I Lemma 2. |E`B1
| ≤ 2ε4|M |.

Proof. Suppose there is no edge in S incident from u1 (or v`) to any unmatched vertex in
V1. This means that for all the edges incident from u1 (or v`) to unmatched vertices, there
already were 1/ε4 edges in S incident on the respective unmatched vertices. For ` > 1, each
edge in M can have at most one edge in S incident on its endpoints (as there are no length
3-augmentable edges in M). Hence, |E`B1

|/ε4 ≤ |M |.
For ` = 1, each edge in M can have at most one edge in S incident on each its endpoints.

Hence, |E`B1
|/ε4 ≤ 2|M |. J

After finding a (1/ε4, 1) semi-matching S from unmatched to matched vertices, the function
call Augment(`, V,M) makes a recursive call Augment(`− 2, V1,M

′). Inside the recursive
call, V1 is the set of free vertices, and V (M ′) is the set of matched vertices. Let E`B2

denote the bad edges formed while finding a (1/ε4, 1) semi-matching inside the recursive call.
By Lemma 2, |E`B2

| ≤ 2ε4|M ′| ≤ 2ε4|M |.
If au1v1u2v2u3 . . . v`−1u`v`b denotes any length (2` + 1)-augmenting path in M with

respect to M∗, let E`B denote the set of all the bad edges uivi ∈ E` formed during one
function call Augment(`, V,M), and the subsequent recursive calls inside the function. The
following lemma bounds the total number of bad edges E`B in E`.

I Lemma 3. |E`B | ≤ ε3|M |.

Proof. We write a recurrence relation to find the total number of bad edges E`B in E`.

BadEdges(`) = |E`B1
|+ BadEdges(`− 2)

=⇒ |E`B | ≤ 2ε4|M |+ BadEdges(`− 2) . . . by Lemma 2
=⇒ |E`B | ≤ 2ε4|M |+ 2ε4|M |+ · · ·+ 2ε4|M | . . . at most (1/(4ε)) times.
=⇒ |E`B | ≤ ε3|M |.

The function BadEdges(`′) gives the total number of bad edges in E` from one function
call Augment(`′, V1,M

′). J

Now, we give a bound on the total number of augmentations during one function call
Augment(`, V,M). We say that an augmenting path is “good” if none of the edges in that
augmenting path belong to E`B .

I Lemma 4. One function call Augment(`, V,M) augments at least ε4`/2 fraction of the
total number of good (2`+ 1)-augmenting paths in M .

Proof. Consider a length (2` + 1)-augmentation of an augmenting path P (for instance,
P := au1v1u2v2u3 . . . v`−1u`v`b). There are at most (1/ε4)` length (2`+1)-augmenting paths
(considering edges in M and all edges in S during the recursive calls) with endpoint a (,
and at most (1/ε4)` length (2` + 1)-augmenting paths with endpoint b). This is because,
on any of the free vertices, at most 1/ε4 edges are stored in S during the function call
Augment(`, V,M), and the subsequent recursive calls. (See Figure 1 for instance.)

After the length (2`+ 1)-augmentation of P , none of the other 2/(ε4)`− 1 length (2`+ 1)-
augmenting paths can be augmented. (Figure 2 gives an illustration.) Thus, the total number
of augmentations during one call Augment(`, V,M) is at least 1

2/(ε4)` fraction of the total
number of good (2`+ 1)-augmenting paths in M . J

I Lemma 5. After
(
1/ε5`) function calls Augment(`, V,M), there are at most ε2|M | edges

remaining in M that are (2`+ 1)-augmentable.

S. Tirodkar 39:9

Figure 2 Suppose ` = 3. Green solid lines and dotted lines represent a path P that was augmented,
and blue solid lines and dashed lines represent the paths that can no longer be augmented due to
that augmentation of path P .

Proof. Lemma 4 shows that, if there are k good (2`+1)-augmenting paths inM with respect
to some M∗, then in each call Augment(`, V,M), at least ε4` fraction of these good paths
are augmented (ignoring the 1/2 factor). So, after log(1/ε4`)/ε4` passes, the number of good
(2`+ 1)-augmenting paths remaining in M are at most

k(1− ε4`)(log(1/ε4`)/ε4`) ≤ ε4` · k ≤ ε4` · |M | ≤ ε3|M |.

Suppose that all the bad edges E`B from the last function call Augment(`, V,M) belong
to distinct length (2` + 1)-augmenting paths. Then, by Lemma 3, and by the bound on
the number of good length (2` + 1)-augmenting paths remaining, at most 2ε3|M | length
(2`+ 1)-augmenting paths remain in M .

Since we only consider augmenting paths of length at most (1/ε), and each augmenting
path of length (1/ε) contains at most (1/(2ε)) edges in M , the total number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |. J

As mentioned earlier, the function call Augment(`, V,M) assumes that there are no shorter
than length (2`+ 1)-augmenting paths. But the analysis does not require this assumption.
This assumption is used in the proof of Lemma 2. But Lemma 2 anyways gives an overestimate
on the upper bound for ` > 1. Also, during the function call Augment(`, V,M), if the
algorithm comes across a shorter augmenting path, it is ignored. Thus, using Lemmas 1
and 5, we claim the following result.

I Theorem 6. Algorithm 1 is a (1/ε)O(1/ε)-pass (1+ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs.

Note that during the function call Augment(`, V,M), at most one edge is stored in S

from a matched vertex to a free vertex. So, there are at most 2|M | edges stored in the
semi-matchings at any stage. Thus, the algorithm uses O(n logn) space.

4 Algorithm on General Graphs

In this section, we present a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic algorithm
for maximum matching on general graphs. The high level idea for the algorithm on general
graphs is same as the algorithm on bipartite graphs.

As already mentioned earlier, there do not exist “blossoms” in the bipartite graphs, and
the existence of blossoms in the general graphs, makes it difficult to find augmenting paths.
We address this issue in the following manner.

While finding the semi-matchings, instead of storing at most one edge on any matched
vertex, the algorithm stores at most two edges, and the second edge is chosen carefully. The
algorithm needs access to all prior semi-matchings it has stored during the function call

FSTTCS 2018

39:10 Maximum Matching in Graph Streams

xy′

y

S` M S`−2 M S`−4 M S`′ M

Figure 3 Blue solid and dotted lines represent the path pxy, and green solid and dash-dot lines
represent the path pxy′ . As these paths do not intersect in any vertex other than x, xy is added to
S`′ .

Figure 4 Consider the iteration to find length 7-augmentations in general graphs. All the edges
represented by the dashed orange lines will be added to the semi-matching S3, and in the subsequent
iteration if we only consider those edges in M on which there are no edges stored in S3 (there are
none), then we wont be able to find the length 7-augmenting path. So we need to consider all the
edges in M in the subsequent iterations. But then V1 ∩ V (M) 6= ∅.

Augment(`, V,M) to add the second edge. So, rather than using recursive calls inside the
function call Augment (`, V,M), we iteratively find semi-matchings. Let S`′ denote the
semi-matching stored during the iteration to find the middle length (2`′ + 1) path of any
length (2`+ 1)-augmenting path. In this iteration, when the edge xy is read during a pass,
such that x ∈ V (M) and y ∈ V1, suppose ∃xy′ ∈ S`′ . Let Pxy (or Pxy′) denote the set of
paths starting with xy (or xy′), alternating between some edge in M and some edge in S`′+2i,
for i going from 1 to (`− `′)/2, ending in some edge in S`. If ∃pxy ∈ Pxy, and ∃pxy′ ∈ Pxy′ ,
such that pxy and pxy′ do not intersect in any vertex except x, then we add xy to S`′ . This
ensures that when the middle length (2`′ + 1) path of any length (2`+ 1)-augmenting path is
found, there exist two non-intersecting paths of length (`− `′), such that each path contains
one edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence), and they form length
(2`+ 1)-augmenting path along with the middle length (2`′ + 1) path. See Figure 3 for an
illustration of the process of adding a second edge, incident on vertex x, to S`′ .

For general graphs, unlike bipartite graphs, we require that V (M) and V1 are not disjoint
(see Figure 4 for a reason).

So, the algorithm needs to store directed semi-matchings instead of semi-matchings.
Because V (M) and V1 are not disjoint, while adding an edge xy to any directed semi-
matching, it is ensured that there exists a directed path starting with xy containing alternate
edges in M and the directed semi-matchings previously stored, such that it does not visit x,
thus avoiding formation of a cycle. (See Figures 5 and 6 for an illustration.)

Algorithm 2 gives a formal description.

Bad Edges

In the function call Augment(`, V,M), suppose we are in an iteration to find the middle
length (2`′ + 1) path of the length (2` + 1)-augmenting paths in the matching matching
M . Let au1v1u2v2u3 . . . v`−1u`v`b denote any length (2`+ 1)-augmenting path in M with
respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . . u(`+`′)/2v(`+`′)/2 u(`+`′)/2+1 denotes

S. Tirodkar 39:11

x y

Figure 5 Red solid lines represent edges in M . Edge xy is not added to a Directed Semi-Matching
because there does not exist a directed path starting from xy and not visiting x. The other orange
dotted lines represent edges stored in Directed Semi-Matchings in previous iterations.

x y

Figure 6 Red solid lines represent edges in M . Edge xy is added to a Directed Semi-Matching
because there exists a directed path starting from xy and not visiting x. The other orange dotted
lines represent edges stored in Directed Semi-Matchings in previous iterations.

the middle length (2`′ + 1) path of the augmenting path. Edge u(`−`′)/2+1v(`−`′)/2+1 ∈M
(or u(`+`′)/2v(`+`′)/2 ∈ M) is called a bad edge under one of the following two conditions.
(Note that in any iteration, V1 denotes the set of free vertices.)
1. If there is no directed edge added to S`′ which is incident from the vertex u(`−`′)/2+1 (or

v(`+`′)/2) to some vertex in V1, because there already were (1/ε4) incoming edges in S`′

incident on the vertices in V1 for all the edges incident from u(`−`′)/2+1 (or v(`+`′)/2).
2. If there is only one directed edge (not in M∗) added to S`′ that is incident from the

vertex u(`−`′)/2+1 (or v(`+`′)/2) to some vertex in V1, and a second directed edge is not
added to S`′ , because there already were (1/ε4) incoming edges in S`′ incident on the
vertices in V1 for all other edges incident from u(`−`′)/2+1 (or v(`+`′)/2).

Note. A directed edge which is incident from the vertex u(`−`′)/2+1 (or v(`+`′)/2) to some
vertex in V1 may not be added to S`′ also for one of the following two other reasons. First, if
the addition of such an edge is going to form a cycle, and second, if the addition of such an edge
does not produce two non-intersecting paths from the vertex u(`−`′)/2+1 to the unmatched
vertices. We argue that the edge u(`−`′)/2+1v(`−`′)/2+1 ∈ M (or u(`+`′)/2v(`+`′)/2 ∈ M) is
not bad due to either of the above mentioned reasons.

In the first case, such an edge can be ignored, as there already exists a shorter directed
path from the vertex u(`−`′)/2+1 to some unmatched vertex. The second case needs careful
attention. Let u(`−`′)/2+1v(`−`′)/2 ∈M∗ be the edge not added to S`′ , and let u(`−`′)/2+1v

be the only edge that is added to S`′ . Either v(`−`′)/2u(`−`′)/2 ∈ M∗ is a bad edge or not.
If it is a bad edge, we can ignore the edge u(`−`′)/2+1v(`−`′)/2+1 ∈M . Otherwise, there are
two sub cases.
1. There are two directed edges from u(`−`′)/2 in S`′+2, which means there are two non-

intersecting directed paths p1 and p2, from u(`−`′)/2 to unmatched vertices. If there exists
a directed path from v which intersects p1 or p2 or neither of them, then the algorithm
should be able to add u(`−`′)/2+1v(`−`′)/2 to S`′ . If there exists a directed path from v

which intersects both p1 and p2, then the edge u(`−`′)/2+1v(`−`′)/2+1 is not a bad edge,
as it can be used in the length (2`+ 1)-augmentation.

2. There is only one directed edge from u(`−`′)/2 in S`′+2. Suppose there exists a directed
path from u(`−`′)/2 to unmatched vertices, which does not contain any bad edges (If
there does not exist such a path, then we can ignore the edge u(`−`′)/2+1v(`−`′)/2+1 ∈M .)

FSTTCS 2018

39:12 Maximum Matching in Graph Streams

Algorithm 2 Deterministic Algorithm on General Graphs.
1: Find Maximal Matching M in the first pass.
2: for ` = 1 to 1/(2ε) do . To Remove almost all (2`+ 1)-augmenting paths
3: for Phase p = 1 to 1/ε5` do
4: M ← Augment(`, V,M).
5: Output M .
6: function Augment(`, V,M) . Function of length (2`+ 1)-augmentations.
7: `′ := `, V1 ← V \ V (M).
8: while `′ ≥ 0 do
9: S`′ ← ∅.

10: for all edges ab do . One pass to find a directed semi-matching
11: for all xy ∈ {ab, ba} do . Directed edges ab and ba.
12: if x ∈ V (M), y ∈ V1, and ∃ a directed path starting with xy, with one

edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence) that does not visit x
then

13: if degOS`′ (x) = 0 and degIS`′ (y) < 1/ε4 then
14: S`′ ← S`′ ∪ {xy} . Add directed edge xy.
15: else if degOS`′ (x) = 1 and degIS`′ (y) < 1/ε4 then
16: Suppose ∃xy′ ∈ S`′ .
17: Let Pxy (or Pxy′) denote the set of directed paths starting with xy

(or xy′), with one edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence).
18: if ∃pxy ∈ Pxy, and ∃pxy′ ∈ Pxy′ , such that pxy and pxy′ do not

intersect in any vertex except x then
19: S`′ ← S`′ ∪ {xy} . Add directed edge xy.
20: V1 ← ∅.
21: for all edges uv ∈M do
22: if ∃ua ∈ S`′ then . Directed edge ua.
23: V1 ← V1 ∪ {v}. . Set of free vertices for the next iteration.
24: `′ := `′ − 2

. End of While Loop
25: (2`+ 1)-augment M greedily using edges in S`, S`−2,
26: return M .

This implies that there is a directed path from v that intersects this directed path, and
hence the edge u(`−`′)/2+1v(`−`′)/2+1 is not a bad edge, as it can be used in the length
(2`+ 1)-augmentation (along with the directed edge u(`−`′)/2+1v ∈ S`′).

4.1 Analysis
We begin the analysis for any length (2`+ 1)-augmentations for the matching M . Let E`
denote the set of (2`+ 1)-augmentable edges in M with respect to an optimal matching M∗,
such that |E`| is maximum. Also, let E`B1

denote the outermost bad edges of any length
(2`+ 1)-augmenting path. The following lemma gives an upper bound on E`B1

.

I Lemma 7. |E`B1
| ≤ 4ε4|M |.

Proof. Without loss of generality, lets consider the edge u1v1 in a length (2`+ 1)-augmenting
path au1v1u2v2u3 . . . v`−1u`v`b. If u1v1 is a bad edge, then by the definition of a bad edge,
there are (1/ε4) edges in S` responsible. So, (1/ε4)|E`B1

| ≤ |S`|. For ` > 1, each edge in M

S. Tirodkar 39:13

can have at most two outgoing edges in S` incident on its endpoints (as there are no length
3-augmentable edges in M), i.e. |S`| ≤ 2|M |. Hence, |E`B1

|/ε4 ≤ 2|M |.
For ` = 1, each edge in M can have at most two outgoing edges in S` incident from each

its of endpoints, i.e. |S`| ≤ 4|M |. Hence, |E`B1
|/ε4 ≤ 4|M |. J

Let E`B denote the set of the bad edges, formed during the iterations inside the function
call Augment(`, V,M), in all the length (2`+ 1)-augmenting paths. The following lemma
bounds the total number of bad edges E`B in E`.

I Lemma 8. |E`B | ≤ ε3|M |.

Proof. We write a recurrence relation to find the total number of bad edges E`B in E`.

BadEdges(`) = |E`B1
|+ BadEdges(`− 2)

=⇒ |E`B | ≤ 2ε4|M |+ BadEdges(`− 2) . . . by Lemma 7
=⇒ |E`B | ≤ 2ε4|M |+ 2ε4|M |+ · · ·+ 2ε4|M | . . . at most (1/(4ε)) times.
=⇒ |E`B | ≤ ε3|M |.

The function BadEdges(`′) gives the total number of bad edges in E` formed during the
iteration to find middle length (2`′ + 1) path of any length (2`+ 1)-augmenting path. J

Now, we give a bound on the total number of augmentations during one function call
Augment(`, V,M). We say that an augmenting path is “good” if none of the edges in that
augmenting path belong to E`B .

I Lemma 9. One function call Augment(`, V,M) augments at least ε4`/2 fraction of the
total number of good (2`+ 1)-augmenting paths in M .

Proof. Consider a length (2` + 1)-augmentation of an augmenting path P (for instance,
P := au1v1u2v2u3 . . . v`−1u`v`b). There are at most (1/ε4)` length (2`+1)-augmenting paths
(considering edges in M,S`, S`−2, . . .) with the endpoint a (, and at most (1/ε4)` length
(2`+ 1)-augmenting paths with the endpoint b). This is because, on any of the free vertices,
at most 1/ε4 edges are stored in any Si during the function call Augment(`, V,M).

After the length (2` + 1)-augmentation of P , none of the other 2/(ε4)` − 1 length
(2` + 1)-augmenting paths can be augmented. Thus, the total number of augmentations
during one call Augment(`, V,M) is at least 1

2/(ε4)` fraction of the total number of good
(2`+ 1)-augmenting paths in M . J

I Lemma 10. After (1/ε5`) function calls Augment(`, V,M), the number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |.

Proof. Lemma 9 shows that, if there are k good (2`+1)-augmenting paths inM with respect
to some M∗, then in each call Augment(`, V,M), at least ε4` fraction of these good paths
are augmented (ignoring the 1/2 factor). So, after log(1/ε4`)/ε4` passes, the number of good
(2`+ 1)-augmenting paths remaining in M are at most

k(1− ε4`)(log(1/ε4`)/ε4`) ≤ ε4` · k ≤ ε4` · |M | ≤ ε3|M |.

Suppose all the bad edges E`B from the last function call Augment(`, V,M) belong to distinct
length (2`+ 1)-augmenting paths. Then, by Lemma 8, and by the bound on the number of
good length (2`+1)-augmenting paths remaining, at most 2ε3|M | length (2`+1)-augmenting
paths remain in M .

FSTTCS 2018

39:14 Maximum Matching in Graph Streams

Since we only consider augmenting paths of length at most (1/ε), and each augmenting
path of length (1/ε) contains at most (1/(2ε)) edges in M , the total number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |. J

As mentioned earlier, the function call Augment(`, V,M) assumes that there are no shorter
than length (2`+ 1)-augmenting paths. But the analysis does not require this assumption.
This assumption is used in the proof of Lemma 7. But Lemma 7 anyways gives an overestimate
on the upper bound for ` > 1. Also, during the function call Augment(`, V,M), if the
algorithm comes across a shorter augmenting path, it is ignored. Thus, using Lemmas 1
and 10, we claim the following result.

I Theorem 11. Algorithm 2 is a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic
algorithm for maximum matching on general graphs.

Note that during the function call Augment(`, V,M), at most two edges are stored in any
S` from a matched vertex to free vertices. So, there are at most 2`|M | edges stored in the
directed semi-matchings at any stage. Thus, the algorithm uses O

(1
ε · n logn

)
= O(n logn)

space.

References
1 Kook Jin Ahn and Sudipto Guha. Linear Programming in the Semi-streaming Model with

Application to the Maximum Matching Problem. Inf. Comput., 222:59–79, January 2013.
doi:10.1016/j.ic.2012.10.006.

2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On Estimating Maximum Matching Size
in Graph Streams. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1723–1742, 2017. doi:10.1137/1.9781611974782.113.

3 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum Matchings
in Dynamic Graph Streams and the Simultaneous Communication Model. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1345–1364, 2016. URL:
http://dl.acm.org/citation.cfm?id=2884435.2884528.

4 Aaron Bernstein and Cliff Stein. Faster Fully Dynamic Matchings with Small Approxi-
mation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 692–
711, 2016. doi:10.1137/1.9781611974331.ch50.

5 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic Fully
Dynamic Data Structures for Vertex Cover and Matching. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 785–804, 2015. doi:10.1137/1.9781611973730.54.

6 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully Dynamic Approx-
imate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case Update
Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 470–489,
2017. doi:10.1137/1.9781611974782.30.

7 Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online Algorithms for Maximum
Cardinality Matching with Edge Arrivals. In 25th Annual European Symposium on Al-
gorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 22:1–22:14, 2017.
doi:10.4230/LIPIcs.ESA.2017.22.

8 Marc Bury and Chris Schwiegelshohn. Sublinear Estimation of Weighted Matchings in
Dynamic Data Streams. In Proc. 23rd Annual European Symposium on Algorithms, pages
263–274, 2015. doi:10.1007/978-3-662-48350-3_23.

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1137/1.9781611974782.113
http://dl.acm.org/citation.cfm?id=2884435.2884528
http://dx.doi.org/10.1137/1.9781611974331.ch50
http://dx.doi.org/10.1137/1.9781611973730.54
http://dx.doi.org/10.1137/1.9781611974782.30
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.22
http://dx.doi.org/10.1007/978-3-662-48350-3_23

S. Tirodkar 39:15

9 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Mathematical Programming, 154(1):225–247, 2015. doi:10.1007/
s10107-015-0900-7.

10 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming Algorithms for Submod-
ular Function Maximization. In Proc. 42nd International Colloquium on Automata, Lan-
guages and Programming, pages 318–330, 2015. doi:10.1007/978-3-662-47672-7_26.

11 Ashish Chiplunkar, Sumedh Tirodkar, and Sundar Vishwanathan. On Randomized Algo-
rithms for Matching in the Online Preemptive Model. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
325–336, 2015. doi:10.1007/978-3-662-48350-3_28.

12 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via Sam-
pling with Applications to Finding Matchings and Related Problems in Dynamic Graph
Streams. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1326–1344, 2016. URL: http://dl.acm.org/citation.cfm?id=2884435.2884527.

13 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
Matching in the Semi-streaming Model. Algorithmica, 63(1):490–508, 2012. doi:10.1007/
s00453-011-9556-8.

14 Leah Epstein, Asaf Levin, Julian Mestre, and Danny Segev. Improved Approximation Guar-
antees for Weighted Matching in the Semi-streaming Model. SIAM Journal on Discrete
Mathematics, 25(3):1251–1265, 2011. doi:10.1137/100801901.

15 Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved Bounds for Online
Preemptive Matching. In 30th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2013, Kiel, Germany, pages 389–399, 2013. doi:10.4230/LIPIcs.
STACS.2013.389.

16 H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. Finding Large Matchings in Semi-
Streaming. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), pages 608–614, December 2016. doi:10.1109/ICDMW.2016.0092.

17 Hossein Esfandiari, Mohammad T. Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming Algorithms for Estimating the Matching Size in Planar Graphs
and Beyond. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1217–1233, 2015. URL: http://dl.acm.org/citation.cfm?id=2722129.2722210.

18 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, De-
cember 2005. doi:10.1016/j.tcs.2005.09.013.

19 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proc. 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 468–485, 2012. URL: http://dl.acm.org/citation.cfm?
id=2095116.2095157.

20 Sagar Kale and Sumedh Tirodkar. Maximum Matching in Two, Three, and a Few More
Passes Over Graph Streams. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, pages 15:1–15:21, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.
15.

21 Michael Kapralov. Better bounds for matchings in the streaming model. In Proc. 24th
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2013.

22 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating Matching Size from
Random Streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 734–751, 2014. URL: http://dl.acm.org/citation.cfm?id=2634074.2634129.

FSTTCS 2018

http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/978-3-662-47672-7_26
http://dx.doi.org/10.1007/978-3-662-48350-3_28
http://dl.acm.org/citation.cfm?id=2884435.2884527
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.389
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.389
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
http://dl.acm.org/citation.cfm?id=2634074.2634129

39:16 Maximum Matching in Graph Streams

23 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An Optimal Algorithm for On-line
Bipartite Matching. In Proceedings of the Twenty-second Annual ACM Symposium on
Theory of Computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

24 Christian Konrad. Maximum Matching in Turnstile Streams. In Proc. 23rd Annual Euro-
pean Symposium on Algorithms, pages 840–852, 2015. doi:10.1007/978-3-662-48350-3_
70.

25 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum Matching in Semi-
Streaming with Few Passes. CoRR, abs/1112.0184, 2014. URL: http://arxiv.org/abs/
1112.0184.

26 Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals:
An Approach Based on Strongly Factor-revealing LPs. In Proceedings of the Forty-third
Annual ACM Symposium on Theory of Computing, STOC ’11, pages 597–606, New York,
NY, USA, 2011. ACM. doi:10.1145/1993636.1993716.

27 Andrew McGregor. Problem 60: Single-Pass Unweighted Matchings. http://sublinear.
info/index.php?title=Open_Problems:60. Accessed: 2018-02-10.

28 Andrew McGregor. Finding graph matchings in data streams. In Proc. 8th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages
170–181, 2005. doi:10.1007/11538462_15.

29 Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) Algorithm for Finding Maximum

Matching in General Graphs. In Proceedings of the 21st Annual Symposium on Foundations
of Computer Science, SFCS ’80, pages 17–27, Washington, DC, USA, 1980. IEEE Computer
Society. doi:10.1109/SFCS.1980.12.

30 Ami Paz and Gregory Schwartzman. A (2+ε)-Approximation for Maximum Weight Match-
ing in the Semi-Streaming Model. In Proc. 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2153–2161, 2017. doi:10.1137/1.9781611974782.140.

31 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
32 Shay Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In IEEE 57th

Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016. doi:10.1109/
FOCS.2016.43.

33 Mariano Zelke. Weighted matching in the semi-streaming model. In Proc. 25th Interna-
tional Symposium on Theoretical Aspects of Computer Science, pages 669–680, 2008.

http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://arxiv.org/abs/1112.0184
http://arxiv.org/abs/1112.0184
http://dx.doi.org/10.1145/1993636.1993716
http://sublinear.info/index.php?title=Open_Problems:60
http://sublinear.info/index.php?title=Open_Problems:60
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1137/1.9781611974782.140
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1109/FOCS.2016.43

	Introduction
	Organization of the paper

	Preliminaries
	Warming Up: An Algorithm on Bipartite Graphs
	Algorithm on General Graphs
	Analysis

