Continuous Algorithms

Santosh Vempala

Georgia Institute of Technology, Atlanta, Georgia, USA

– Abstract –

While the design of algorithms is traditionally a discrete endeavour, in recent years many advances have come from continuous perspectives. Typically, a continuous process, deterministic or randomized, is designed and shown to have desirable properties, such as approaching an optimal solution or a target distribution, and an algorithm is derived from this by appropriate discretization. We will discuss examples of this for optimization (gradient descent, interior-point method) and sampling (Brownian motion, Hamiltonian Monte Carlo), with applications to learning. In some interesting and rather general settings, the current fastest methods have been obtained via this approach.

2012 ACM Subject Classification Theory of computation \rightarrow Design and analysis of algorithms

Keywords and phrases Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.4

Category Invited Paper

© Santosh Vempala; licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Editors: Sumit Ganguly and Paritosh Pandya; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany