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—— Abstract

We study sketching and streaming algorithms for the Longest Common Subsequence problem
(LCS) on strings of small alphabet size |3|. For the problem of deciding whether the LCS of strings
x,y has length at least L, we obtain a sketch size and streaming space usage of O(LI*I=1log L).
We also prove matching unconditional lower bounds.

As an application, we study a variant of LCS where each alphabet symbol is equipped with
a weight that is given as input, and the task is to compute a common subsequence of maximum
total weight. Using our sketching algorithm, we obtain an O(min{nm,n+m!¥})-time algorithm
for this problem, on strings z, y of length n, m, with n > m. We prove optimality of this running
time up to lower order factors, assuming the Strong Exponential Time Hypothesis.
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1 Introduction

1.1 Sketching and Streaming LCS

In the Longest Common Subsequence problem (LCS) we are given strings = and y and the
task is to compute a longest string z that is a subsequence of both = and y. This problem has
been studied extensively, since it has numerous applications in bioinformatics (e.g. comparison
of DNA sequences [5]), natural language processing (e.g. spelling correction [40, 49]), file
comparison (e.g. the UNIX diff utility [23, 38]), etc. Motivated by big data applications, in
the first part of this paper we consider space-restricted settings as follows:
LCS Sketching: Alice is given = and Bob is given y. Both also are given a number L.
Alice and Bob compute sketches sky, (x) and sk, (y) and send them to a third person, the
referee, who decides whether the LCS of x and y is at least L. The task is to minimize
the size of the sketch (i.e., its number of bits) as well as the running time of Alice and
Bob (encoding) and of the referee (decoding).
LCS Streaming: We are given L, and we scan the string x from left to right once, and
then the string y from left to right once. After that, we need to decide whether the LCS
of x and y is at least L. We want to minimize the space usage as well as running time.
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Analogous problem settings for the related edit distance have found surprisingly good solutions
after a long line of work [11, 29, 46, 16]. For LCS, however, strong unconditional lower
bounds are known for sketching and streaming: Even for L = 4 the sketch size and streaming
memory must be Q(n) bits, since the randomized communication complexity of this problem
is Q(n) [47]. Similarly strong results hold even for approzimating the LCS length [47], see
also [35]. However, these impossibility results construct strings over alphabet size ©(n).

In contrast, in this paper we focus on strings z,y defined over a fixed alphabet ¥ (of
constant size). This is well motivated, e.g., for binary files (X = {0,1}), DNA sequences
(X ={A,G,C,T}), or English text (¥ ={a,...,2,A4,...,Z} plus punctuation marks). We
therefore suppress factors depending only on |X| in O-notation throughout the whole paper.
Surprisingly, this setting was ignored in the sketching and streaming literature so far; the
only known upper bounds also work in the case of large alphabet and are thus (n).

Before stating our first main result we define a run in a string as the non extendable
repetition of a character. For example the string baaabc has a run of character a of length 3.
Our first main result is the following deterministic sketch.

» Theorem 1. Given a string x of length n over alphabet ¥ and an integer L, we can
compute a subsequence Cp(z) of x such that (1) |Cp(z)| = O(LIP), (2) Cp(z) consists of
O(LPI=1) runs of length at most L, and (3) any string y of length at most L is a subsequence
of x if and only if it is a subsequence of Cr(z). Moreover, Cr(z) is computed by a one-pass
streaming algorithm with memory O(LI*=Y1og L) and running time O(1) per symbol of .

Note that we can store Cp(z) using O(LI®I='log L) bits, since each run can be encoded
using O(log L) bits. This directly yields a solution for LCS sketching, where Alice and Bob
compute the sketches sk, (z) = Cp(x) and sk (y) = CL(y) and the referee computes an LCS
of Op(x) and Cp(y). If this has length at least L then also x,y have LCS length at least L.
Similarly, if z,y have an LCS z of length at least L, then z is also a subsequence of C,(x)
and Cp,(y), and thus their LCS length is at least L, showing correctness. The sketch size is
O(L*1'1og L) bits, the encoding time is O(n), and the decoding time is O(L*1), as LCS
can be computed in quadratic time in the string length O(L*I).

We similarly obtain an algorithm for LCS streaming by computing C,(x) and then C,(y)
and finally computing an LCS of Cp(x) and CL(y). The space usage of this streaming
algorithm is O(LI*=1log L), and the running time is O(1) per symbol of = and y, plus
O(L**!) for the last step.

These size, space, and time bounds are surprisingly good for |X| = 2, but quickly
deteriorate with larger alphabet size. For very large alphabet size, this deterioration was to
be expected due to the Q(n) lower bound for |¥| = ©(n) from [47]. We further show that
this deterioration is necessary by proving optimality of our sketch in several senses:

We show that for any L, ¥ there exists a string  (of length O(LI¥!)) such that no string 2’
of length o(L”!) has the same set of subsequences of length at most L. Similarly, this
string = cannot be replaced by any string consisting of o(LI*I=1) runs without affecting
the set of subsequences of length at most L. This shows optimality of Theorem 1 among
sketches that replace z by another string ' (not necessarily a subsequence of z) and then
compute an LCS of 2’ and y. See Theorem 4.

More generally, we study the Subsequence Sketching problem: Alice is given a string x
and number L and computes sk (z). Bob is then given sky (x) and a string y of length L
and decides whether y is a subsequence of z. Observe that any solution for LCS sketching
or streaming with size/memory S = S(L, X)) yields a solution for subsequence sketching
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with sketch size S.! Hence, any lower bound for subsequence sketching yields a lower
bound for LCS sketching and streaming. We show that any deterministic subsequence
sketch has size Q(LI®I=1log L) in the worst case over all strings 2. This matches the
run-length encoding of Cp(z) even up to the log L-factor. If we restrict to strings of
length ©(LI¥I=1) we still obtain a sketch size lower bound of Q(L!*I=1). See Theorem 7.
Finally, randomization does not help either: We show that any randomized subsequence
sketch, where Bob may err in deciding whether y is a subsequence of & with small constant
probability, has size Q(LI®I=1), even restricted to strings z of length O(L!>I=1). See
Theorem 10.
We remark that Theorem 1 only makes sense if L < n. Although this is not the best
motivated regime of LCS in practice, it corresponds to testing whether z and y are “very
different” or “not very different”. This setting naturally occurs, e.g., if one string is much
longer than the other, since then L < m < n. We therefore think that studying this regime
is justified for the fundamental problem LCS.

1.2 WLCS: In between min-quadratic and rectangular time

As an application of our sketch, we determine the (classic, offline) time complexity of a
weighted variant of LCS, which we discuss in the following.

A textbook dynamic programming algorithm computes the LCS of given strings x,y
of length n in time O(n?). A major result in fine-grained complexity shows that further
improvements by polynomial factors would refute the Strong Exponential Time Hypothesis
(SETH) [1, 13] (see Section 5 for a definition). In case x and y have different lengths n and
m, with n > m, Hirschberg’s algorithm computes their LCS in time O((n +m?)logn) [22],

and this is again near-optimal under SETH. This running time could be described as “min-

quadratic”, as it is quadratic in the minimum of the two string lengths. In contrast, many
other dynamic programming type problems have “rectangular” running time? (5(nm), with
a matching lower bound of (nm)'~°1) under SETH, e.g., Fréchet distance [4, 12], dynamic
time warping [1, 13|, and regular expression pattern matching [43, 10].

Part of this paper is motivated by the intriguing question whether there are problems with
intermediate running time, between “min-quadratic” and “rectangular”. Natural candidates
are generalizations of LCS, such as the weighted variant WLCS as defined in [1]: Here
we have an additional weight function W: ¥ — N, and the task is to compute a common
subsequence of x and y with maximum total weight. This problem is a natural variant of
LCS that, e.g., came up in a SETH-hardness proof of LCS [1]. It is not to be confused with
other weighted variants of LCS that have been studied in the literature, such as a statistical
distance measure where given the probability of every symbol’s occurrence at every text
location the task is to find a long and likely subsequence [6, 18], a variant of LCS that favors
consecutive matches [36], or edit distance with given operation costs [13].

Clearly, WLCS inherits the hardness of LCS and thus requires time (n + m?)'=°(),

However, the matching upper bound (5(71 +m?) given by Hirschberg’s algorithm only works

as long as the function W is fixed (then the hidden constant depends on the largest weight).

Here, we focus on the variant where the weight function W is part of the input. In this case,
the basic O(nm)-time dynamic programming algorithm is the best known.

1 For LCS sketching this argument only uses that we can check whether y is a subsequence of = by testing
whether the LCS length of z and y is |y|. For LCS streaming we use the memory state right after
reading z as the sketch skz, (z) and then use the same argument.

2 By O-notation we ignore factors of the form polylog(n).
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Our second main result is to settle the time complexity of WLCS in terms of n and m
for any fixed constant alphabet ¥, up to lower order factors n°!) and assuming SETH.

» Theorem 2. WLCS can be solved in time O(min{nm,n+m!>1}). Assuming SETH, WLCS
requires time min{nm,n +ml>1}1=°W) " eyen restricted to n = O(m®) and |X| = o for any
constants « € R,a > 1 and 0 € N,o > 2.

In particular, for |X| > 2 the time complexity of WLCS is indeed “intermediate”; in
between “min-quadratic” and “rectangular”! To the best of our knowledge, this is the first
result of fine-grained complexity establishing such an intermediate running time.

To prove Theorem 2 we first observe that the usual O(nm) dynamic programming
algorithm also works for WLCS. For the other term n 4+ m!>!, we compress z by running
the sketching algorithm from Theorem 1 with L = m. This yields a string 2’ = Cp,(2)
of length O(m!*!) such that WLCS has the same value on (z,y) and (z',y), since every
subsequence of length at most m of x is also a subsequence of z’, and vice versa. Running
the O(nm)-time algorithm on (2’,y) would yield total time O(n + m/>+1), which is too
slow by a factor m. To obtain an improved running time, we use the fact that z’ consists
of O(m!®I=1) runs. We design an algorithm for WLCS on a run-length encoded string '
consisting of r runs and an uncompressed string y of length m running time O(rm). This
generalizes algorithms for LCS with one run-length encoded string [7, 20, 37]. Together, we
obtain time O(min{nm,n + m/>!}). We then show a matching SETH-based lower bound
by combining our construction of incompressible strings from our sketching lower bounds
(Theorem 4) with the by-now classic SETH-hardness proof of LCS [1, 13].

1.3 Further Related Work

Analyzing the running time in terms of multiple parameters like n, m, L has a long history
for LCS [8, 9, 19, 22, 24, 26, 42, 44, 51]. Recently tight SETH-based lower bounds have been
shown for all these algorithms [14]. In the second part of this paper, we perform a similar
complexity analysis on a weighted variant of LCS. This follows the majority of recent work on
LCS, which focused on transferring the early successes and techniques to more complicated
problems, such as longest common increasing subsequence [39, 33, 52, 17], tree LCS [41], and
many more generalizations and variants of LCS, see, e.g., [32, 15, 48, 28, 3, 34, 30, 21, 45, 25].
For brevity, here we ignore the equally vast literature on the closely related edit distance.

1.4 Notation

For a string « of length n over alphabet X, we write z[i] for its i-th symbol, x[i...j] for
the substring from the i-th to j-th symbol, and |z| for its length. For ¢ € ¥ we write

|z|e := {3 | ©; = c}|. For strings x,y we write x o y for their concatenation, and for k € N
we write 2 for the k-fold repetition z o...ox. A subsequence of z is any string of the form
y = zfir] o xfiz] o... 0 x[ig] with 1 <43 < i < ... <4y < |z]; in this case we write y < z.

A run in z is a maximal substring x[i...j] = ¢/~**1, consisting of a single alphabet letter
¢ € X. Recall that we suppress factors depending only on |3| in O-notation.

2 Sketching LCS

In this section design a sketch for LCS, proving Theorem 1. Consider any string z defined
over alphabet S C 3. We call z a (q,S5)-permutation string if we can partition z =
2023 o 02@ such that each () contains each symbol in S at least once. Observe
that a (g, .S) permutation string contains any string y of length at most ¢ over the alphabet
S as a subsequence.
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Algorithm 1 Outline for computing Cr,(x) given a string « and an integer L.

1: initialize Cf(z) as the empty string

2: for all i from 1 to |z| do

3: if for all S C ¥ with z[i] € S, no suffix of Cp(z) is an (L, S)-permutation string then
4 set Cp(z) + Cr(z) o z[i]

5

: return Cr(x)

» Claim 3. Consider any string v = x’ ocox”, where x’,x" are strings over alphabet ¥ and
ce€X. Let S CX. If some suffix of ' is an (L, S)-permutation string and ¢ € S, then for
all strings y of length at most L we have y < x if and only if y < ' o z”".

Proof. The “if”-direction is immediate. To prove the “only if”, consider any subsequence
y of z of length d < L and let y = x[i;] o z[ig] o ... 0 z[ig]. Let £ and r be the length of =’
and z”, respectively. If i # £ + 1 for all 1 < k < d, then clearly y < 2’ o 2”. Thus, assume
that i, = £+ 1 for some k. Let a be minimal such that z[a.../] only contains symbols in S.
By assumption, z[a.../] is an (L, S)-permutation string, and ¢ = z[f 4+ 1] € S. Let j > 1 be
the minimum index such that x[i;] ... z[ix] only contains symbols in S. Since j is minimal,
xlij—1] ¢ S and thus i, < a for all b < j. Therefore z[i1] o z[is] o...0x[i;—1] 2 z[0...a —1].
Since z[a.../] is an (L, S)-permutation string and |z[i;] o ... o z[i]| < d < L, it follows
that z[i;] o ... o z[i] is a subsequence of z[a.../]. Hence, z[i1] o ... o0 x[iy] < 2’ and
xligy1] o ... oxfig) = 2", and thus y <z’ o z”. <

The above claim immediately gives rise to the following one-pass streaming algorithm.

By Claim 3, the string C,(x) returned by this algorithm satisfies the subsequence property
(3) of Theorem 1. Note that any run in Cp(x) has length at most L, since otherwise for
S = {c} we would obtain an (L, S)-permutation string followed by another symbol ¢, so that
Claim 3 would apply. We now show the upper bounds on the length and the number of runs.
Consider a substring z = Cp(z)[i. .. j] of CL(z), containing symbols only from S C . We
claim that z consists of at most r(|S|) := 2(L 4 1)!¥I=1 — 1 runs. We prove our claim by
induction on |S|. For |S| = 1, the claim holds trivially. For |S| > 1 and any k > 1, let i
be the minimal index such that z[1...4] is a (k, S)-permutation string, or iy, = oo if no
such prefix of z exists. Note that iy, > |z|, since otherwise a proper prefix of z would be an
(L, S)-permutation string, in which case we would have deleted the last symbol of z. The
string z[ix—1 + 1...i, — 1] contains symbols only from S\ {z[ix]} and thus by induction
hypothesis consists of at most rp(]S| — 1) runs. Since if, > |z|, we conclude that the number

of runs in z is at most L- (rp(|S| — 1)+ 1) < L-2(L+ 118172 < 2(L + D)ISI=1 — 1 = r 1 (|S)).

Thus the number of runs of C7 () is at most r(|X]) € O(L¥I~1), and since each run has
length at most L we obtain |C(z)| € O(LI™).

Algorithm 2 shows how to efficiently implement Algorithm 1 in time O(1) per symbol of x.

We maintain a counter tg (initialized to 0) and a set Qg (initialized to () for every S C 3 with
the following meaning. After reading z[1...4], let j be minimal such that x[j ... ] consists of
symbols in S. Then tg is the maximum number ¢ such that x[j...4] is a (¢,.5)-permutation

string. Moreover, let k£ be minimal such that z[j... k] still is a (tg, S)-permutation string.

Then Qs C S is the set of symbols that appear in [k 4+ 1...4]. In other words, in the future
we only need to read the symbols in S\ Qg to complete a (ts + 1, S)-permutation string. In
particular, when reading the next symbol z[i 4+ 1], in order to check whether Claim 3 applies
we only need to test whether for any S C ¥ with x[i + 1] € S we have tg > L. Updating tg
and Qg is straightforward, and shown in Algorithm 2.

40:5
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Algorithm 2 Computing C,(z) in time O(1) per symbol of z.
1: set t; < 0, Qg < 0 forall SC X
2: set Cr(x) to the empty string
3: for all ¢ from 1 to |z| do

4: if tg < L for all S C ¥ with z[i] € S then
5 set Cp(z) + Cr(z) o z[i]

6 for all S such that z[i] € S do

7 set Qs « Qs U {z[i]}

8 if Qg = S then

9 set Qg + 0

10: set tg < tg+1

11: for all S such that z[i] ¢ S do

12: set tg + 0

13: set Qg + 0

Since we assume |X| to be constant, each iteration of the loop runs in time O(1), and
thus the algorithm determines Cr,(x) in time O(n). This finishes the proof of Theorem 1.

3 Optimality of the Sketch

In this section we show that the sketch Cp(z) is optimal in many ways. First, we show that
the length and the number of runs are optimal for any sketch that replaces x by any other
string z with the same set of subsequences of length at most L.

» Theorem 4. For any L and X there exists a string x such that for any string z with
{yly 2o Il <L} ={y]y =2 lyl < L} we have |2 = QL) and = consists of LIZI-1)
TUNS.

Let ¥ ={0,1,...,0 — 1} and ¥, = {0,1,...,k — 1}. We construct a family of strings
x*) recursively as follows, where m := L/|3|:

® =om

2™ = * VD ok)ymoz®1 for1<k<o-1.
Theorem 4 now follows from the following inductive claim, for k = o — 1.

» Claim 5. For any string z with {y | y < ™), |y| <m(k+1)} ={y |y < 2, ly| < m(k+1)}

we have |z| > m* 1 and the number of runs in z is at least m~.

Proof. We use induction on k. For k£ = 0, since y = 0™ < 2 we have z = 0™ with m’ >m
and the number of runs in z is exactly 1. For any k > 0, if |2, > |z|x then k™ < zF
but k™ £ z, and similarly if |z(®)|;, < |z, then £™+1 < z but k™+1 £ 2(®) (note that
m(k +1) > m+ 1 since k > 1, and thus y can be k™ *1). This implies |z|;, = m and thus we
have z = 2 okozMoko...0koz™ where each 2 is a string on alphabet ¥;_;. Hence,
for any 0 < i < m and string 3/’ of length at most mk, we have y = kiy/k™ % < z if and only
if ' < 2. Similarly, y < #*) holds if and only if 3 < z*~1. Since y < z is equivalent to

(#=1)_ By induction

y =< x by assumption, we obtain that v < (9 is equivalent to 3/ <
hypothesis, z(*) has length at least m* and consists of at least m”»~!

all i, string z has length at least m**! and consists of at least m” runs. <

runs. Summing over
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Figure 1 Illustration of constructing x(z) from z. Let m = o = 3. Consider a string z of length

m®~! = 9. The figure shows the construction of z(z) from z.

HEN IES B S BN

Figure 2 Tllustration of the construction of pat(i,y). Let m = o = 3. Consider i = 4 = 1-3'4+1-3°.
Therefore pat(i,y) = 21y12.

Note that the run-length encoding of C(z) has bit length O(LI®I~!log L), since Cp ()
consists of O(LI*I=1) runs, each of which can be encoded using O(log L) bits. We now show
that this sketch has optimal size, even in the setting of Subsequence Sketching: Alice is given
a string x of length n over alphabet ¥ and a number L and computes sky,(x). Bob is then
given sk (x) and a string y of length at most® L and decides whether y is a subsequence
of z.

We construct the following hard strings for this setting, similarly to the previous con-
struction. Let ¥ = {0,1,2,...,0 — 1} and m € N. Consider any vector z € {0,...,m — 1}*,
where k := m?~1. We define the string z = x(2) recursively as follows; see Figure 1 for an
illustration:

z(z) = z(@=1.0)
2o = (();’L:_O2 glembmiti) g c) ogle—lmitm=1) g1 <ec<g—1

20:4) — ozl

A straightforward induction shows that |z(z)| < m? — 1. Moreover, for any 0 < i < m7~!

with base-m representation i = Z;’:—OZ i; -m?, where 0 < i; < m, we define the following
string; see Figure 2 for an illustration:

o—1

pat(i,y) == (OF=] (0 —5)" ") oyo (OF= J

m—l—ij,l)

The following claim shows that testing whether pat(i,y) is a subsequence of x(z) allows
to infer the entries of z.

» Claim 6. We have pat(i,y) < x(2) if and only if y < 07l

Proof. See Figure 3 for illustration. Given i and y, let 2(¢) = ¢le=1 0 2(¢=1) o ¢m—1=ic—1 for
all1 < ¢ <o —1,and 29 = 5. Note that 2(°=Y = pat(i,y) . Set j. = S mle,
so in particular we have j. = m - je_1 + i.. Observe that 2(9) < z(¢Je) if and only if

3 In the introduction, we used a slightly different definition where Bob is given a string of length ezactly L.
This might seem slightly weaker, but in fact the two formulations are equivalent (up to increasing L
by 1), as can be seen by replacing = by 2’ = 0¥'1z and y by ' = oLl ly. Then y < x if and only if
y' =< z’, and 3’ has fixed length L + 1.

40:7
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1] 1

L21] 1]

Figure 3 Illustration of Claim 6. Let m = o = 3 and ¢ = 4. Then pat(:,y) = 21y12. Now observe
that pat(i,y) < x(z) if and only if y < 2(®V = 027,

loso ] 1 Jostu| 1 [o=2I] 2 Jos8 [o= 1] 1 JoB | 2 [os61] 1 Jos| 1 [o=t1]

]
v o] |

2= < gle=Lie—1)  which follows immediately after matching all ¢’s in (¢ and (e,
Therefore, pat(i,y) = 2(~D < 2(©=10) = z(2) holds if and only if 2(9 < z(¢Je) for
any ¢ < o — 2. Substituting ¢ = 0 we obtain that pat(i,y) =< z(z) holds if and only if
y = 20 < z050) = z(0:4) — 2[il, <

» Theorem 7. Any deterministic subsequence sketch has size Q(L|E|_1 log L) in the worst
case. Restricted to strings of length ©(LI*=1), the sketch size is Q(LFI71).

Proof. Let m := L/|X|. Let z € {0,...,m — 1}* with k = m/®I=" and let « = x(z) as above.
Alice is given z, L as input. Notice that there are m* distinct inputs for Alice. Assume for
contradiction that the sketch size is less that k - logm for every x. Then the total number of
distinct possible sketches is strictly less than m¥. Therefore, at least two strings, say x(z;)
and x(29), have the same encoding, for some z1, 2o € {0,...,m — 1}* with z; # 25. Let i be
such that z;[i] # 22[i], and without loss of generality z[i] < z2[i]. Now set Bob’s input to
y = pat(i, 22[i]), which is a valid subsequence of x(z2), but not of z(z;). However, since the
encoding for both x(z2) and z(z1) is the same, Bob’s output will be incorrect for at least one
of the strings. Finally, note that |y| < mo = L. Hence, we obtain a sketch size lower bound
of Q(klogm) = Q(L*¥I= log L).

If we instead choose z from {0, 1}*, then the constructed string z(z) has length O(k) =
O(L*®I=1), and the same argument as above yields a sketch lower bound of Q(L®I=1). <

We now discuss the complexity of randomized subsequence sketching where Bob is allowed
to err with probability 1/3. To this end, we will reduce from the Indezx problem.

» Definition 8. In the Index problem, Alice is given an n-bit string z € {0,1}" and sends a
message to Bob. Bob is given Alices’s message and an integer ¢ € [n] and outputs z[i].

Intuitively, since the communication is one-sided, Alice cannot infer 7 and therefore has
to send the whole string z. This intuition also holds for randomized protocols, as follows.

» Fact 9 ([31]). The randomized one-way communication complexity of Index is Q(n).

Claim 6 shows that subsequence sketching allows us to infer the bits of an arbitrary
string z, and thus the hardness of Index carries over to subsequence sketching.

» Theorem 10. In a randomized subsequence sketch, Bob is allowed to err with probability
1/3. Any randomized subsequence sketch has size Q(LI¥I=1) in the worst case. This holds
even, restricted to strings of length ©(LI*=1).

Proof. We reduce the Index problem to subsequence sketching. Let z € {0, l}k be the input
to Alice in the Index problem, where k = m/>/=1. As above, we construct the corresponding
input z(z) to Alice in subsequence sketching. Observe that |z(z)| = O(m/*I=1). For any
input 4 to Bob in the Index problem, we construct the corresponding input pat(s,0) for Bob
in subsequence sketching. We have pat(i,0) < z(2) if and only if z[i]] = 1 (by Claim 6). This
yields a lower bound of Q(k) = Q(m/®I=1) = Q(LI®I=1) on the sketch size (by Fact 9). <
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4 Weighted LCS

» Definition 11. In the WLCS problem we are given strings x, y of lengths n, m over alphabet
Y. and given a function W: ¥ — N. A weighted longest common subsequence (WLCS) of x
and y is any string z with z < z and z < y maximizing W (z) = Z‘;‘l W (z[i]). The task is
to compute this maximum weight, which we abbreviate as WLCS(z, y).

In the remainder of this section we will design an algorithm for computing WLCS(z, y) in
time O(min{nm,n +m/>}). This yields the upper bound of Theorem 2. Note that here we
focus on computing the maximum weight WLCS(z, y); standard methods can be applied
to reconstruct a subsequence attaining this value. We prove a matching conditional lower
bound of min{nm,n +m/*}1=°() in the next section.

Let z,y, W be given. The standard dynamic programming algorithm for determining
LCS(z,y) in time O(nm) trivially generalizes to WLCS(z,y) as well. Alternatively, we can
first compress = to &’ := Cp,(x) in time O(n) and then compute the WLCS(z/, y), which is
equal to WLCS(z, y) since all subsequences of length at most m of = are also subsequences
of Cy,(x). We show below in Theorem 12 how to compute WLCS of a run-length encoded
string =’ with r runs and a string y of length m in time O(rm). Since 2’ = C,, () consists of
O(m/™1=1) runs and the length of y is m, we can compute WLCS(z,y) = WLCS(C,,(z), )
in time O(m/>!). In total, we obtain time O(min{nm,n +ml>}).

It remains to solve WLCS on a run-length encoded string = with r runs and a string
y of length m in time O(rm). For (unweighted) LCS a dynamic programming algorithm
with this running time was presented by Liu et al. [37]. We first give a brief intuitive
explanation as to why their algorithm does not generalize to WLCS. Let = = i ¢ ... ¢fr
be the run-length encoded string, where ¢; € X, and let L; = 22:1 ¢;. Let D(i,5) =
WLCS(z[1...L;],y[1...4]). Liu et al’s algorithm relies on a recurrence for D(4,j) in terms
of D(i,j — 1). Consider an input like x = bajas - - - axb and y = ajas - - - apbb with W(b) >
>vei Wlae). Note that D(k+2,k+1) = >,y W(ae) + W (b), but D(k+2,k+2) = 2W(b).
Thus D(k+2,k+2) = D(k+2,k+1) = > ,c,y Wae) + W(b). Therefore, in the weighted
setting D(i,7) and D(i,j — 1) can differ by complicated terms that seem hard to figure out
locally. Our algorithm that we develop below instead relies on a recurrence for D(i,j) in
terms of D(i — 1, j").

» Theorem 12. Given a run-length encoded string x consisting of r runs, a string y of
length m, and a weight function W: ¥ — N we can determine WLCS(z,y) in time O(rm).

Proof. We write the run-length encoded string = as ¢{'c? ...clr with ¢; € ¥ and £; > 1.
Let L; = Z;Zl ¢;. 'We will build a dynamic programming table D where D(i,j) stores
the value WLCS(z[1...L;],y[1...j]). In particular, D(0,5) = D(i,0) = 0 for all 4,j. We
will show how to compute this table in O(1) (amortized) time per entry in the following.
Since we can split WLCS(z[1...L;],y[1...j]) = maxo<p<; WLCS(z[1... L;—1],y[1...k]) +
WLCS(ct*, y[k +1...4]), we obtain the recurrence D(i, ) = maxo<p<; D(i — 1, k) + W (c;) -
min{4;, |y[k+1...7]
rewrite the same recurrence as

;. }. Since D(i, j) is monotonically non-decreasing in ¢ and j, we may

D(i, ) = D(i—1 ) - 1ol
(i) ogksm;ﬁcﬂ..jncisei (0= L k) +Wei) -yl + e
=Wi(ei) - [y[L... j]le, D(i—1,k) = W(c;) - [y[L... K]l

max
0<k<y « ylk+1...]le, <l
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Algorithm 3 Computing RTLM(Kj ;) from RTLM(K; ;_1).
1: Initialize RTLM(KZ,]) = RTLM(Ki,j_l)
2: while the smallest (=leftmost) element k of RTLM(K; ;) satisfies |y[k +1...j]|¢, > ¥
do
Remove k from RTLM(K; ;)
while the largest (=rightmost) element k of RTLM(K; ;) satisfies h;(k) < h;(j) do
Remove k from RTLM(K; ;)

Append j to RTLM(K; ;)

Let b; ; be the minimum value of 0 < k < j such that |[y[k+1...j]|., < ¢;. Note that b, ;
is well-defined, since for k = j we always have |y[k+1...j]|., = 0 < ¥;, and note that b; ;
is monotonically non-decreasing in j. We define the active k-window K, ; as the interval
{bij,bi; +1,...,5} Note that K, ; is non-empty and both its left and right boundary are
monotonic in j. Let h;(k) :== D(i —1,k) — W(c;) - |y[1 ... k]|, be the height of k. We define
highest(K; ;) as maxgek, ; hi(k). With this notation, we can rewrite the above recurrence as

D(i,7) =W(ci) - |yl ... jlle; + highest(K; ;).

We can precompute all values |y[1...j]|. in O(m) time. Hence, in order to determine D(i, j)
in amortized time O(1) it remains to compute highest(K; ;) in amortized time O(1). To this
end, we maintain the right to left mazimum sequence of the active window Kj; ;. Specifically,
we consider the sequence RTLM(Kj ;) = (ks, ks—1,...,k1) where k; = j and for any p > 1,
kp is is the largest number in K, ; with k, < k,—1 and h;(kp) > hi(kp—1). In particular, ks
is the largest number in K; ; attaining h;(ks) = highest(K; ;). Hence, from this sequence
RTLM(K; ;) we can determine highest(K; ;) and thus D(7,j) in time O(1). It remains to
argue that we can maintain RTLM(K; ;) in amortized time O(1) per table entry. We sketch
an algorithm to obtain RTLM(K; ;) from RTLM (K ;j_1).

It is easy to see correctness, since the first while loop removes right to left maxima
that no longer lie in the active window, the second while loop removes right to left max-
ima that are dominated by the new element j, and the last line adds j. Note that
ly[k+1...4]lc = |y[l...4]lle = |y[l...k]|c can be computed in time O(1) from the pre-
computed values |y[1...j]|., and thus the while conditions can be checked in time O(1). A
call of Algorithm 3 can necessitate multiple removal operations, but only one insertion. By
charging removals to the insertion of the removed element, we see that Algorithm 3 runs
in amortized time O(1). We therefore can compute each table entry D(i,j) in amortized
time O(1) and obtain total time O(rm). Pseudocode for the complete algorithm is given
below. <

5 Conditional lower bound for Weighted LCS

In this section, we prove a conditional lower bound for Weighted LCS, based on the standard
hypothesis SETH, which was introduced by Impagliazzo, Paturi, and Zane [27] and asserts
that satisfiability has no algorithms that are much faster than exhaustive search.

Strong Exponential Time Hypothesis (SETH).  For any € > 0 there is a k > 3 such that
k-SAT on n variables cannot be solved in time O((2 — €)™).
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Algorithm 4 Computing WLCS(z,y) in time O(r - m).
1: precompute |y[1...d]|. for all i € [m] and ¢ € X.
2: set D(4,0) = D(0,j) =0 for any 0 < i <rand 0 <j <m.
3: fori=1,...,r do
4: RTLM(K%()) — <O>
for j=1,...,mdo
Update RTLM(K; ;) as in Algorithm 3
Let k be the smallest (=leftmost) element of RTLM(Kj ;)
Compute highest(K; ;) = hi(k) = D(i —1,k) = W(c;) - |y[1... k]
9: D(i,7) < Wi(e) - [y[L...Jle; + highest(K; ;).

10: return D(r,m)

ci

Essentially all known SETH-based lower bounds for polynomial-time problems (e.g. [1,
10, 12, 13, 14]) use reductions via the Orthogonal Vectors problem (OV): Given sets A,
B C {0,1}P of size |A| = N, |B| = M, determine whether there are a € A,b € B that are
orthogonal, i.e., Z?Zl a[i]-b[i] = 0, where the sum is over the integers. Simple algorithms solve
OV in time O(2P (N + M)) and O(NM D). The fastest known algorithm for D = ¢(NN) log N
runs in time N2-1/OUoge(N)) (when N = M) [2], which is only slightly subquadratic for
D > log N. This has led to the following reasonable hypothesis.

(Unbalanced) Orthogonal Vectors Hypothesis (OVH).  For any v > 0, OV restricted to
M = ©(N7) and D = N°D) requires time (NM)'=o().

A well-known reduction by Williams [50] shows that SETH implies OVH in case v = 1.

Moreover, an observation in [14] shows that if OVH holds for some = > 0 then it holds for
all v > 0. Thus, OVH is a weaker assumption than SETH, and any OVH-based lower bound
also implies a SETH-based lower bound. The conditional lower bound in this section does
not only hold assuming SETH, but even assuming the weaker OVH.

We use the following construction from the OVH-based lower bound for LCS [1, 13]. For
binary alphabet, such a construction was given in [13].

» Theorem 13. Given A, B C {0,1}7 of size N, in time O(DN) we can compute strings x 4
and yp on alphabet {0,1} of length ©(DN) as well as a number T such that LCS(z4,yp) > 7
holds if and only if there is an orthogonal pair of vectors in A and B. In this construction,
x4 and yp depend only on A and B, respectively, and |z ), |ys|, T depend only on N, D.

We now prove a conditional lower bound for WLCS, i.e., the lower bound of Theorem 2.

» Theorem 14. Given strings x,y of lengths n, m with n > m over alphabet 3, computing
WLCS(z,y) requires time min{nm, n+m!>}1=°W) " assuming OVH. This holds even restricted
to n = m**°W) and |B| = o for any fized constants a € R,a > 1 and 0 € N, o > 2.

Proof. Let ¥ = {0,1,...,0 — 1} and @ = oy + ap, where oy = |a] and aFr = a — af

are the integral and fractional parts. Let M € N and set N = min{ M - [M*F], M7~ 1}.

Note that M divides N. Consider any instance A = {ag,ay,...,an—_1} € {0,1}" and
B = {bg,b1,...,ba—1} C {0, 1}D of the Orthogonal Vectors problem. Partition A into
A0 AL AN/M=1 where |AY| = M. Then by Theorem 13 we can construct strings x(j)
and yp on alphabet {0,1} of length ©(DM) and 7 € N in time O(DM) such that A’ and
B contain an orthogonal pair of vectors if and only if LCS(x(j),yB) > 7. Note that A

and B contain an orthogonal pair of vectors if and only if for some 0 < i < %, A and B
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contain an orthogonal pair of vectors. Hence, A and B contain an orthogonal pair if and
only if maxg<; . N LCS(:CA), yp) > 7. In the following, we encode the latter inequality into
an instance of WLCS.

For simplicity we only give the proof for integral o and o < o (the remaining cases are
omitted and can be found in the appendix). In this case, N = M“ and the running time
lower bound that we will prove is (nm)!=°().

We set A to any value such that A > |yg|/M, and note that A € O(D) suffices. Set
W(k) = \-M*!for k>2 and W(1) = W(0) = 1. Let &), = {0,1,...,k — 1}. We construct
strings = and y as follows:

x = z(@®0)
200 — ( jjviBQ k=1, M i+j) ok:) o g (b= LM+ (M=1)) g9 < | < ¢
e =gl for 0 <i< N/M

y =y

k) — pM=1 6y k=) o oM=L for 29 <k <
e

Y

Yy =1YB-

Observe that for all k, z*%) and y*) are defined on X;. In particular, since a < o — 1
we only use symbols from . Let £(k) denote the length of z(®%) for any i. Observe
that ¢(k) = M -¢(k — 1) + (M — 1) and £(1) € ©(DM). Thus, (k) € ©(DM¥) and

= || € ©(DM®). Tt is straightforward to see that m := |y| = O((k + D)M) = ©(DM),
since k < |X| = O(1). Recall that for any string z, W (z) is its total weight.

» Claim 15. For any integer 2 < k < «, we have (1) (M —1) - Z?:z W) = X(M* — M)
and (2) W(y®) < W(k+1) + X (M* — M).

Proof. For (1), we calculate (M — 1) - Y5, W(€) = (M — 1) - Y5- AMY = M(M* — M).
For (2), by definition of y*) and A we have

W™y < AM+2(M-1)-Y W()

N
=

@ (M

= AM +2X(M" — M) = W(k+1) + A\(M* - M).<

~
[

We now can perform the core step of our correctness argument.
» Lemma 16. For any 2 < k < a and 0 < i < M*', we have (1) WLCS(z*? y*)) >
NMF — M), and (2) WLCS(z*D y(F)) = (M —1)- W (k) + WLCS(z* =19 y==1) for some
M-i<j<M-(i+1).

Proof. For (1), clearly Ok iM=1is a common subsequence of z(*?) and y*). Together
with Claim 15.(1), we obtain WLCS(m(k’i),y(’“)) > E?ZZ(M —1)-W(j) = M(M*F — M).
For (2), we claim that k! is a subsequence of any WLCS of 2(**) and y*). Assuming

otherwise, the WLCS can contain at most M — 2 symbols k and all of y*~1. Therefore,

WLCS (24, ) < (M —2) - W (k) + W (y" ")
< (M —2)-W(k)+W(k) + ANM** — M) by Claim 15.(2)
= (M —1) - AMFYp XM — M) = X (MF — M.
This contradicts WLCS(JJ(k D) y®)) > N(MF — M). Tt follows that &M~ is a subsequence of

the WLCS of (%% and y*). Hence, WLCS(z* y*)) = (M —1)- W (k) + WLCS(z*~19),
y*=1) for some j with M -i < j < M - (i +1). <
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Recursively applying the above lemma and substituting (/) by :vf;p we conclude that
WLCS(z,y) = A+ (M* — M) + maxo<<pa-1 LCS(wQ,yB). Using M® = N and the con-
struction of :Ef;‘, yp, we obtain that WLCS(z,y) > AM(IN — M) 4 7 holds if and only if there is
an orthogonal pair of vectors in A and B. Since OVH asserts that solving the OV instance
(A, B) in the worst case requires time (NM)'=°(1) even for D = N°() we obtain that
determining WLCS(x, y) requires time (NM)'=°W) = (nm/D?)1=°() = (nm)'=°(M). This
completes the proof for all instances where o < o is integral. Note that if a > o, the claimed
lower bound trivially holds as it matches the input size. Now we consider the two remaining
cases, wherec — 1 < a<oand a <o —1.

Case 0 —1 < a < o. Then N =M = M°~!. We construct strings = and y as follows:

2= 2019 5 o 0 0PM

y=y“oar

Again, since ay < o — 1 the strings = and y only use symbols in . We now have n := |z| €
O(DM*®) and m := |y| € ©(DM). Clearly, WLCS(z,y) > WLCS(z(@1:0 y(@)) 4+ W (as) >
W (ar) + (M1 — M). Similar to the proof for integral a, we claim that o is a subsequence
of the WLCS of x and y. Assuming otherwise, the WLCS of x and y contains at most M — 1
symbols a; and all of y(®7—1)_ Therefore,

WLCS(z,y) < (M —1) - W(ay) + W(y@r=b)
< (M —1)-W(ay) +W(as) + A\(M*~! — M) by Claim 15.(2)
=Wi(ag) +A- (M = M* '+ M~ — M) = W(as) + A(M* — M).

This contradicts WLCS(z,y) > W (az) + A(M® — M). Hence, o is a subsequence of
the WLCS of  and y, and WLCS(z,y) = W (az) + WLCS(z(21:9) y(@n)) Tt follows that
WLCS(z,y) > AM®1 =t 4 \(M*1 — M) +7 holds if and only if there exists an orthogonal pair
of vectors in A and B. OVH asserts that solving the OV instance (A4, B) in the worst case
requires time (NM)'=°() even for D = N°(1), Using N = ©(M°1) = ©(M°~1), we obtain
that determining WLCS(z,y) requires time (NM)'=°() = (M7)1=°() = ((m/D)7)t—°0) =
(m!=1)1=e() This completes the proof in the case 0 — 1 < a < .

Case a < o — 1. Inthiscase aj <o —2and N = M. [MF]. Let f = [M“F] as
shorthand. We construct x and y as follows:

xr = (O;‘:—g plani) o (of + 1)) o glarf=1)
y = (ar + 1)f oyl@r) o (ar + 1)f

Once again = and y consist of symbols in ¥, since ay < o — 2. Since |z(®1)| € ©(DM®T),
we have n := |z] € O(DM*T2F) = O(DM?), and m := |y| € ©(DM). The same argument
as before, now with f instead of M parts, shows that WLCS(z,y) = (f — 1)W(ar + 1) +
WLCS(z(@1:9) y(@1)) holds for some 0 < j < f. Plugging in WLCS(z(@19) y(@)) we see
that

WLCS(z,y) = A(f — 1)M® + \(M® — M)+ max LCS(z,,yg).

e N
0<j<4r—1

Hence, WLCS(z,y) > A(f—1)M*! +X(M*! — M)+ holds if and only if there is an orthogonal
pair of vectors in A and B. OVH asserts that solving the OV instance (A, B) in the worst
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case requires time (NM)'=°(M) even for D = N°(), Using N = (M1 - f) = O(M®),
we obtain that determining WLCS(z,y) requires time (NM)!=°() = (protiyl=e() —
(nm/D?)'=°() = (nm)'=°(1) | This completes the proof of the last case a@ < o — 1.

Finally, note that in all cases we constructed strings over alphabet size o of length

n = MM and m = M=) and thus n = me+=eW), <
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