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Abstract
Motivated by cryptographic applications such as predicate encryption, we consider the problem
of representing an arbitrary predicate as the inner product predicate on two vectors. Concretely,
fix a Boolean function P and some modulus q. We are interested in encoding x to ~x and y to ~y
so that

P (x, y) = 1⇐⇒ 〈~x, ~y〉 = 0 mod q,

where the vectors should be as short as possible. This problem can also be viewed as a generaliz-
ation of matching vector families, which corresponds to the equality predicate. Matching vector
families have been used in the constructions of Ramsey graphs, private information retrieval
(PIR) protocols, and more recently, secret sharing.

Our main result is a simple lower bound that allows us to show that known encodings for
many predicates considered in the cryptographic literature such as greater than and threshold
are essentially optimal for prime modulus q. Using this approach, we also prove lower bounds
on encodings for composite q, and then show tight upper bounds for such predicates as greater
than, index and disjointness.
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41:2 On the Inner Product Predicate and a Generalization of Matching Vector Families

1 Introduction

There are many situations in cryptography where one is interested in computing some function
F of a sensitive input x but the computational model is restricted so that only “simple”
functions F can be directly computed. For instance, the entries of x may be encrypted so
that only affine functions can be computed, or distributed between multiple non-interacting
parties so that only local functions can be computed, or simply that we only know how to
construct schemes for handling simple functions.

For all of these reasons, it is useful to be able to “encode” complex functions as simple
functions. An extremely influential example of an “encoding” in the cryptographic literature
is that of garbling schemes (or randomized encodings), which have found applications in
many areas of cryptography and elsewhere (see [20, 11, 14, 3, 2, 4, 19] and references therein).

In this work, we consider the problem of inner product encoding, namely, representing an
arbitrary predicate as the inner product predicate on two vectors. Concretely, fix a Boolean
function P (a predicate) and some modulus q (may be composite as well as prime). We are
interested in mappings x 7→ ~x, y 7→ ~y that map to vectors in Z`q such that for all x, y:

P (x, y) = 1⇐⇒ 〈~x, ~y〉 = 0 mod q,

and ` is as small as possible. This notion is motivated by the study of predicate encryption
in [15], where q is typically very large, for instance, as large as the domains of P , and can
also be viewed as a natural generalization of matching vector families to arbitrary predicates.

As an example, consider the equality predicate over [n]. Here, if q = 2, then it is not
difficult to show that the vectors must have length Ω(n). On the other hand, if q > n, then
it is sufficient to use vectors of length 2: the inner product of (1, x) and (y,−1) is 0 mod q
iff x = y. More generally, for any predicate P : X × Y → {0, 1} and any prime q ≥ 2, the
“truth table” construction achieves vectors of length min{|X |, |Y|}.

Interestingly, inner product predicate encoding for the equality predicate have been
studied in combinatorics and complexity theory, where they are known as matching vector
families. Moreover, matching vector families have found many applications, including the
construction of Ramsey graphs, private information retrieval (PIR) protocols [13, 21, 10, 7, 8],
and more recently, secret-sharing schemes [17, 18, 16]. Here, prior works showed that if q is
a prime, then we must use vectors of length Ω(n

1
q−1 ) [7].

1.1 Our results
Our main results are nearly tight bounds for many predicates considered in the cryptographic
literature such as greater than and threshold, for both prime and composite modulus q. In
particular, we have the following results for prime modulus q:

Greater than predicate for numbers in [n] requires vectors of length n. This rules out the
possibility of deriving the predicate encryption for range queries with O(

√
n) ciphertext

and secret key sizes in [6] as a special case of inner product predicate encryption.
Threshold for n-bit strings and threshold t requires vectors of length 2n−t+1. This
rules out the possibility of constructing full-fledged functional encryption schemes by
carrying out FHE decryption in the lattice-based predicate encryption of Gorbunov,
Vaikuntanathan and Wee [12] using a pairing-based functional encryption scheme for the
inner product predicate.

We then investigate encodings for composite q, specifically when q is a product of k
distinct primes. In many cases, a lower bound of `/k for composite q follows naturally if
our method gives lower bound ` for prime q. For predicates such as greater than, index and
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Table 1 Summary of upper and lower bounds.

predicate q prime q product of k primes
upper lower upper lower

EQn
3 O(qn

1
q−1 ) Ω(n

1
q−1 ) 2Õ((log n)1/k) Ω(log n)

GTn n n n/k n/k

DISJn
4, INDEXn, NEQn n n n/k n/k

ETHRt
n

4 5 n + 1 n/2 n + 1 n/2k

MPOLYd,q
n nd nd nd nd/k

THRt
n nn−t+1 2n−t+1 nn−t+1 2n−t+1/k

OR−EQq
n 2n 2n 2n 2n/k

disjointness, we are able to show tight lower and upper bounds for both prime and composite
q. The full summary of upper and lower bounds is shown in Table 1, and the listed predicates
are described in Section 3.

Finally, we also consider probabilistic inner product predicate encoding. For example,
there is a probabilistic encoding of length O((logn)2) for the greater than predicate for
numbers in [n], while any deterministic encoding must have length Ω(n), if q is prime.

Our lower bound technique

Our lower bound technique is remarkably simple. Suppose that q is prime and we can
represent a predicate P : X × Y → {0, 1} as an inner product predicate on vectors of length
r corresponding to mappings x 7→ ~x, y 7→ ~y. Following [5], we consider a matrix F of
dimensions |X | × |Y| over Zq whose (x, y)’th entry is 〈~x, ~y〉 mod q. Then the matrix F has
rank at most r, because we can write F as the product of two matrices of dimensions |X | × r
and r× |Y|. Concretely, F = UV where the x’th row of U is ~xT and the y’th column of V is
~y. This means that to show a lower bound on r, it suffices to show that F has large rank,
e.g. by exhibiting a full rank submatrix.

As an example, consider the greater than predicate on [n] for any prime modulus q. Then,
the matrix F is an n × n upper triangular matrix where all the entries on and above the
diagonal are non-zero. This matrix has rank n, hence any correct construction must have
dimension at least n. Note that the above lower bound argument breaks down when q is
composite. In fact, if q = 2n, there is an encoding for greater than with dimension 1: take
x 7→ 2x, y 7→ 2n−y. Correctness follows from the fact that 2x · 2n−y = 0 mod 2n ⇔ x ≥ y,
and the construction extends also to the setting where q is a product of n distinct primes.

In order to extend our lower bounds to composite q that is the product of k distinct
primes, we observe that if F mod q contains a triangular submatrix of dimensions `× `, then
there exists some prime factor p of q such that F mod p contains a triangular submatrix
of dimensions `/k × `/k; this follows from looking at the CRT decomposition of q and a
pigeonhole argument. This simple observation allows us to translate many of our lower
bounds to the composite modulus setting, which we prove to be essentially optimal via new
upper bounds.

3 Bounds from previous works, see Section 4.1 for references.
4 For sufficiently large q.
5 Assuming t ≤ n − 2, see Section 4.6.
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41:4 On the Inner Product Predicate and a Generalization of Matching Vector Families

For instance, for the “greater than” predicate, we obtain a tight bound of n/k when q is
a product of k distinct primes; this is sharp contrast to standard matching vector families
(i.e., the equality predicate), where we have constructions of length 2Õ((logn)1/k) when q is a
product of k distinct primes. For the upper bound, we begin with a construction of length 1
for k = n and then derive the more general construction by treating the inputs as vectors of
length n and then dividing that into n/k blocks each of length k.

Finally, we extend our results to the randomized setting. Here, we use a similar argument
to show that the minimum size of a probabilistic inner product encoding is upper bounded
by the probabilistic rank introduced by Alman and Williams [1].

2 Main Theorem

In this section we describe our lower bound technique. Let P : X ×Y → {0, 1} be a predicate,
and q ≥ 2 be the integer modulus. We say that a matrix F : X ×Y represents P modulo q if
for all x ∈ X , y ∈ Y, we have Fx,y = 0 mod q iff P (x, y) = 1.

An inner product encoding of P of length ` is a pair of mappings from X ,Y to Z`q that
map x, y to ~x, ~y in a way that the matrix F : X × Y defined by Fx,y = 〈~x, ~y〉 mod q =
(
∑`
i=1 ~xi ·~yi) mod q represents P . Denote the length of the shortest reduction from P to inner

product modulo q by DI(P, q) (Deterministic Inner product). Then we have the following
simple and effective lower bound method.

I Theorem 1. For any predicate P and any prime q ≥ 2, we have DI(P, q) = minF rank(F ),
where F is any matrix that represents P modulo q.

Proof. We show that if P can be represented by a matrix F modulo q, then the necessary
and sufficient length of the encoding from P to F is exactly rank(F ). The decomposition
rank definition states that the rank of an m× n matrix F is the smallest integer r such that
F can be factored as F = UV , where U is an m × r matrix and V is a r × n matrix. Let
Ux,∗ be the row vector of U that corresponds to x ∈ X and V∗,y be the column vector of V
that corresponds to y ∈ Y. Then the pair of mappings x 7→ UT

x,∗ and y 7→ V∗,y is a correct
encoding of P , which is also the shortest possible for F . J

Therefore, to show a lower bound on the length of an encoding for P , it is sufficient to
exhibit a set of rows R and a set of columns C such that for any matrix F that represents P ,
the submatrix F [C,R] is a full rank submatrix. Typically we find a large full rank upper
triangular submatrix and apply Theorem 1. Other times, we prove a lower bound for some
predicate Q, and then prove that the same lower bound holds for P by showing a predicate
reduction from Q to P (see Section 3 for details).

For composite q, we have the following lower bound:

I Theorem 2. Let q = p1 · · · pk be a product of k distinct primes. Let P be a predicate such
that every matrix F that represents P modulo q is a triangular n× n matrix such that all
numbers on the main diagonal are non-zero modulo q. Then DI(P, q) ≥ n/k.

Proof. Let F represent P modulo q. Let F (i) = F mod pi (all entries taken modulo pi).
Since all entries on the main diagonal of F are non-zero, there exists i ∈ [k] such that
there at least n/k non-zero entries on the main diagonal of F (i) by pigeonhole principle. As
F (i) is also a triangular matrix, the rank of F (i) modulo pi is at least n/k. By Theorem
1, the length of any encoding from P to F (i) modulo pi must be at least n/k, hence also
DI(P, q) ≥ n/k. J
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3 Definitions and Predicates

In this section, first we describe some of the notation used throughout the paper. Then we
define the predicates examined in the paper, and define the predicate reduction.

Notation

We denote the set of all subsets of [n] by 2[n]. For a set S ⊆ [n], define the characteristic
vector χ(S) ∈ {0, 1}n by

χ(S)i =
{

1, if i ∈ S,
0, otherwise.

Conversely, for a vector x ∈ {0, 1}n, let χ−1(x) be the characteristic set of x.
For simplicity, denote the characteristic vector of {i} by ei (the length is usually inferred

from the context). The characteristic vectors of ∅ and [n] are denoted by 0n and 1n. We
denote the identity matrix of dimension n by In, and all ones matrix by Jn.

For a truth expression T , we define [T ] to be 1 if T is true, and 0 if T is false. For
example, [x = y] = 1 iff x = y.

For a number x ∈ [2n], let bin(x) ∈ {0, 1}n be the binary representation of x− 1.

Predicates

We consider the predicates listed below.
Equality: X = Y = [n] and EQn(x, y) = [x = y].
Greater than: X = Y = [n] and GTn(x, y) = [x > y].
Inequality: X = Y = [n] and NEQn(x, y) = [x 6= y].
Index: X = {0, 1}n,Y = [n] and INDEXn(x, i) = [xi = 0]. Here, xi denotes the i’th
coordinate of x. Note that we can also interpret x as the characteristic vector of a subset
of [n]. Because in our model 0 mod q corresponds to “true”, we have defined the index to
be true if the bit value in the corresponding position is 0.
Disjointness: X = Y = 2[n] and DISJn(S, T ) = [S ∩ T = ∅].
Exact threshold: X = Y = 2[n] and ETHRt

n(S, T ) = [|S ∩ T | = t], where t ∈ [n] is the
threshold parameter.
Threshold: X = Y = 2[n] and THRt

n(S, T ) = [|S ∩ T | ≥ t], where t ∈ [n] is the threshold
parameter.
Multilinear polynomials: X = Znq , Y ⊆ {p | p ∈ Zq[x1, . . . , xn], deg(p) ≤ d}, the latter
is the set of all multilinear polynomials of degree at most d. Then MPOLYd,q

n (x, p) =
[p(x1, . . . , xn) = 0 mod q].
Disjunction of equality tests: X = Y = Znq and OR−EQq

n(x, y) = [
∨n
i=1 xi = yi].

Reductions

We say that a predicate P1 : X1 ×Y1 → {0, 1} can be reduced to a predicate P2 : X2 ×Y2 →
{0, 1} if there exist two mappings f : X1 → X2 and g : Y1 → Y2 such that P2(f(x), g(y)) =
P1(x, y) for all x ∈ X1, y ∈ Y1 (or mappings f : X1 → Y2 and g : Y1 → X2). In that case we
write P2 ⇒ P1.

For example, consider the following reductions:

FSTTCS 2018
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DISJn ⇒ INDEXn ⇒ NEQn.
The reduction DISJn ⇒ INDEXn holds since INDEXn(x, i) = DISJn(χ−1(x), {i}).
On the other hand, INDEXn ⇒ NEQn, as NEQn(i, j) = INDEXn(ei, j).
INDEXn ⇒ GTn.
As GTn(x, y) = INDEXn(χ([y]), x), the reduction follows.
Let P : X × Y → {0, 1} be any predicate. Then INDEXmin{|X|,|Y|} ⇒ P .
Let T be the X × Y truth table of P defined by Tx,y = P (x, y). Then we have P (x, y) =
INDEX|X |(Tx, y) and INDEX|X | ⇒ P . Similarly, we also have INDEX|Y| ⇒ P .

Effectively, then an inner product encoding for P2 implies an encoding for P1 and a lower
bound for P1 implies a lower bound for P2. This makes it easier to prove upper and lower
bounds. For example, as later we prove that DI(INDEXn, q) = n for prime q (see Section
4.2), the last reduction implies that DI(P, q) ≤ min{|X |, |Y|} for all predicates P .

If q is a product of k distinct primes, then DI(P, q) ≤ min{|X |, |Y|}/k for the same reason.
Therefore, for any predicate, if k = min{|X |, |Y|}, there is an encoding of X and Y simply
to numbers modulo q.

4 Deterministic Encodings

In this section, we apply our technique to provide lower bounds on deterministic inner
product encodings for many well-known predicates. For each of them, first we discuss the
encodings and then proceed to prove lower bounds.

4.1 Equality
An encoding for EQn over q is a matching family of vectors modulo q [7]. The maximum
size of a matching family of vectors of length ` modulo q is denoted by MV(q, `) and has
been studied extensively. Lower and upper bounds on MV(q, `) give upper and lower bounds
on DI(EQn, q), respectively (in the relevant literature, usually q and ` are denoted by m and
n, respectively).

For prime q, a tight DI(EQn, q) = Θ(qn
1

q−1 ) bound is known [7]. If q is a product of k
primes, we have a 2Õ((logn)1/k) upper bound from [13]. For any composite q, we also have
an Ω(logn) lower bound from [9].

Here, first we show two simple upper bounds for q = 2 and q ≥ n. Then we reprove the
optimal lower bound for q = 2 using our rank lower bound.

Upper bounds

For q = 2, we construct an encoding of length n. Let ~x = ex and ~y = 1n − ey. Then
〈~x, ~y〉 = 〈ex, 1n〉 − 〈ex, ey〉 = 1 − [x = y], thus it is a correct inner product encoding and
DI(EQn, 2) ≤ n.

Let q be any integer such that q ≥ n. Let ~x = (1, x) and ~y = (y,−1). Then 〈~x, ~y〉 = y−x,
so it is 0 iff x = y. Therefore, DI(EQn, q) ≤ 2.

Lower bound

We show a matching lower bound for case q = 2. There is a unique matrix F over Z2 that
represents EQn, namely Fx,y = 0 mod q ⇔ x = y. Express F = Jn − In. By sub-additivity
of rank, we have rank(F ) ≥ rank(In) − rank(Jn) = n − 1. Hence, by Theorem 1, any
inner product encoding of EQn modulo 2 requires vectors of length at least n− 1, that is,
DI(EQn, 2) ≥ n− 1.
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4.2 Index
We prove that DI(INDEXn, q) = dn/ke, for every q that is a product of k distinct primes.

For some q, the upper bound follows from DISJn ⇒ INDEXn (see Section 4.5). However,
there is a much simpler encoding, which we present below. Moreover, this upper bound holds
for every q that is the product of k distinct primes.

Upper bound

We begin with the warm-up for the special case k = n. Here, consider

~x =
n∏
i=1

p1−xi
i , ~y = q/py.

Then 〈~x, ~y〉 = 0 mod q iff xy = 0.
Next, we consider general k, n. Since INDEXdn/ke·k ⇒ INDEXn, it is enough to

construct an encoding for the case k | n. The data is the string x ∈ {0, 1}n, and the index
is given by y ∈ [n]. Encode x as an n/k × k binary matrix Xi,j = x(i−1)·k+j , and y as an
n/k × k binary matrix Yi,j = [y = (i− 1) · k + j].

Now we construct the encoding.

~xi =
k∏
j=1

p
Xi,j

j , ~yi =
{
q/pj , if Yi,j = 1,
0, otherwise.

Now we analyze the correctness of the protocol. Let i, j be such that Yi,j = 1. Then
〈~x, ~y〉 =

∏k
l=1 p

Xi,l

l · (q/pj).
If Xi,j = 1, then 〈~x, ~y〉 = 0 mod q.
If Xi,j = 0, then pj - 〈~x, ~y〉, hence 〈~x, ~y〉 6= 0 mod q.

Lower bound

The lower bound follows from INDEXn ⇒ NEQn (see Section 4.3).

4.3 Inequality
We show that DI(NEQn, q) = dn/ke, for every q that is the product of k distinct primes.

Upper bound

The upper bound follows from INDEXn ⇒ NEQn (see Section 4.2).

Lower bound

Any matrix that represents NEQn is a diagonal matrix with non-zero entries on the main
diagonal. By Theorem 2, it follows that DI(NEQn, q) ≥ n/k.

4.4 Greater Than
We show that DI(GTn, q) = dn/ke, for every q that is the product of k distinct primes.

FSTTCS 2018
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Upper bound

The upper bound follows from INDEXn ⇒ GTn (see Section 4.2).
If q is prime, the encoding simplifies to ~x = ex and ~y =

∑y
i=1 ei. If k = n, a different

simple encoding is ~x =
∏x−1
i=1 pi and ~y =

∏n
i=y+1 pi.

Lower bound

Let F be any matrix that represents GTn modulo q. Then all entries below the main
diagonal are 0, while all entries on and above the main diagonal are non-zero, hence F is a
triangular matrix. By Theorem 2, we conclude that DI(GTn, q) ≥ n/k.

4.5 Disjointness

We prove that DI(DISJn, q) = dn/ke for an appropriate choice of q that depends on n, and
that DI(DISJn, q) ≥ n/k if q is any product of k distinct primes.

Upper bound

We start with a simple encoding for k = n that works for any product of n distinct primes q.
Recall that the sets S and T are the input to disjointness. Let

~x =
n∏
i=1

p
1−χ(S)i

i , ~y =
n∏
i=1

p
1−χ(T )i

i .

Then 〈~x, ~y〉 =
∏n
i=1 p

2−χ(S)i−χ(T )i

i is 0 mod q iff S and T are disjoint. If k < n, then for any
pi it is possible that although some of the products ~xi · ~yi are not divisible by pi, their sum
might be divisible by pi, hence the encoding doesn’t work for any q.

For the general case, the following variation of Dirichlet’s theorem will be useful for us.

I Theorem 3 (Dirichlet). For any integer q ≥ 2, there are infinitely many primes p such
that p = 1 mod q.

Let q = p1 · · · pk be a product of k distinct primes p1, . . . , pk to be defined later. We
construct an encoding of length n/k for the case k | n. Encode S ⊆ [n] as an n/k × k binary
matrix Xi,j = χ(S)(i−1)·k+j . Similarly encode T as Y . Let

~xi =
k∏
j=1

p
1−Xi,j

j , ~yi =
k∏
j=1

p
1−Yi,j

j .

Now we find the appropriate primes p1, . . . , pk for the general case. We construct them
and prove the correctness by induction on k.

Base case. If k = 1, then q is a prime itself. Pick any prime q such that q > n. We have
〈~x, ~y〉 =

∑n
i=1 q

2−χ(S)i−χ(T )i . If x and y are disjoint, then q | 〈~x, ~y〉. Suppose that S and T
are not disjoint. Let b = |S ∩ T |. Then 〈~x, ~y〉 = (

∑
i∈S∩T 1) mod q = b mod q. As b ≤ n, we

have b < q, therefore 〈~x, ~y〉 6= 0 mod q.
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Inductive step. Assume that there exists a correct encoding for some q such that it
is a product of k − 1 distinct primes p1, . . . , pk−1. Let pk be a prime such that pk >

(n/k) · (p1 · · · pk−1)2 and pk = 1 mod (p1 · · · pk−1) (such exist by Theorem 3).
Suppose that 〈~x, ~y〉 = pk · a+ b, where b ∈ {0, . . . , pk − 1}. Examine the sets S(k) = {i ∈

[n/k] | ik ∈ S} and T (k) = {i ∈ [n/k] | ik ∈ T}.
Suppose that S(k) and T (k) are not disjoint. Then the set I = S(k) ∩ T (k) is non-empty.
If i /∈ I, then at least one of Xi,k and Yi,k is 0, thus ~xi ·~yi =

∏k
j=1 p

2−Xi,j−Yi,j

j is divisible
by pk. Thus, we have that b =

∑
i∈I
∏k−1
j=1 p

2−Xi,j−Yi,j

j < (n/k) · (p1 · · · pk−1)2 < pk.
Therefore, 〈~x, ~y〉 = b mod pk 6= 0 mod pk.
Suppose that S(k) and T (k) are disjoint. Then for all i ∈ [n/k], we have that pk | ~xi~yi.
Therefore, pk | 〈~x, ~y〉.
Moreover, since pk = 1 mod (p1 · · · pk−1), we have that ~xi mod (p1 · · · pk−1)
=

∏k−1
j=1 p

1−Xi,j

j and ~yi mod (p1 · · · pk−1) =
∏k−1
j=1 p

1−Yi,j

j . Therefore,
〈~x, ~y〉 mod (p1 · · · pk−1) is equal to 0 iff the sets S \ S(k) and T \ T (k) are disjoint by the
inductive hypothesis.

Lower bound

The lower bound follows from DISJn ⇒ INDEXn (see Section 4.2).

4.6 Exact Threshold
Upper bound

The following encoding modulo q ≥ n of length n+ 1 is due to Katz, Sahai and Waters [15].
For all 1 ≤ i ≤ n, let ~xi = χ(S)i, and let ~xn+1 = 1. For all 1 ≤ i ≤ n, let ~yi = χ(T )i, and
let ~yn+1 = −t. Then 〈~x, ~y〉 is equal to 0 iff |S ∩ T | = t. Therefore, DI(ETHRt

n, q) ≤ n+ 1.
Surprisingly, if t ≥ n− 1, there exist constant size encodings.
If t = n, there is an encoding of length 2. The encoding is as follows: ~x = (1, [S = [n]])
and ~y = (1,−[T = [n]]). Then we have 〈~x, ~y〉 = 1 − [S = [n]] · [T = [n]], which is 0 iff
S = T = [n].
If t = n− 1, there is an encoding of length 3. The encoding for S and T is as follows:

~x =


(1, 0, 0), if |S| = n,
(0, i, 1), if |S| = [n] \ {i},
(1,−1, 1), otherwise.

~y =


(1, 0, 0), if |T | = n,
(0, 1,−i), if |T | = [n] \ {i}.
(1, 1, 1), otherwise.

It is easy to check by hand that 〈~x, ~y〉 = 0 iff |S ∩ T | = n − 1. Note that we require
q ≥ n+ 2.

Lower bound

We show that for 1 ≤ t ≤ n− 2, we have DI(P, q) ≥ max{n− t+ 2, t+ 2}/k ≥ (n/2 + 2)/k.

(a) First we prove that if t ≥ 1, the length of any encoding must be at least (n− t+ 2)/k.
We show that by using two reductions.
Firstly, we have ETHRt

n ⇒ ETHR1
n−t+1, because we can map S 7→ S∪{n−t+2, . . . , n}.

Secondly, we prove that ETHR1
m ⇒ GTm+1. Consider the following mappings:

f =
{

1 7→ ∅,
i 7→ [i− 1],

g =
{
j 7→ {j},
m+ 1 7→ ∅.

(1)
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Consider a pair of numbers x, y ∈ [m + 1]. If x = 1, then GTm+1(x, y) = 0 and also
ETHR1

m(f(x), g(y)) = ETHR1
m(∅, g(y)) = 0. If y = m + 1, then GTm+1(x, y) = 0

and ETHR1
m(f(x), g(y)) = ETHR1

m(f(x),∅) = 0. Otherwise, ETHR1
m(f(x), g(y)) =

ETHR1
m([x− 1], {y}) = GTm+1(x, y). Hence the reduction is correct.

Therefore, we conclude that

DI(ETHRt
n, q) ≥ DI(ETHR1

n−t+1, q) ≥ DI(GTn−t+2, q) ≥ (n− t+ 2)/k

by the lower bound on greater than of Section 4.4.
(b) Now we prove that if t ≤ n− 2, the length of any encoding is at least (t+ 2)/k. Again,

we exhibit two reductions.
Firstly, ETHRt

n ⇒ ETHRt
t+2 simply mapping any set to itself. Secondly, ETHRm−2

m ⇒
NEQm. This is because we can map x 7→ [m] \ {x} for any x ∈ [m]. Then the size of
the intersection |([m] \ {x})∩ ([m] \ {y})| is equal to m− 2 if x 6= y, and m− 1, if x = y.
Therefore, it follows that

DI(ETHRt
n, q) ≥ DI(ETHRt

t+2, q) ≥ DI(NEQt+2, q) ≥ (t+ 2)/k

by the lower bound on inequality of Section 4.3.

Therefore, for any 1 ≤ t ≤ n− 2, any encoding must have length at least max{n− t+
2, t+ 2}/k and we have that DI(ETHRt

n, q) = Ω(n).

4.7 Multilinear Polynomials
First we show a known encoding that gives DI(MPOLYd,q

n , q) ≤
(
n
≤d
)

= O(nd). Then we
show a lower bound of DI(MPOLYd,q

n , q) ≥
(
n
d

)
/k = Ω(nd/k). For prime q, there is an

optimal lower bound DI(MPOLYd,q
n , q) ≥

(
n
≤d
)
.6

Upper bound

The following is a simple construction by [15]. For S ⊆ [n], let XS =
∏
i∈S xi and let

p =
∑
S⊆[n],|S|≤d aSXS be a multilinear polynomial of degree at most d. For each subset

S ⊆ [n] such that |S| ≤ d, let ~xS = XS and ~yS = aS ; then 〈~x, ~y〉 is precisely equal
to p(x). Since a multilinear polynomial of degree at most d on n variables has at most(
n
≤d
)

=
∑d
i=0
(
n
i

)
≤ (n+ 1)d monomials, it follows that DI(MPOLYd,q

n , q) = O(nd).

Lower bound

We show a reduction MPOLYd,q
n ⇒ NEQ(n

d). Let S be the bijection from the numbers
in
[(
n
d

)]
to subsets of [n] of size d. For a pair of inputs x, y ∈

[(
n
d

)]
, consider mappings

x 7→ χ(S(x)) and y 7→ XS(y). Since MPOLYd,q
n (χ(S(x)), XS(y)) = 0 iff x 6= y, it is a correct

reduction. Thus, DI(MPOLYd,q
n , q) ≥

(
n
d

)
/k = Ω(nd/k) by the lower bound from Section

4.3.
Note that if q is prime, we can get a tight lower bound of

(
n
≤k
)
. Let ` = DI(MPOLYd,q

n , q).
Since any two distinct polynomials disagree on some inputs, each polynomial must be mapped
to a different vector. Therefore, the number of possible vectors must be at least the number of
possible polynomials, |Z`q| ≥ |Y|. The total number of possible monomials of degree at most
d is

(
n
≤d
)
. Each monomial can have any coefficient in Zq. Hence, q` ≥ q(

n
≤d) and ` ≥

(
n
≤d
)
.

6 We thank an anonymous reviewer for pointing out this lower bound.
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4.8 Threshold
First we show an upper bound of DI(THRt

n, q) = O(nn−t+1) for q > n! (q > n if q is prime),
and then a lower bound of DI(THRt

n, q) ≥ 2n−t+1/k if q is any product of k primes.

Upper Bound

The idea is to encode the threshold into multilinear polynomial evaluation. Let x = χ(S)
and y = χ(T ). Examine the following polynomial:

py(x) =
(

n∑
i=1

xiyi − t

)
·

(
n∑
i=1

xiyi − (t+ 1)
)
· . . . ·

(
n∑
i=1

xiyi − n

)
.

Firstly,
∑n
i=1 xiyi = |S ∩ T |, thus py(x) = 0 iff |S ∩ T | ≥ t (assuming q > n!). Secondly,

the degree of each factor is 1, hence deg(py) = n − t + 1. Note that the polynomial
py is still multilinear, as all the variables are 0 or 1. Therefore, we have a reduction
MPOLYn−t+1,q

n ⇒ THRt
n. The upper bound from Section 4.7 implies that DI(THRt

n, q) ≤
DI(MPOLYn−t+1,q

n , q) ≤
(

n
≤n−t+1

)
= O(nn−t+1).

Lower Bound

First of all, we have THRt
n ⇒ THR1

n−t+1, as we can map a set S ⊆ [n − t + 1] to
S ∪ {n− t+ 2, . . . , n}. Next we prove that DI(THR1

m, q) ≥ 2m/k.
Let F be any matrix representing THR1

m. We show that F is a triangular matrix with
all entries on the main diagonal being non-zero. Then the claim follows by Theorem 2.

Order the rows of F by the increasing order of the size of the sets they correspond to.
Then order the columns of F in such a way that the sets corresponding to the i-th row and
the i-th column are the complements of each other.

As the complements don’t overlap, the numbers on the main diagonal of F are non-zero.
Now examine any entry on the i-th row and j-th column such that i ≥ j. Let S correspond
to the set of the i-th row and T correspond to the set of the j-th column. Since the columns
are ordered by the decreasing size of the sets, we have that |S| ≥ m− |T |, or equivalently
|S|+ |T | ≥ m.

If |S|+ |T | > m, then the sets must overlap and the value of Fi,j is 0. If |S|+ |T | = m,
then the only way S and T do not overlap is if T is the complement of S. In any case all the
numbers below the main diagonal are 0, and non-zero on the main diagonal.

4.9 Disjunctions of Equality Tests
We show that for prime q, we have DI(OR−EQq

n, q) ≤ 2n and if q is a product of k distinct
primes, then DI(OR−EQq

n, q) ≥ 2n/k.

Upper bound

We prove that MPOLYn,q
n ⇒ OR−EQq

n. Examine a multilinear polynomial py(x) =∏n
i=1(xi − yi). Clearly, py(x) = 0 mod q iff at least one equality holds. Therefore, if we map

x 7→ x and y 7→ py, then we have a correct reduction to multilinear polynomial evaluation.
By the upper bound from Section 4.7, we have DI(OR−EQq

n, q) ≤ DI(MPOLYn,q
n , q) ≤∑n

i=0
(
n
i

)
= 2n.
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Lower bound

We prove that OR−EQq
n ⇒ NEQ2n . For the input x, y ∈ [2n] to NEQn, map x 7→ bin(x)

and y 7→ bin(y)⊕ 1n. As x 6= y iff there exists an i such that bin(x)i 6= bin(y)i, we have that
x 6= y iff OR−EQq

n(bin(x),bin(y)⊕ 1n) = 1. The lower bound follows by Section 4.3.

5 Randomized Constructions

We can formulate the problem in the randomized setting as follows. Let P : X × Y → {0, 1}
be a predicate. Consider all pairs of mappings U = {(x 7→ ~x, y 7→ ~y) | ~x, ~y ∈ Z`q for some `}.
These also include mappings that are incorrect inner product encodings of P . Let µ be a
probability distribution over U . Then µ is a probabilistic inner product encoding modulo q
with error ε, if Pr[P (x, y) 6= [〈~x, ~y〉 = 0 mod q] | (x 7→ ~x, y 7→ ~y) ∼ µ] ≤ ε.

We consider the length of the longest encoding under µ to be the length of µ and denote
it by RIµ(P, q) (Randomized Inner product). Then define RIε(P, q) = minµ RIµ(P, q), where
µ ranges over all probabilistic inner product encodings of P modulo q with error ε.

Next is the definition of the probabilistic rank (over Zq) by Alman and Williams [1]:

I Definition 4 (Probabilistic Matrix). For n,m ∈ N, define a probabilistic matrix over Zq
to be a distribution of matricesM⊂ Zn×mq . A probabilistic matrixM computes a matrix
A ∈ Zn×mq with error ε > 0 if for every entry (i, j) ∈ [n]× [m], PrM∼M[Ai,j 6= Mi,j ] ≤ ε.

I Definition 5 (Probabilistic Rank). Let q be prime. Then a probabilistic matrix M has
rank r if the maximum rank of an M in support ofM is r. Define the ε-probabilistic rank of
a matrix A ∈ Zn×mq to be the minimum rank of a probabilistic matrix computing M with
error ε. Denote it by rankε(A).

As we can see, the probabilistic choice of a distribution µ corresponds to a matrix M
sampled fromM. By a similar reasoning as in Theorem 1, we have the following theorem:

I Theorem 6. For any predicate P , prime q ≥ 2 and error ε, RIε(P, q) ≤ minF rankε(F ),
where F is any matrix that represents P modulo q.

Proof. Let F be any matrix that represents P modulo q. Suppose thatM is a probabilistic
matrix that computes F . Then any M in support of M defines an encoding of length
rank(M) by the decomposition rank. Therefore, there is a probability distribution over the
encodings such that the maximum length is rankε(F ). J

For some predicates, the probabilistic rank can be much smaller than the deterministic
rank. Let T (P ) be a truth table of a predicate P (defined by T (P )x,y = P (x, y)). The
same authors prove that rankε(T (EQn)) = O(1/ε) and rankε(T (LEQn)) = O((logn)2/ε)
(see Lemmas D.1 and D.2 in [1]). Since the matrix T (P ) represents the predicate ¬P (in our
setting), these results imply that for any prime q:
1. RIε(NEQn, q) = O(1/ε),
2. RIε(GTn, q) = O((logn)2/ε).

We conclude by showing that these results immediately imply a constant length probabil-
istic encoding for EQn modulo any prime:

I Corollary 7. For any prime q, we have RIε(EQn, q) = O(1/ε).

Proof. LetM be a probabilistic matrix that computes T (EQn) with error ε. The matrix
F (EQn) = Jn − T (EQn) represents EQn. Therefore, the probabilistic matrix Jn −M
computes F (EQn) with error ε. Since rank(F (EQn)) ≤ 1 + rank(T (EQn)), we have that
RI(EQn, q) = O(1/ε). J
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