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Abstract
In this paper, we focus on lower bounds for data structures supporting orthogonal range querying
on m points in n-dimensions in the semigroup model. Such a data structure usually maintains a
family of “canonical subsets” of the given set of points and on a range query, it outputs a disjoint
union of the appropriate subsets. Fredman showed that in order to prove lower bounds in the
semigroup model, it suffices to prove a lower bound on a certain combinatorial tradeoff between
two parameters: (a) the total sizes of the canonical subsets, and (b) the total number of canonical
subsets required to cover all query ranges. In particular, he showed that the arithmetic mean of
these two parameters is Ω(m lognm). We strengthen this tradeoff by showing that the geometric
mean of the same two parameters is Ω(m lognm).

Our second result is an alternate proof of Fredman’s tradeoff in the one dimensional setting.
The problem of answering range queries using canonical subsets can be formulated as factoring
a specific boolean matrix as a product of two boolean matrices, one representing the canonical
sets and the other capturing the appropriate disjoint unions of the former to output all possible
range queries. In this formulation, we can ask what is an optimal data structure, i.e., a data
structure that minimizes the sum of the two parameters mentioned above, and how does the
balanced binary search tree compare with this optimal data structure in the two parameters?
The problem of finding an optimal data structure is a non-linear optimization problem. In
one dimension, Fredman’s result implies that the minimum value of the objective function is
Ω(m logm), which means that at least one of the parameters has to be Ω(m logm). We show
that both the parameters in an optimal solution have to be Ω(m logm). This implies that
balanced binary search trees are near optimal data structures for range querying in one dimension.
We derive intermediate results on factoring matrices, not necessarily boolean, while trying to
minimize the norms of the factors, that may be of independent interest.
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1 Introduction

Orthogonal range querying is one of the fundamental problems in computational geometry.
The range querying problem is the following: Given a set X of m points in Rn and a range
set R of subsets of points in Rn, the goal is to pre-process the set X into a data structure so
that given a query range R ∈ R, the set of points in X ∩ R can be output efficiently. For
orthogonal range querying, a range is simply an axis aligned box in Rn. In this paper, we
only consider the problem of orthogonal range querying. Sometimes, we are also interested
in the number of points in the set X ∩R. The case where we output all the points in X ∩R
is called range reporting and the case where we only report the number of points in X ∩R is
called range counting. Other types of queries include whether or not X ∩R is empty and so
on. To capture these different types of queries in the range querying framework, it is typical
to associate with every point Xi ∈ X a weight wi, where wi comes from a commutative
semigroup (S,+)1. Then, for every query range R, the output is

∑
Xi∈X∩R wi. For instance,

for the orthogonal range reporting problem, we can take the semigroup (2X ,∪) and set
wi = {Xi} .; for the range counting problem, we can take the semigroup (N,+) and set
wi = 1.

Data structures for range querying typically store certain canonical subsets of the input
set X and on a query range R, the query algorithm comes up with a set of disjoint canonical
subsets such that their union is exactly X ∩R. The performance of a data structure for range
querying is measured by the time spent in answering a query, the space requirement of the
data structure and also the preprocessing cost involved in building the data structure. Often,
the preprocessing is ignored as the data structure is built only once. In the dynamic setting
where operations such as delete and insert are permitted, update time is also important.
Most data structures for geometric problems are described in the real RAM model [16] and
the pointer-machine model [1, 2]. A popular data structure for orthogonal range querying
is the range tree which was introduced by Bentley [3]; for an exposition, see [4, chap. 5].
For orthogonal range reporting on m points in n dimensions, the range tree can be built in
time O(m logn−1m) and every query can be answered in time O(lognm+ k), where k is the
number of points in the output. The query time though can be improved to O(logn−1m+ k)
through a technique called fractional cascading [7, 14]. These upper bounds have been
subsequently improved for range querying in various computation models [1, 2].

Fredman gave some of the first lower bounds on orthogonal range querying in the
semigroup model [10, 11]. These lower bounds are in the dynamic setting where insertions
and deletions are allowed. More specifically, in [11], he showed that for any m, there is
a sequence of m operations consisting of insert, delete and querying such that the time
required for this sequence is Ω(m lognm) in the semigroup model. The crux of Fredman’s
lower bound argument lies in exploiting a certain combinatorial tradeoff between the sizes of
the canonical sets and the number of canonical sets needed to answer all the query ranges
[15, p. 69, Lemma 9]. To state this more precisely, we set up some definitions and notations.

From here on, we take the set X to be the n-dimensional grid of m points, i.e.,

X :=
{

1, . . . ,
⌊
m1/n

⌋}n
.

The n coordinates of the point Xi are represented as Xij , j = 1, . . . , n. A one-sided range

1 Another algebraic structure from which weights are assigned are groups [12, 9], but in this paper we
restrict ourselves to the case where weights come from a semigroup.
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query on the set X takes as input a Y ∈ Rn and outputs

RY := {Xi ∈ X : Xi ≤ Y } ,

where Xi ≤ Y iff Xij ≤ Yj , for all j ∈ [n]. In this paper, range queries will always be
one-sided. Corresponding to m points in X, we have m range queries whose outputs are
Rj :=RXj

, for j ∈ [m]. A set D := {W1, . . . ,Wr} of subsets of X is a data structure for
answering range queries on X if every output to a range query on X is represented as
a disjoint union over the canonical sets W1, . . . ,Wr. Let 〈Rj〉D denote the set of indices of
Wk’s used in the representation of Rj . Fredman showed the following result:

I Proposition 1. If D is a data structure that answers range queries on X then
r∑

k=1
|Wk|+

m∑
j=1
| 〈Rj〉D | = Ω(m lognm).

This tradeoff between the sizes of canonical sets and the number of canonical sets needed for
covering all the query ranges is the central theme of this paper. Many more lower bounds on
orthogonal range querying in different computation models are also known (see [1, p. 7] and
[2, p. 11]).

The tradeoff in Proposition 1 gives us a lower bound on the arithmetic mean of the total
size of the canonical sets and the number of canonical sets needed for covering query ranges.
But in practice, data structures such as range trees need Θ(m lognm) many canonical sets
for orthogonal range querying on m points and the total size of these sets is Θ(m lognm) as
well. In view of this fact, we prove the following stronger result:

I Theorem 2. If D is a data structure that answers range queries on X then(
r∑

k=1
|Wk|

) m∑
j=1
| 〈Rj〉D |

 = Ω(m2 log2nm).

From the AM-GM inequality it is clear that Theorem 2 implies Proposition 1. Theorem 2
also implies that any data structure D that is tight with respect to Proposition 1, i.e.,

r∑
k=1
|Wk|+

m∑
j=1
| 〈Rj〉D | = Θ(m lognm), (1)

must satisfy:
r∑

k=1
|Wk| = Θ(m lognm) and

m∑
j=1
| 〈Rj〉D | = Θ(m lognm). (2)

The proof of Theorem 2 will be given in Section 2.
From (2), we see that the balanced binary search tree is an optimal data structure in the

boolean setting where the outputs are represented as disjoint unions over canonical sets. This
leaves open the possibility of existence of a more efficient data structure that does not take
disjoint unions of its canonical subsets but takes their weighted sum in order to represent
an output. In such a relaxed setting, Proposition 1 and Theorem 2 are not applicable. Can
balanced binary search tree be an optimal data structure even in this setting? In Section 3,
we give a positive answer to this question.

FSTTCS 2018



45:4 Stronger Tradeoffs for Orthogonal Range Querying in the Semigroup Model

In order to account for data structures that take weighted sums of their canonical sets, we
will reinterpret range querying differently from Proposition 1. In the proof of Proposition 1
[15, p. 69, Lemma 9 and 10], the problem of range querying is interpreted in a graph theoretic
setting, namely expressing a bipartite graph as a “product” of two bipartite graphs. This
can also be interpreted in terms of matrices [6, Sec. 2.2]. Let Um×r be the incidence matrix
of the set X with the canonical sets Wk’s, i.e, Uik = 1 iff Xi ∈Wk. Similarly, define Vr×m
to be the incidence matrix of the canonical sets Wk’s and the outputs Rj ’s. Let Rm×m be
the matrix whose columns are the characteristic vectors of the sets Rj ’s. To give a proof
of Proposition 1, it suffices to derive a lower bound on the optimal value of the following
optimization problem:

min
(
||U ||2F + ||V ||2F

)
subject to UV = R, (3)

where R ∈ {0, 1}m×m, U ∈ {0, 1}m×r and V ∈ {0, 1}r×m and ||.||F refers to the Frobenius
norms of the respective matrices.

In this optimization based formulation of the problem, the objective function aims to
minimize the sum of the two parameters we are interested in: The total size of the canonical
sets, ||U ||2F and the total number of canonical sets needed to cover all the query ranges,
||V ||2F . Every data structure that supports range querying in one dimension is a feasible
solution to the problem above. When the entries of the matrices are restricted to be boolean,
Proposition 1 implies that the optimal value of the objective function is Ω(m logm). Hence,
from (2), we see that for an optimal solution (Ubool, Vbool) of (3) we must have,

||Ubool||2F = Θ(m logm) and ||Vbool||2F = Θ(m logm).

To extend these bounds for data structures that take weighted sums of their canonical sets,
we consider the relaxation of the problem in (3) where the matrix entries are allowed to be
arbitrary reals. For an optimal solution (U∗, V ∗) of this relaxation, we show that

||U∗||2F = Ω(m logm) and ||V ∗||2F = Ω(m logm).

The lower bounds above imply that the balanced binary search tree is near optimal not
only in the boolean framework but also in a more relaxed setting.

The main idea in proving the lower bounds above is to use the Lagrangian dual of the
relaxation and show that

||U∗||2F = Trace((RtR)1/2) and ||V ∗||2F = Trace((RtR)1/2), (4)

where we take the principal square-root of a matrix [13]. The result in (4) holds for an
arbitrary matrix R (see Theorem 3) and is the key technical ingredient in our proof. Then,
by taking R to be the lower triangular all ones matrix, which corresponds to range querying in
one dimension, and by using some well established results on explicit forms for the eigenvalues
of tri-diagonal matrix (in this case (RtR)−1), we show that

Trace((RtR)1/2) = Ω(m logm).

We believe that our proof gives more understanding on the optimality of Fredman’s
lower bound by relating it to some intrinsic parameters of the matrix R, which is a natural
representation of the range query problem in one-dimension. To the best of our knowledge,
our proof is more general than the existing proofs in the literature; e.g., [17] works only in
the boolean setting. Whether our proof technique can be generalized to obtain an alternative
proof of Proposition 1 in all dimensions remains an open and interesting question.



S. N. Prabhakar and V. Sharma 45:5

...
...

X R

Xi

RjW(Xi,Rj)

...

...
...

Xi Wk
Rj

X D R

(a) (b)

G G′

...
...

...

...
...

...

Figure 1 (a): Bipartite graph G with the vertex sets X, R and the edge set E. (b): Tripartite
graph G′ with vertex sets X, D and R.

2 Tradeoff between Sizes of Canonical Sets and Outputs to Query
Ranges

In this section, we will prove Theorem 2. The proof of the theorem follows by altering the
argument in the proof of Proposition 1. Before we proceed, we first present some high level
details of the proof of Proposition 1. For the complete details, we refer to [15, p. 69].

The argument relies on interpreting range querying in a graph theoretic setting: Consider
the weighted bipartite graph G(X ∪R,E), where R := {R1, R2, . . . , Rm} and the edge set
E := {(Xi, Rj) : Xi ∈ Rj}; see Figure 1(a) for illustration. The edge (Xi, Rj) ∈ E is assigned
the weight

W(Xi, Rj) := 1
n∏
κ=1

(Xjκ −Xiκ + 1)
. (5)

The graph G can be “factored” into a tripartite graph G′ whose vertex set is {X ∪ D ∪R}.
There is an edge (Xi,Wk) iff Xi ∈ Wk and there is an edge (Wk, Rj) iff k ∈ 〈Rj〉D; see
Figure 1(b) for an illustration. Note that the edges of G are a disjoint union over the sets{

(Xi, Rj) : Xi ∈Wk, k ∈ 〈Rj〉D
}
, for all k ∈ [r], as every Rj is a disjoint union of Wk’s. For

every set Wk, define

Ik := {Xi ∈ X : Xi ∈Wk}

i.e., the edges of G′ incident on Wk from the left and

Ok :=
{
Rj ∈ R : k ∈ 〈Rj〉D

}
,

i.e., the edges of G′ incident on Wk from the right. Therefore,

|Ik| = |Wk| and
m∑
j=1
| 〈Rj〉D | =

r∑
k=1
|Ok|.

At a high level, the proof of Proposition 1 can be broken down into two steps [15, p. 69,
Lemma 9 and p. 71, Lemma 10]:

FSTTCS 2018
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Step 1. For every k ∈ [r],∑
Xi∈Ik
Rj∈Ok

W(Xi, Rj) =
∑
Xi∈Ik
Rj∈Ok

1
n∏
κ=1

(Xjκ −Xiκ + 1)
≤ (2π)n(|Ik|+ |Ok|), (6)

where n is the dimension of the points in X. The outline of the proof is as follows.
Let Mj = max {Xij : Xi ∈ Ik}. Define the associate sets of Wk as

B := {(M1 −Xi1,M2 −Xi2, . . . ,Mn −Xin) : Xi ∈ Ik}

and

C := {(Xj1 −M1, Xj2 −M2, . . . , Xjn −Mn) : Rj ∈ Ok} .

Since every term of the form

(Xjκ −Xiκ + 1) = (Mκ −Xiκ +Xjκ −Mκ + 1),

the summation in (6) is equal to∑
Xi∈Ik
Rj∈Ok

1
n∏
κ=1

(Xjκ −Xiκ + 1)
=
∑
u∈B
v∈C

1
n∏
κ=1

(uκ + vκ + 1)
,

where uκ and vκ are non-negative integers. Then, by applying a generalized version
of Hilbert’s inequality for points with natural numbers as their coordinates, one
obtains∑

u∈B
v∈C

1
n∏
κ=1

(uκ + vκ + 1)
≤ (2π)n(|B|+ |C|) = (2π)n(|Ik|+ |Ok|). (7)

Step 2. The second step is to show that the total sum of weights over all edges in E satisfies

∑
(Xi,Rj)∈E

W(Xi, Rj) =
r∑

k=1

∑
Xi∈Ik
Rj∈Ok

W(Xi, Rj) = Ω(m lognm). (8)

By summing the inequality in (6) over all Wk and applying the lower bound from (8), we
get the claim in Proposition 1.

We now give the proof of Theorem 2.

Proof. Since
∑r
k=1 |Wk| =

∑r
k=1 |Ik| and

∑m
j=1 | 〈Rj〉D | =

∑r
k=1 |Ok|, we will show that

r∑
k=1
|Ik| ·

r∑
k=1
|Ok| = Ω(m2 log2nm).

To prove this, consider a pair of canonical sets, Wk and W`. Using the same weight function
as in (5) on the edges of G, we have

∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) =
∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

1
n∏
κ=1

(Xjκ −Xiκ + 1)(Xdκ −Xcκ + 1)
.

(9)
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Define the associate sets B, C of Wk as in Step 1; sets B′ and C ′ are defined analogously
for W`. Notice that |B| = |Ik|, |C| = |Ok|, |B′| = |I`| and |C ′| = |O`|. Using the associate
sets, equation (9) can be expressed as∑

Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) =
∑
u∈B
v∈C

∑
u′∈B′

v′∈C′

1∏n
κ=1(uκ + vκ + 1)(u′κ + v′κ + 1)

. (10)

The importance of the associate sets ofWk andW` is that they have non-negative coordinates
and they are in some sense independent of the actual coordinates of the points in X, since
difference choices of the point set X give the same associate sets. We now use the upper
bound from (7) to upper bound the RHS of (10). Since the RHS of (10) can be interpreted
as a function over 2n dimensional points, we define the following sets in R2n

B := {(u, u′) : u ∈ B, u′ ∈ B′} , C := {(v, v′) : v ∈ C, v′ ∈ C ′}

and

B′ := {(u, v′) : u ∈ B, v′ ∈ C ′} , C′ := {(v, u′) : v ∈ C, u′ ∈ B′} .

The pair of sets (B, C) and (B′, C′) allow us to express the RHS of (10) in two different ways
as: ∑

u∈B
v∈C

∑
u′∈B′

v′∈C′

1
n∏
κ=1

(uκ + vκ + 1)(u′κ + v′κ + 1)
=
∑
U∈B
V∈C

1
2n∏
κ=1

(Uκ + Vκ + 1)

=
∑
U ′∈B′

V′∈C′

1
2n∏
κ=1

(U ′κ + V ′κ + 1)
.

From (7), the RHS of the equalities above can be upper bounded as∑
U∈B
V∈C

1
2n∏
κ=1

(Uκ + Vκ + 1)
≤ (2π)2n(|B|+|C|) and

∑
U ′∈B′

V′∈C′

1
2n∏
κ=1

(U ′κ + V ′κ + 1)
≤ (2π)2n(|B′|+|C′|).

So, from the two inequalities above and (10) we obtain∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) ≤ (2π)2n min{|B|+ |C|, |B′|+ |C′|}.

= (2π)2n min{|B||B′|+ |C||C ′|, |B||C ′|+ |B′||C|},
= (2π)2n min{|Ik||I`|+ |Ok||O`|, |Ik||O`|+ |I`||Ok|}

Therefore, for an arbitrary pair Wk, W`, we have∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) ≤ (2π)2n(|Ik||O`|+ |I`||Ok|). (11)

Note that every edge (Xi, Rj) in E maps to a unique path (Xi,Wk, Rj) in the graph G′.
Hence the sum of the LHS of (11) over all possible pairs of Wk and W` gives us the sum of
the product of weights of all possible pairs of edges (Xi, Rj) and (Xc, Rd) in E. Hence from
(8) we obtain that∑
Wk
W`

∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj)·W(Xc, Rd) =
∑

(Xi,Rj)∈E
(Xc,Rd)∈E

W(Xi, Rj)·W(Xc, Rd) = Ω(m2 log2nm).

FSTTCS 2018
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(12)

Similarly, summing the RHS of (11) over all pairs of Wk and W` and using the fact that
|Ik| = |Wk| and

r∑
k=1
|Ok| =

m∑
j=1
| 〈Rj〉D |, we get

∑
Wk

∑
W`

(2π)2n(|Ik||O`|+ |I`||Ok|) = 2 · (2π)2n

 m∑
j=1
| 〈Rj〉D |

( r∑
k=1
|Wk|

)
.

Therefore, from (11), (12) and the equality above, we conclude that m∑
j=1
| 〈Rj〉D |

( r∑
k=1
|Wk|

)
= Ω(m2 log2nm). J

3 Optimality of the Balanced Binary Search Tree

In this section, we will show the optimality of the balanced binary search tree in a relaxed
framework where the data structures are allowed to take a weighted sum of their canonical
subsets. Let X := {1, 2, . . . ,m} . We again consider the set of one sided range queries:
For j ∈ X, output Rj := {i ∈ X : i ≤ j} . Let D := {W1,W2, . . . ,Wr} be an arbitrary data
structure that answers range queries on X. Proposition 1 in one dimension reduces to:(

r∑
k=1
|Wk|

)
+

 m∑
j=1
| 〈Rj〉D |

 = Ω(m logm). (13)

To extend the lower bound above for data structures that are allowed to take weighted sums
of their canonical subsets, we will reinterpret range querying in a different setting. The
problem of range querying can be interpreted in a linear algebraic setting as follows: Consider
the 0/1 matrix U whose rows are indexed by the m numbers and columns are indexed by
the r sets, Wk’s. The (i, j)th entry is one iff the number i is a member of Wj . Consider the
range query that asks for all the numbers less than or equal to the jth number. The output
is a union of at most, say ` sets. Then, Rj , which is an m-dimensional vector with ones from
the jth position onwards can be expressed as a linear combination of at most ` columns of
U . Let vj be this linear combination, i.e.

Rj = Uvj

where vj is a 0/1 vector. Since there are m distinct range queries, we have v1, . . . ,vm such
vectors. If V is the matrix with these vectors as its columns, then our observation regarding
these m range queries can be succinctly represented by the following matrix equation

UV =



1 0 0 · · · 0
1 1 0 · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
1 1 1 · · · 1

 =:R, (14)

where R is the lower triangular matrix with all ones on and below the diagonal and the rows
of R are indexed by the numbers m,m − 1, . . . , 1 and the columns by Rm, Rm−1, . . . , R1.
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Also, U ∈ {0, 1}m×r and V ∈ {0, 1}r×m . Now,
r∑
i=1
|Wi| = ||U ||2F and

m∑
j=1
| 〈Rj〉 | = ||V ||2F ,

where ||A||F denotes the Frobenius norm of the matrix A. So, in terms of factorizations of
R as a product of U and V , proving the claim in (13) is equivalent to lower bounding the
optimal value of the following optimization problem

min
(
||U ||2F + ||V ||2F

)
subject to UV = R,U ∈ {0, 1}m×r , V ∈ {0, 1}r×m . (15)

In order to consider data structures that may take weighted sum of their canonical subsets
instead of disjoint unions, we focus on the following relaxation of the problem in (15): Given
an arbitrary matrix T ∈ Rm×m,

min
(
||U ||2F + ||V ||2F

)
subject to UV = T,U ∈ Rm×r, V ∈ Rr×m. (16)

It is clear that a lower bound on the optimal value of (16), when T is taken to be R, is also
a lower bound on the optimal value of (15). So, we first prove that

I Theorem 3. Any optimal solution (U∗, V ∗) for the optimization problem in (16) satisfies:

||U∗||2F = Trace((T tT )1/2) and ||V ∗||2F = Trace((T tT )1/2),

where the matrix (T tT )1/2 is defined to be the principal square root of the matrix T tT [13,
p .20, Theorem 1.29].

Proof. The Lagrangian dual function associated with the problem in (16) is defined as [5,
p. 216]

inf
U,V

L(U, V,Λ) = inf
U,V

||U ||2F + ||V ||2F +
m∑
i=1

m∑
j=1

r∑
k=1

(Tij − Uik · Vkj)λij

 , (17)

where Λ ∈ Rm×m. The Lagrange dual problem is now defined as

max
Λ

(
inf
U,V

L(U, V,Λ)
)
, (18)

where Λ ∈ Rm×m. Any optimal solution (U∗, V ∗) for the primal problem satisfies the following
inequality:

||U∗||2F + ||V ∗||2F ≥ max
Λ

(
inf
U,V

L(U, V,Λ)
)
.

From the inequality above, we see that it suffices to lower bound the optimal value of the
dual problem in order to prove the required claim. Consider the function

inf
U,V

L(U, V,Λ).

Applying the optimality conditions, we take the partial derivative of L(U, V,Λ) with respect
to variables in U to get the following matrix equation:

∇UL(U, V,Λ) = 2U t − V Λt = 0. (19)
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Similarly, taking derivative with respect to variables in V , we get

∇V L(U, V,Λ) = 2V − U tΛ = 0. (20)

From (19) and (20), we have

V Λt = 2U t and U tΛ = 2V. (21)

Since the dual problem is convex and aims to maximize the Lagrangian dual function in (17)
with respect to Λ, we apply the first order condition to L(U, V,Λ) with respect to Λ to get

UV = T.

By left multiplying the first equation in (21) by U , we get

UV Λt = 2UU t

TΛt = 2UU t since UV = T .

Using the equality above and the fact that ||U ||2F = Trace(UU t), we get

||U ||2F = 1
2Trace(TΛt).

Similarly, we can show that

||V ||2F = 1
2Trace(Λ

tT ).

Therefore, for an optimal solution Λ of the dual problem, we have

||U ||2F = 1
2Trace(TΛt), ||V ||2F = 1

2Trace(Λ
tT ).

Since Trace(TΛt) = Trace(ΛtT ), it suffices to show that the trace of ΛtT is 2 ·Trace((T tT )1/2)
to prove the theorem.

We begin by multiplying the transpose of the second equation in (21) with the first
equation in (21) to obtain

ΛtUV Λt = 4(UV )t.

Since UV = T , we see that any optimal solution for the dual problem must satisfy:

ΛtTΛt = 4T t.

Multiplying the equality above by T from the right, we get

(ΛtT )2 = 4T tT.

Since T tT is a positive semidefinite matrix 2, it is diagonalizable. Assuming Q to be the
m×m matrix whose columns are the eigenvectors of T tT and γ1 ≥ γ2 ≥ · · · ≥ γm to be the
eigenvalues of T tT , we can express the equality above as

(ΛtT )2 = 4Q−1ΓQ

2 Here we use the fact that any matrix A that can be written as A = BtB, is positive semidefinite.



S. N. Prabhakar and V. Sharma 45:11

where Γ is the diagonal matrix with γk’s being the kth diagonal entry. Therefore, we have

(ΛtT ) = 2Q−1Γ1/2Q,

where Q−1Γ1/2Q is defined to be the principle square root of T tT whose eigenvalues are√
γ1,
√
γ2, . . . ,

√
γm and for all k, √γk ∈ R≥0. So,

Trace(ΛtT ) = 2Trace((T tT )1/2) = 2
m∑
k=1

√
γk.

Hence, we conclude that

||U∗||2F = Trace((T tT )1/2) ||V ∗||2F = Trace((T tT )1/2). J

We bound the trace of (RtR)1/2 in the following result:

I Lemma 4. Let R be the matrix as in (14). The trace of the principal square root of RtR
satisfies

Trace((RtR)1/2) =
m∑
k=1

√
γk = Ω(m logm),

where γk, k ∈ [m], are the eigenvalues of the matrix RtR.

Proof. To compute γk’s, consider the inverse matrix

(RtR)−1 = R−1(R−1)t.

The inverse of the matrix R is the bidiagonal matrix

R−1 =



1 0 0 0 . . . 0
−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1


So, the matrix R−1(R−1)t is the following tridiagonal matrix

R−1(R−1)t =



1 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
0 0 −1 2 −1 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . −1
0 0 0 0 0 . . . 2


,

which obtained as a special case of tridiagonal matrices of the form

a+ d b 0 0 0 . . . 0
b a b 0 0 . . . 0
0 b a b 0 . . . 0
0 0 b a b . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . b

0 0 0 0 0 . . . a+ c


,
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by substituting a = 2, b = −1, d = −1, and c = 0. From [8, p. 27], we know that the roots of
the characteristic polynomial of the matrix above is given by

a+ 2b cos θ (22)

where θ varies over the m zeros of the following function

sin(m+ 1)θ − c+d
b sinmθ + cd

b2 sin(m− 1)θ
sin θ .

Substituting a = 2, b = d = −1, and c = 0 in the formula above, we obtain the following
expression

sin(m+ 1)θ − sinmθ
sin θ .

Simplifying the formula above using the sum-to-product identity3, we get

2 sin (m+1)θ−mθ
2 cos (m+1)θ+mθ

2
sin θ = 2 sin(θ/2) cos(mθ + θ/2)

2 sin(θ/2) cos(θ/2) = cos(mθ + θ/2)
cos(θ/2) .

The expression above vanishes at the values(
2k − 1
2m+ 1

)
π,

where k = 1, 2, . . . ,m. Substituting in (22), we see that the eigenvalues of R−1(R−1)t are

2
(

1− cos
(

2k − 1
2m+ 1

)
π

)
= 4 sin2

(
2k − 1
4m+ 2

)
π,

for k = 1, 2, . . . ,m, where we use the identity (1 − cosx) = 2 sin2 x/2 above. So, the
eigenvalues of RtR are

γk = 1
4 sin2

(
2k−1
4m+2

)
π
,

for k = 1, 2, . . . ,m, and, therefore, the trace of the principal square root of RtR is

Trace((RtR)1/2) =
m∑
k=1

√
γk =

m∑
k=1

1
2 sin

(
2k−1
4m+2

)
π
.

Since for k = 1, . . . ,m, the reciprocal of the sine functions is a monotonically decreasing
concave function, the summation above can be lower bounded as follows:

Trace((RtR)1/2) =
m∑
k=1

1
2 sin (2k−1)π

4m+2

≥
∫ m

1

dx

2 sin (2x−1)π
4m+2

=
∫ m

1

csc (2x−1)π
4m+2
2 dx.

Substituting y = (2x−1)π
4m+2 and using the fact that

∫
csc y · dy = ln | tan(y/2)|, we obtain

Trace((RtR)1/2) ≥ 4m+ 2
4π

(
ln
(

tan (2m− 1)π
(8m+ 4)

)
− ln

(
tan π

(8m+ 4)

))
.

3 Namely, sin A− sin B = 2 sin (A−B)
2 cos (A+B)

2
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As m tends to infinity, the term tan((2m− 1)π/(8m+ 4)) tends to one. Therefore, we have

Trace((RtR)1/2) = Ω
(
m ln

(
cot π

(8m+ 4)

))
.

From the Taylor series of the cotangent function, we know that for m ≥ 1, cot π
(8m+4) = Θ(m).

Therefore,

Trace((RtR)1/2) = Ω(m logm). J

We note that from Theorem 3 and Lemma 4, we have a stronger conclusion than in (13).
From (13), we can only infer that one of the two parameters is Ω(m logm) whereas for data
structures such as balanced binary search trees, both the parameters are Θ(m logm). Our
proof shows that

||UBST||F = Θ(||U∗||F ) and ||VBST||F = Θ(||V ∗||F ),

where (U∗, V ∗) is an optimal solution for the problem in (15) and (UBST, VBST) are the
matrices U and V corresponding to the balanced binary search tree. Therefore, binary search
trees are optimal with respect to both the parameters, The total size of the canonical sets
and the total number of canonical sets needed for covering all the query ranges. Also, our
proof implies that balanced binary search trees are near optimal in a more relaxed framework
where the data structures are allowed to take weighted sums of their canonical subsets.

4 Conclusion

In this paper, we have shown that there is a stronger tradeoff between the sizes of canonical
sets and the outputs to query ranges than the one shown by Fredman. In Section 3, we
show the optimality of balanced binary search trees in a more general setting where we allow
weighted combinations of the canonical sets in the data structure. A natural continuation
would be to generalize this proof to higher dimensions. One can start by bounding the
integrality gap between an optimal solution in the boolean setting and an optimal solution
of the relaxation. In one dimension, our proof shows that this gap is at most a constant.

We also believe that the optimization problem introduced in Section 3 is interesting in
its own right. For instance, the lower bound for the average complexity of the partial sums
problem [12] in the one dimensional setting can be obtained from the lower bound on the
optimization problem in (15).
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