
Counting Connected Subgraphs with
Maximum-Degree-Aware Sieving

Andreas Björklund
Department of Computer Science, Lund University, Sweden

Thore Husfeldt
BARC, IT University of Copenhagen, Denmark and Lund University, Sweden

Petteri Kaski
Department of Computer Science, Aalto University, Finland

Mikko Koivisto
Department of Computer Science, University of Helsinki, Finland

Abstract
We study the problem of counting the isomorphic occurrences of a k-vertex pattern graph P as
a subgraph in an n-vertex host graph G. Our specific interest is on algorithms for subgraph
counting that are sensitive to the maximum degree ∆ of the host graph.

Assuming that the pattern graph P is connected and admits a vertex balancer of size b, we
present an algorithm that counts the occurrences of P in G in O

(
(2∆−2) k+b

2 2−b n∆k
2 logn

)
time.

We define a balancer as a vertex separator of P that can be represented as an intersection of two
equal-size vertex subsets, the union of which is the vertex set of P , and both of which induce
connected subgraphs of P .

A corollary of our main result is that we can count the number of k-vertex paths in an n-vertex
graph in O

(
(2∆ − 2)b k2 cnk2 logn

)
time, which for all moderately dense graphs with ∆ ≤ n1/3

improves on the recent breakthrough work of Curticapean, Dell, and Marx [STOC 2017], who
show how to count the isomorphic occurrences of a q-edge pattern graph as a subgraph in an
n-vertex host graph in time O(qqn0.17q) for all large enough q. Another recent result of Brand,
Dell, and Husfeldt [STOC 2018] shows that k-vertex paths in a bounded-degree graph can be
approximately counted in O(4kn) time. Our result shows that the exact count can be recovered
at least as fast for ∆ < 10.

Our algorithm is based on the principle of inclusion and exclusion, and can be viewed as a
sparsity-sensitive version of the “counting in halves”-approach explored by Björklund, Husfeldt,
Kaski, and Koivisto [ESA 2009].

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph embedding, k-path, subgraph counting, maximum degree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.17

Funding This work was supported in part by the Swedish Research Council grant VR-2016-03855,
“Algebraic Graph Algorithms”. BARC, Basic Algorithms Research Copenhagen, is funded by the
Villum Foundation grant 16582. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement 338077 “Theory and Practice of Advanced Search and
Enumeration”.

© Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

1 Introduction

Subgraph statistics are among the most fundamental and extensively studied invariants of
graphs. A canonical task in this domain is to count the number of isomorphic occurrences of
a connected k-vertex pattern graph as a subgraph in an n-vertex host graph.

Assuming k is a constant, we can explicitly list all the occurrences of the pattern in
the host graph in time O(nk). A substantial literature exists on counting algorithms that
improve on the O(nk) bound. Currently the fastest algorithm design for the general case
of an unconstrained k-vertex pattern remains the O(nωk/3)-time algorithm of Nešetřil and
Poljak [27] (see also Eisenbrand and Grandoni [14]), where 2 ≤ ω < 2.3728639 is the
exponent of n × n matrix multiplication (cf. Le Gall [24] and Vassilevska Williams [30]).
By parameterizing on the structure of the pattern graph, many further and faster algorithm
designs become possible; we postpone a detailed discussion of earlier work after a statement
of our present focus and main result.

Sensitivity to the maximum degree. In this paper, we are interested in subgraph-counting
algorithms that are sensitive to the maximum degree ∆ in addition to the number of vertices
n in the host graph.1 Our interest is in particular on algorithm designs that scale to massive
graphs where ∆ can be orders of magnitude smaller than n. Such study of algorithms that
are sensitive to ∆ can be found, for example, in the work of Komusiewicz and Soren [23] in
the context of optimization over all k-vertex subgraphs.

In our case of connected subgraph counting, it is immediate that the host can contain
at most n(∆− 1)k−1 subgraphs that are isomorphic to the pattern, and furthermore these
subgraphs can be trivially listed in O(n(∆− 1)k−1) time.

Our goal in this paper is to improve the trivial running time of connected subgraph
counting to the general form

O
(
n(α∆)βk

)
(1)

for constants α ≥ 1 and 0 ≤ β ≤ 1 that depend on the topology of the pattern but not on
the parameters k, n, and ∆. In particular, the main conceptual contribution of this paper
is to establish that nontrivial ∆-sensitive exponents β < 1 can be achieved for elementary
connected topologies, such k-vertex paths and cycles, for which we establish β = 1/2 and
α = 2 independently of k (cf. Corollary 3 for a precise statement). Furthermore, our
algorithms scale linearly in the number of vertices n, thus enabling a more fine-grained
control of subgraph counting by isolating the complexity to the maximum degree ∆ and the
topology of the connected pattern.

Our results. Let us now proceed with a detailed statement of our results. (The standard
graph-theoretic terminology and preliminaries can be found in Section 2.) We are interested
in connected pattern graphs that admit a small balancer in the following sense.

I Definition 1 (Balancer). A vertex subset B ⊆ V (P) of a connected graph P is a balancer
if there exist subsets C1, C2 ⊆ V (P) such that
1. |C1| = |C2|,
2. C1 ∪ C2 = V (P),
3. the induced subgraphs P [C1] and P [C2] are connected, and
4. B = C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .

1 To avoid degenerate cases, let us assume ∆ ≥ 2 in what follows.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto 17:3

For example, a k-vertex path has a balancer of size 2− (k mod 2), a k-vertex cycle has a
balancer of size 2 + (k mod 2), and a k-vertex tree for k ≥ 3 has a balancer of size at most
dk/3e (cf. Lemma 7). Trivially, every k-vertex connected graph has a balancer of size at most
k. It is also immediate that a balancer and k must have the same parity.

I Theorem 2 (Main; Counting connected subgraphs with a small balancer). Let P be a
connected k-vertex graph with a balancer of size b, and let G be an n-vertex graph with
maximum degree ∆ ≥ 2. There exists an algorithm that counts the number of isomorphic
occurrences of P as a subgraph in G in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 logn

)
. (2)

Let us illustrate the use of Theorem 2 by stating a corollary for elementary connected
patterns such as paths, cycles, and trees with arbitrary topology.

I Corollary 3. There exist algorithms that output, given as input an n-vertex host graph G
of maximum degree ∆ ≥ 2,
1. the number of k-vertex paths in G in time O

(
(2∆− 2)b k2 cnk2 logn

)
,

2. the number of k-vertex cycles in G in time O
(
(2∆− 2)d k2 enk2 logn

)
, and

3. the number of isomorphic occurrences of any fixed k-vertex tree T for k ≥ 3 in G in time
O
(
(2∆− 2)d 2k−3

3 enk2 logn
)
.

Discussion and related work. Recently, Patel and Regts [29] have shown that the number
of subgraphs of G that induce an isomorphic occurrence of a given k-vertex pattern graph can
be computed in time ∆O(k)n; their precise bound is O

(
(n(4∆)2k + 210k)poly(k)

)
. This result

is sensitive to the sparsity of the host graph even when the pattern graph is disconnected.
Just as recently, Curticapean, Dell, and Marx [12] showed that the isomorphic occurrences

of a q-edge pattern graph in an n-vertex host graph can be counted for all large enough q
in O(qqn0.17q) time, building on the connection between the number of subgraphs and the
number of homomorphisms established by Lovász 50 years ago [25]. As further motivation for
our present study, we observe that the Curticapean–Dell–Marx algorithm cannot in a direct
way utilise sparsity of the host graph, even when the pattern graph is connected. Indeed,
the Curticapean–Dell–Marx algorithm is based on homomorphism-counting over low-width
tree-decompositions of consolidations of the pattern graph, and there is no guarantee that the
bags of such a tree-decomposition induce connected subgraphs, which means their algorithm
has to track essentially arbitrary mappings of vertices to the host graph. In contrast, our
present algorithm tracks embeddings of connected subgraphs of the pattern graph, which
enables us to control the number of such embeddings with ∆. For k-vertex paths, or any
connected pattern graph with a balancer much smaller than k, we obtain a faster subgraph
counting algorithm for every ∆ ≤ n1/3.

In another very recent work, Brand, Dell, and Husfeldt [8] show that one can approximately
count the number of k-vertex paths in a bounded-degree n-vertex host graph in O(4kn) time
with a randomized approximation scheme. That is, for every ε > 0 they present a Monte-Carlo
algorithm that computes, with probability at least 99

100 , a factor-(1 + ε) approximation of the
exact count, with running time inversely proportional to ε2. Our algorithm is deterministic
and recovers the exact count in the same time, or faster, for all graphs with ∆ < 10.

A third improvement concerns deterministic k-path detection. Zehavi [33] shows that there
is a deterministic algorithm for k-path detection in general graphs running in O(2.6k poly(n))
time. No better algorithm is known for ∆ = 4. For ∆ = 3, one can enumerate the non-
backtracking walks in O(2kn) time. For ∆ = 4, we directly obtain a O(2.44kn) time algorithm
as a special case of Corollary 3.

ISAAC 2018

17:4 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

Methodology. Our algorithmic insight here is an old one: that one can use a meet-in-
the-middle approach dividing the pattern graph (or more precisely in our present case, an
embedding of the pattern graph) into two equal halves. To count half-pairs that together
define an embedding of the pattern into the host, we can use an inclusion–exclusion sieve
that cancels every pair with overlaps outside a controlled root. Björklund et al. [6] showed
one can count the occurrences of a subgraph in nk/2 time using fast zeta transforms and an
inclusion–exclusion sieve on the subset lattice. However, as far as we can tell, one cannot
exploit sparsity in this sieve directly. Our new algorithm here is based on observing that
many of the computation points on the sieve will be zero. Rather than applying a fast zeta
transform, we are better off by explicitly computing the points where the result is non-zero.

Further earlier work and complexity results. Subgraph counting has received a substantial
amount of attention in the algorithms community. A non-exhaustive sample of earlier work
includes Itai and Rodeh [19], Nešetřil and Poljak [27], Alon, Yuster, Zwick [3], Alon and
Gutner [2], Eisenbrand and Grandoni [14], Björklund, Husfeldt, Kaski, and Koivisto [6],
Björklund, Kaski, and Kowalik [7], Vassilevska Williams, Wang, Williams, and Yu [31],
Vassilevska Williams and Williams [32], Amini, Fomin, and Saurabh [4], Fomin, Lokshtanov,
Raman, Saurabh, and Raghavenda Rao [17], Floderus, Kowaluk, Lingas, and Lundell [15],
Olariu [28], Kloks, Kratsch, Müller [22], Curticapean, Dell, and Marx [12], Brand, Dell, and
Husfeldt [8], and Austrin, Kaski, and Kubjas [5].

From a parameterized complexity perspective, subgraph counting parameterized by the
number of vertices k in the pattern graph P is a hard problem in the class #W[1] when P
has unbounded vertex cover number. Cf. Flum and Grohe [16], Chen and Flum [9], Chen,
Thurley, Weyer [10], Curticapean [11], Curticapean and Marx [13], Jerrum and Meeks [20,21],
and Meeks [26]. The specific problem of finding and counting cliques is used as a source of
fine-grained hardness reductions by Abboud, Backurs, and Vassilevska Williams [1].

Under the Exponential Time Hypothesis (ETH), Impagliazzo et al. [18] have shown that
there can be no algorithm for detecting a Hamiltonian path in time exp o(n). By inspecting
the textbook reduction from 3-Satisfiability to Hamiltonicity used in that argument, we
observe that this result holds even if the input graph has constant degree. Thus, the constant
β in (1) cannot be arbitrarily reduced, even if the dependency on ∆ is much relaxed. In
particular, the hypothesis forbids an algorithm for counting (or even detecting) k-paths with
running time (f(∆))o(k)poly(n) for any computable function f .

Organization. The rest of this paper is organized as follows. Section 2 reviews the standard
definitions and notational conventions used in this paper. Section 3 presents our main sieving
lemma for counting embeddings from two parts. Section 4 gives an algorithm for listing the
embeddings of a connected pattern graph to a host graph. Section 5 develops our sieving
algorithm for counting embeddings from two parts. Section 6 completes our main algorithm
design and the proof of Theorem 2. Section 7 proves Corollary 3 and studies balancers in
elementary families of connected graphs.

2 Preliminaries

This section reviews the standard definitions and notational conventions used in this paper.

Graphs and subgraphs. Unless mentioned otherwise, all graphs in this paper are undirected,
loopless, and without parallel edges. For a graph G, we write V = V (G) for the vertex set
and E = E(G) for the edge set of G, where each edge e ∈ E(G) is a 2-element subset of

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto 17:5

V (G). Let us write ∆ = ∆(G) for the maximum degree of a vertex in G. A graph H is a
subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). We write H ⊆ G to indicate
that H is a subgraph of G. For a set S ⊆ V (G), the subgraph G[S] of G induced by S is
defined by V (G[S]) = S and E(G[S]) = {{u, v} ∈ E(G) : u, v ∈ S}. We tacitly assume in
what follows that all algorithms accept their input graphs in adjacency list form.

Separators. Let G be a graph and let A,B ⊆ V (G). We say that a set S ⊆ V (G) is an
(A,B)-separator in G if for all a ∈ A and all b ∈ B it holds that every path in G joining a
and b contains at least one vertex in S.

Mappings. For a mapping ϕ : X → Y and a subset S ⊆ X, we write ϕ|S : S → Y for the
restriction of ϕ to S and ϕ(S) = {ϕ(x) : x ∈ S} ⊆ Y for the image of S under ϕ. For two
mappings ϕ : X → Y and ψ : Y → Z, let us write ψ ◦ ϕ : X → Z for their composition
defined for all x ∈ X by ψ ◦ ϕ(x) = ψ(ϕ(x)).

Homomorphism, embedding, isomorphism, automorphism. Let P and G be graphs. A
mapping ϕ : V (P)→ V (G) is a homomorphism from P to G if for all {u, v} ∈ E(P) it holds
that {ϕ(u), ϕ(v)} ∈ E(G). An injective homomorphism is called an embedding (or a mono-
morphism) of P into G. A bijective homomorphism whose inverse is also a homomorphism is
an isomorphism. An isomorphism from a graph P to itself is an automorphism of P .

Let us write Hom(P,G), Emb(P,G), Iso(P,G) for the set of all homomorphisms, embed-
dings, and isomorphisms, respectively, from P to G. Similarly, let us write Aut(P) for the
set of all automorphisms of P .

Subgraph occurrences and subgraph counting. Let P and G be graphs. Let us write
Sub(P,G) for the set of all subgraphs H ⊆ G such that P and H are isomorphic. We call
each element of Sub(P,G) an occurrence of P in G. The number of embeddings of P to G
and the number of occurrences of P in G are related by the identity

|Emb(P,G)| = |Aut(P)| · |Sub(P,G)| . (3)

In particular, assuming |Aut(P)| is known, knowledge of one of |Emb(P,G)| or |Sub(P,G)|
enables one to solve for the other via (3).

Iverson bracket notation. For a logical proposition P , it will be convenient to use Iverson’s
bracket notation

[[P]] =
{

1 if P is true;
0 if P is false.

Model of computation. We work in a word-RAM model where basic word operations on
O(logn)-bit words take time O(1), where n = |V (G)| is the number of vertices in the input
host graph G.

3 A sieving lemma for the number of embeddings

This section starts our work towards the proof of Theorem 2. The goal of this section is a
technical sieving lemma that enables us to count embeddings ϕ “in halves” (in analogy with
Björklund et al. [6]) by sieving pairs (ϕ1, ϕ2) of partial embeddings for those pairs that both
agree with a root map ρ and are otherwise disjoint in terms of their image sets.

ISAAC 2018

17:6 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

In more precise terms, let P and G be graphs and let C1, C2 ⊆ V (P) such that
1. C1 ∪ C2 = V (P) and
2. C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .

Let us fix a root map ρ : C1 ∩ C2 → V (G). We say that an embedding ϕ ∈ Emb(P,G) is
ρ-rooted if ϕ|C1∩C2 = ρ. Let us write Embρ(P,G) for the set of all ρ-rooted embeddings in
Emb(P,G).

The following sets will form the core of the sieve. For X ⊆ V (G) and S ⊆ V (P) with
C1 ∩ C2 ⊆ S, let us define

Iρ,S(X) = {ϕ ∈ Embρ(P [S], G) : X ⊆ ϕ(S)} . (4)

We are now ready for our main sieving lemma.

I Lemma 4 (Sieving ρ-rooted embeddings from two parts). We have

|Embρ(P,G)| =
∑

X⊆V (G)\ρ(C1∩C2)

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)| . (5)

Proof. Recalling that every nonempty finite set has equally many even-sized and odd-sized
subsets, for any (possibly empty) finite set Y we have∑

X⊆Y

(−1)|X| = [[Y = ∅]] . (6)

Let us use the notational shorthands Vρ = V (G) \ ρ(C1 ∩ C2), E1 = Embρ(P [C1], G), and
E2 = Embρ(P [C2], G). Expanding the right-hand side of (5), we obtain∑

X⊆Vρ

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)|

=
∑
X⊆Vρ

(−1)|X|
∑
ϕ1∈E1

[[X ⊆ ϕ1(C1)]]
∑
ϕ2∈E2

[[X ⊆ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆Vρ

(−1)|X|[[X ⊆ ϕ1(C1)]][[X ⊆ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆Vρ

(−1)|X|[[X ⊆ ϕ1(C1) ∩ ϕ2(C2)]]

=
∑
ϕ1∈E1

∑
ϕ2∈E2

∑
X⊆ϕ1(C1\C2)∩ϕ2(C2\C1)

(−1)|X|

=
∑
ϕ1∈E1

∑
ϕ2∈E2

[[ϕ1(C1 \ C2) ∩ ϕ2(C2 \ C1) = ∅]] .

To establish the lemma, it now suffices to show that the last double sum equals |Embρ(P,G)|.
Toward this end, let us observe that a pair (ϕ1, ϕ2) ∈ E1×E2 of embeddings defines a unique
embedding ϕ ∈ Embρ(P,G) if and only if we have

ϕ1(C1 \ C2) ∩ ϕ2(C2 \ C1) = ∅ . (7)

In the “if” direction, each pair (ϕ1, ϕ2) ∈ E1×E2 defines a map ϕ : V (P)→ V (G) via the
restrictions ϕ|C1 = ϕ1 and ϕ|C2 = ϕ2. Indeed, we observe that ϕ is a well-defined injective
map because we have ϕ1|C1∩C2 = ϕ2|C1∩C2 = ρ together with C1 ∪ C2 = V (P) and (7).

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto 17:7

Furthermore, ϕ is a homomorphism from P to G because ϕ1, ϕ2 are homomorphisms and
because C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P ; that is, ϕ maps every edge of P to
an edge of G since every edge of P has both of its end-vertices in C1 or in C2.

In the “only if” direction, each embedding ϕ ∈ Embρ(P,G) restricts to ϕ1 = ϕ|C1 and
ϕ2 = ϕ|C2 . It is immediate that we have ϕ1 ∈ E1, ϕ2 ∈ E2, and (7) holds. This completes
the lemma. J

I Remark. From (4) it is immediate that we have Iρ,Cj (X) = ∅ unless |X| ≤ |Cj |, so it
suffices to restrict the sieve (5) to sets X with |X| ≤ min(|C1|, |C2|).

4 Listing the embeddings of a connected pattern graph

To turn Lemma 4 into an algorithm that is sensitive to the maximum degree ∆ = ∆(G) of
the host graph G, we will rely on a subroutine that we use to explicitly list the embeddings
in Emb(P [C1], G) and in Emb(P [C2], G). This ∆-sensitive listing subroutine is the content
of this section and the following lemma.

I Lemma 5 (Listing embeddings of a connected pattern graph). Let Q be a connected graph
with q = |V (Q)|. Let G a graph with n = |V (G)| and ∆ = ∆(G) ≥ 2. There exists an
algorithm that lists all the embeddings in Emb(Q,G) in time

O
(
n(∆− 1)q−1q2 logn

)
. (8)

Proof. Since Q is connected, it has a spanning tree. Fix an arbitrary spanning tree T of Q
and fix an arbitrary vertex r ∈ V (T) as the root of T . Use a recursive procedure to construct
all embeddings ϕ : V (T) → V (G) one image ϕ(x) ∈ V (G) at a time for each x ∈ V (T),
starting from the root r, and proceeding so that whenever the image of x 6= r is being
fixed, the parent p ∈ V (T) of x in T (towards the root r) has its image ϕ(p) already fixed.
Whenever an embedding ϕ : V (T)→ V (G) is completed, we test whether ϕ is an embedding
of Q to G and output ϕ if this is the case.

To analyze the running time, we observe that there are at most n choices for the image
ϕ(r) ∈ V (G) of the root r. Since the next image needs to be adjacent to ϕ(r), there are at
most ∆ choices for the next image (if any). For all subsequent q− 2 images (if any), we have
that there are at most ∆ − 1 choices for ϕ(x) since ϕ(x) and ϕ(p) are adjacent and ϕ(x)
needs to be distinct from all the previously fixed images. Thus, in total there are at most
n∆(∆−1)q−2 = O(n(∆−1)q−1) embeddings ϕ ∈ Emb(T,G). The (unoptimized) component
q2 logn in the running time bound (8) comes from testing that the |E(Q)| ≤ q2 adjacencies
{ϕ(z), ϕ(w)} ∈ E(G) hold for each {z, w} ∈ E(Q) by binary search to the adjacency lists of
G given by ϕ. J

I Remark. We observe that the listing algorithm in Lemma 5 would not work without the
assumption that Q is connected.

5 A sieving algorithm for the number of embeddings

This section continues our work towards Theorem 2 by combining Lemma 4 and Lemma 5
to a sieving algorithm for the number |Emb(P,G)| of embeddings of a connected k-vertex
pattern graph P to an n-vertex host graph G.

The sieving algorithm will rely on a balancer for P . In more precise terms, let C1, C2 ⊆
V (P) so that B = C1 ∩ C2 is a balancer of size b = |B|. Recalling Definition 1, we have

ISAAC 2018

17:8 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

1. |C1| = |C2|,
2. C1 ∪ C2 = V (P),
3. the induced subgraphs P [C1] and P [C2] are connected, and
4. C1 ∩ C2 is a (C1 \ C2, C2 \ C1)-separator in P .
Furthermore, since k = |V (P)| and b = |C1 ∩ C2|, we thus have |C1| = |C2| = k+b

2 .

I Lemma 6 (Sieving algorithm for the number of embeddings). Let P be a connected k-vertex
graph with a balancer of size b. Let G be a graph with n = |V (G)| and ∆ = ∆(G) ≥ 2. There
exists an algorithm that computes |Emb(P,G)| in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 logn

)
. (9)

Proof. Let C1, C2 be the sets in that define the balancer of size b. Recall the sets (4) that
form the core of the sieve in Lemma 4. The algorithm works with a dictionary data structure
that records and builds the nonempty sets Iρ,Cj (X) indexed by three-tuples (ρ, Cj , X) with
ρ : C1 ∩ C2 → V (G), j = 1, 2, and X ⊆ V (G) \ ρ(C1 ∩ C2). We build the nonempty sets
Iρ,Cj (X) using the listing algorithm in Lemma 5.

First, we use the algorithm in Lemma 5 with Q = P [C1] and |V (Q)| = k+b
2 to list

all the embeddings ϕ1 ∈ Emb(P [C1], G). By the analysis in Lemma 5, there are at most
n(∆− 1) k+b

2 −1 such embeddings. For each listed ϕ1, we insert ϕ1 into the set Iρ,C1(X) for
ρ = ϕ1|C1∩C2 and for each X ⊆ ϕ1(C1 \ C2). Since |ϕ1(C1 \ C2)| = |C1 \ C2| = k−b

2 , the
number of nonempty sets Iρ,C1(X) will be at most

n(∆− 1)
k+b

2 −12
k−b

2 = O

(
n

∆(2∆− 2)
k+b

2 2−b
)
. (10)

Second, we use the algorithm in Lemma 5 with Q = P [C2] and |V (Q)| = k+b
2 to list all

the embeddings ϕ2 ∈ Emb(P [C2], G). For each listed ϕ2, we insert ϕ2 into the set Iρ,C2(X)
for ρ = ϕ2|C1∩C2 and for each X ⊆ ϕ2(C2 \C1). The number of nonempty sets Iρ,C2(X) will
similarly be at most (10).

Third, let us observe that we have used total time (10) and have available all nonempty
sets Iρ,C1(X) and Iρ,C2(X). From Lemma 4 we observe that

|Emb(P,G)| =
∑

ρ:C1∩C2→V (G)

|Embρ(P,G)|

=
∑

ρ:C1∩C2→V (G)

∑
X⊆V (G)\ρ(C1∩C2)

(−1)|X| · |Iρ,C1(X)| · |Iρ,C2(X)| . (11)

Thus, we can compute |Emb(P,G)| using the nonempty sets Iρ,C1(X) and Iρ,C2(X) by sorting
the index tuples based first on ρ and then based on X. We then evaluate |Emb(P,G)| using
the double sum in (11). The total time is bounded by (9) since the embeddings ϕj and
indices ρ, Cj , X can both be represented using O(k) words of O(logn) bits. J

6 The main algorithm

This section proves Theorem 2. Let P be a connected k-vertex graph with a vertex balancer
of size b and let G be an n-vertex graph.

First, let us observe that we have trivially |Sub(P,G)| = 0 unless ∆(P) ≤ ∆(G). Further-
more, we observe that Aut(P) = Emb(P, P).

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto 17:9

The main algorithm starts by verifying that both k ≤ n and ∆(P) ≤ ∆(G); if this is not
the case, the algorithm gives the output 0 and stops.

Next, the algorithm computes |Aut(P)| = |Emb(P, P)| using the algorithm in Lemma 6
with G set to equal P . Since k ≤ n and ∆(P) ≤ ∆(G), it is immediate from (9) that this
computation of |Aut(P)| runs within the main time bound (2).

Finally, the algorithm computes |Emb(P,G)| using the algorithm in Lemma 6 and, using
(3), gives the output

|Sub(G,P)| = |Emb(P,G)|
|Aut(P)| .

Since (9) is bounded by (2), the total running time is bounded by (2). This completes the
proof of Theorem 2.

7 Corollaries for elementary connected graphs

This section establishes Corollary 3. We start with a straightforward lemma on balancers.

I Lemma 7.
1. A k-vertex path admits a balancer of size 2− (k mod 2).
2. A k-vertex cycle admits a balancer of size 2 + (k mod 2).
3. A k-vertex tree for k ≥ 3 admits a balancer of size at most dk/3e.

Proof. A k-vertex path v1, . . . , vk contains the balancer {vdk/2e} for odd k and the balancer
{vdk/2e, vdk/2e+1} for even k. A k-vertex cycle v1, . . . , vk for k ≥ 2 contains the balancer
{v1, vdk/2e} for even k and the balancer {v1, vdk/2e, vk} for odd k.

We turn to the third item. Every k-vertex tree contains a centroid vertex c, which cuts
it into subtrees T1, . . . , Tr of size k1, . . . , kr with ki ≤ k/2,

∑
i ki = k − 1, and r ≥ 2. Put

the largest two subtrees, say T1 and T2, into C1 and C2, respectively, and add c to each. If
r = 2 then k1 = k2 = (k − 1)/2 and c itself is a singleton balancer. Otherwise, add each of
the remaining r − 2 trees, smallest first, to C1 or C2 such that |C1| and |C2| both remain at
most (k − 1)/2. This process continues until the last tree, say T3, which is instead added
to both C1 and C2. If C1 and C2 now have unequal size, say |C1| > |C2| then repeatedly
remove leaf nodes of T3 from C1 until |C1| = |C2|. The resulting balancer C1 ∩ C2 consists
of c together with a subtree of T3, so we have

|C1 ∩ C2| ≤ k3 + 1 ,

and since

k3 ≤ k2 ≤ k1 ≤ 1
3 (k − 1) , (12)

so we see that the balancer is roughly 1
3k. For the precise bound in the lemma, the proceed

by cases. If (k mod 3) = 1 then 1
3 (k − 1) is an integer, so we can just write

k3 + 1 ≤ 1
3 (k − 1) + 1 = b(k − 1)/3c+ 1 = dk/3e .

If (k mod 3) ∈ {0, 2} then the bound (12) cannot hold with equality, since otherwise the
total number of vertices would be k1 + k2 + k3 + 1 = 1 (mod 3). Thus,

k3 + 1 < 1
3 (k − 1) + 1 = 1

3k + 2
3 ≤ dk/3e+ 1 .

Since both sides of this strict inequality are integers, the bound in the lemma holds. J

ISAAC 2018

17:10 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

Let us now proceed with a proof of Corollary 3. Recalling (2), for a connected k-vertex
pattern P with balancer size b, the main algorithm runs in time

O

(
(2∆− 2)

k+b
2 2−b n∆k2 logn

)
.

For a k-vertex path, we have b = 2− (k mod 2) ≤ 2 by Lemma 7 and thus

k + b

2 − 1 =
⌊
k

2

⌋
implies the claimed running time

O
(
(2∆− 2)b k2 cnk2 logn

)
.

For a k-vertex cycle, we have b = 2 + (k mod 2) ≤ 3 by Lemma 7 and thus

k + b

2 − 1 =
⌈
k

2

⌉
implies the claimed running time

O
(
(2∆− 2)d k2 enk2 logn

)
.

For a k-vertex tree wtih k ≥ 3, we have b ≤ dk/3e by Lemma 7 and thus

k + b

2 − 1 ≤ k + dk/3e
2 − 1 ≤

⌈
2k − 3

3

⌉
implies the claimed running time

O
(
(2∆− 2)d

2k−3
3 enk2 logn

)
.

This completes the proof of Corollary 3.

Treewidth. The notion of balancer is reminiscent of, but different from, the “balanced
separators” that appear in the study of the graph parameter treewidth. However the latter
is both more permissive and more strict, and no general corollaries for graphs of bounded
treewidth follow from our results.

To see this, we exhibit infinite families of graphs where the two notions differ.
One one hand, low treewidth is a global property that extends to all subgraphs. For

instance, consider the k-vertex graph formed by connecting two r-cliques, where r = 1
2k − 1,

by identifying one vertex in each clique with the endpoints of a 3-vertex path. (This is the
r-barbell graph with a subdivided bridge.) This graph has linear treewidth 1

2k − 2, but
admits a one-vertex balancer.

On the other hand, Definition 1 requires C1 and C2 to be connected, which the parts
arising from a tree-decomposition need not be. For instance, consider the k-vertex graph T
formed by from three r-vertex paths, where r = 1

3 (k− 1), by identifying one endpoint in each
path with the leaves of the 4-vertex “Claw graph” K1,3. This graph is a tree and thus has
treewidth 1. Any partition of V (T) into C1 and C2 must put at least two leaves into the same
part, say C1. Since T [C1] is connected, the unique path between these leaves must belong to
C1, so |C1| ≥ 2r+1. By the balancing condition, |C2| = |C1| ≥ 2r+1. But then the balancer
has size at least |C1 ∩ C2| = |C1|+ |C2| − |C1 ∪ C2| ≥ 4r + 2− (3r + 1) = r + 1 = 1

3k + 2
3 .

(Note that this derivation matches the tree bound from Lemma 7, showing that neither
construction can be improved.) We conclude that there is an infinite family of graphs of
treewidth 1 whose balancers have size at least 1

3k.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto 17:11

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique

Algorithms are Optimal, So is Valiant’s Parser. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS, pages 98–117, 2015.

2 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applic-
ations. ACM Trans. Algorithms, 6(3):54:1–54:12, 2010.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997.

4 Omid Amini, Fedor V. Fomin, and Saket Saurabh. Counting Subgraphs via Homomorph-
isms. SIAM J. Discrete Math., 26(2):695–717, 2012.

5 Per Austrin, Petteri Kaski, and Kaie Kubjas. Tensor network complexity of multilinear
maps. CoRR, abs/1712.09630, 2017.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths
and Packings in Halves. In Algorithms - ESA 2009, 17th Annual European Symposium,
Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 578–586, 2009.

7 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting Thin Subgraphs via
Packings Faster Than Meet-in-the-Middle Time. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 594–603, 2014.

8 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-Coding. In STOC ’18: Sym-
posium on Theory of Computing, June 23–27, 2018, Los Angeles, CA, USA, page 14. ACM,
New York, NY, USA, 2018.

9 Yijia Chen and Jörg Flum. On Parameterized Path and Chordless Path Problems. In 22nd
Annual IEEE Conference on Computational Complexity (CCC), pages 250–263, 2007.

10 Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of Induced
Subgraph Isomorphisms. In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Track A, pages 587–596, 2008.

11 Radu Curticapean. Counting Matchings of Size k Is #W[1]-Hard. In Automata, Languages,
and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part I, pages 352–363, 2013.

12 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC, pages 210–223, 2017.

13 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the
Boundedness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 130–139, 2014.

14 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theoret. Comput. Sci., 326(1-3):57–67, 2004.

15 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting
and Counting Small Pattern Graphs. SIAM J. Discrete Math., 29(3):1322–1339, 2015.

16 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. In
43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002,
Vancouver, BC, Canada, Proceedings, page 538, 2002.

17 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghav-
endra Rao. Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci.,
78(3):698–706, 2012.

18 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

19 Alon Itai and Michael Rodeh. Finding a Minimum Circuit in a Graph. SIAM J. Comput.,
7(4):413–423, 1978.

ISAAC 2018

17:12 Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

20 Mark Jerrum and Kitty Meeks. Some Hard Families of Parameterized Counting Problems.
TOCT, 7(3):11:1–11:18, 2015.

21 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected sub-
graphs and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015.

22 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced sub-
graphs efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000.

23 Christian Komusiewicz and Manuel Sorge. An algorithmic framework for fixed-cardinality
optimization in sparse graphs applied to dense subgraph problems. Discrete Applied Math-
ematics, 193:145–161, 2015.

24 François Le Gall. Powers of tensors and fast matrix multiplication. In International Sym-
posium on Symbolic and Algebraic Computation, ISSAC, pages 296–303, 2014.

25 L. Lovász. Operations with structures. Acta Math. Acad. Sci. Hungar., 18:321–328, 1967.
26 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting

problems. Discrete Applied Mathematics, 198:170–194, 2016.
27 J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Comment. Math.

Univ. Carolin., 26(2):415–419, 1985.
28 Stephan Olariu. Paw-Free Graphs. Inf. Process. Lett., 28(1):53–54, 1988.
29 Viresh Patel and Guus Regts. Computing the number of induced copies of a fixed graph

in a bounded degree graph. CoRR, abs/1707.05186, 2017.
30 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.

In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pages
887–898, 2012.

31 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu.
Finding Four-Node Subgraphs in Triangle Time. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 1671–1680, 2015.

32 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

33 Meirav Zehavi. Mixing Color Coding-Related Techniques. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037–1049, 2015.

	Introduction
	Preliminaries
	A sieving lemma for the number of embeddings
	Listing the embeddings of a connected pattern graph
	A sieving algorithm for the number of embeddings
	The main algorithm
	Corollaries for elementary connected graphs

