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Abstract
In this paper we study the Target Set Selection problem from a parameterized complexity
perspective. Here for a given graph and a threshold for each vertex the task is to find a set of
vertices (called a target set) to activate at the beginning which activates the whole graph during
the following iterative process. A vertex outside the active set becomes active if the number of
so far activated vertices in its neighborhood is at least its threshold.

We give two parameterized algorithms for a special case where each vertex has the threshold
set to the half of its neighbors (the so called Majority Target Set Selection problem) for
parameterizations by the neighborhood diversity and the twin cover number of the input graph.

We complement these results from the negative side. We give a hardness proof for the Ma-
jority Target Set Selection problem when parameterized by (a restriction of) the modular-
width – a natural generalization of both previous structural parameters. We show that the
Target Set Selection problem parameterized by the neighborhood diversity when there is
no restriction on the thresholds is W[1]-hard.
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1 Introduction

We study the Target Set Selection problem (also called Dynamic Monopolies), using
notation according to Kempe et al. [16], from parameterized complexity perspective. We use
standard notions of parameterized complexity, see [9]. Let G = (V, E) be a graph, S ⊆ V ,
and f : V → N be a threshold function. The activation process arising from the set S0 = S is
an iterative process with resulting sets S0, S1, . . . such that for i ≥ 0

Si+1 = Si ∪ {v ∈ V : |N(v) ∩ Si| ≥ f(v)} ,
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18:2 Target Set Selection in Dense Graph Classes

where by N(v) we denote the set of vertices adjacent to v. Note that after at most n = |V |
rounds the activation process has to stabilize – that is, Sn = Sn+i for all i > 0. We say that
the set S is a target set if Sn = V (for the activation process S = S0, . . . , Sn).

Target Set Selection
Input: A graph G = (V, E), f : V → N, and a positive integer b ∈ N.
Task: Find a target set S ⊆ V of size at most b or report that there is no such set.

We call the input integer b the budget. The problem interpretation and computational
complexity clearly may vary depending on the input function f . There are three important
settings studied (as we will discus later) – namely constant, majority, and a general function.
If the threshold function f is the majority (i.e., f(u) = ddeg(u)/2e for every vertex u ∈ V )
we denote the problem as Majority Target Set Selection.

Motivation. The Target Set Selection problem was introduced by Domingos and
Richardson [10] in order to study influence of direct marketing on a social network. It is
noted therein that it captures e.g. viral marketing [21]. The Target Set Selection
problem is important also from the graph theoretic viewpoint, since it generalizes many well
known NP-hard problems on graphs. These problems include

Vertex Cover [4] – set f(v) = deg(v) for all v ∈ V and
Irreversible k-Conversion Set [11], k-Neighborhood Bootstrap Percola-
tion [2] – the Target Set Selection problem with all thresholds fixed to k.

Previous Results. The Target Set Selection problem received attention of researchers
in theoretical computer science in the past years. A general upper bound on the number
of selected vertices under majority constraints is |V |/2 [1]. The Target Set Selection
problem admits an FPT algorithm when parameterized by the vertex cover number [19].
A tO(w) poly(n) algorithm is known, where w is the tree-width of the input graph and
t is an upper-bound on the threshold function [3], that is, f(v) ≤ t for every vertex v.
This is essentially optimal, as the Target Set Selection problem parameterized by
the path-width is W[1]-hard for majority [6] and general functions [3]. The Target Set
Selection problem is solvable in linear time on trees [4] and more generally on block-cactus
graphs [5]. The optimization variant of the Target Set Selection problem is hard to
approximate [4] within a polylogarithmic factor. For more and less recent results we refer
the reader to a survey by Peleg [20]. Cicalese et al. [8, 7], considered versions of the problem
in which the number of rounds of the activation process is bounded. For graphs of bounded
clique-width, given parameters a, b, `, they gave polynomial-time algorithms to determine
whether there exists a target set of size b, such that at least a vertices are activated in at most
` rounds. Recently Hartmann [15] gave a single-exponential FPT algorithm for Target Set
Selection parameterized by clique width when all thresholds are bounded by a constant.

Our Results. In this work we generalize some results obtained by Nichterlein et al. [19].
Chopin et al. [6] essentially proved that in sparse graph classes (such as graphs with the
bounded tree-width) parameterized complexity of the Majority Target Set Selection
problem is the same as for the Target Set Selection problem. For these graph classes,
it is not hard to see that e.g. if the threshold for vertex v is set above the majority (i.e.,
f(v) > ddeg(v)/2e), then we may add 2

(
f(v)− ddeg(v)/2e

)
vertices neighboring with v only

and the parameter stays unchanged whereas the threshold of v dropped to majority. However,
this is not true in general for dense graph classes. We demonstrate this phenomenon for
the parameterization by the neighborhood diversity. We show parameterized algorithm for
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a function which generalizes both constant and majority threshold functions. We call this
function uniform (and the corresponding problem Uniform Target Set Selection), see
the next section for a proper definition. Roughly speaking all vertices belonging to a same
part of a graph decomposition must possess the same value of the threshold function. In
a slight contrast to the previous results, we derive an FPT algorithm that, instead of the
maximal threshold value t, depends on the size of the image of the threshold function for
graphs having bounded neighborhood diversity.

I Theorem 1. There is an FPT algorithm for the Uniform Target Set Selection
problem parameterized by the neighborhood diversity of the input graph.

I Theorem 2. The Target Set Selection problem is W[1]-hard parameterized by the
neighborhood diversity of the input graph.

The complexity of the Majority Target Set Selection problem is not resolved for
parameterization by the cluster vertex deletion number [6] (the number of vertices whose
removal from the graph results in a collection of disjoint cliques). We have a positive result
for a slightly stronger parameterization: we assume that for every vertex we remove and
every clique the vertex is either completely adjacent to the whole clique or is completely
nonadjacent. This result also suggests that various weighted variants of the Target Set
Selection problem may be in FPT when parameterized by the vertex cover number.

I Theorem 3. There is an FPT algorithm for the Uniform Target Set Selection
problem parameterized by the size of the twin cover of the input graph.

Previous results [6] imply that the parameterized complexity of the Target Set Se-
lection and the Majority Target Set Selection problems is the same in graphs
with bounded clique-width. Of course, much more is known – the proof herein shows that
the Majority Target Set Selection problem is W[1]-hard on graphs of the bounded
tree-depth (even though only the tree-width is claimed). We show that this is already the case
for parameterization by the (restricted) modular-width that generalizes both neighborhood
diversity and twin cover number.

I Theorem 4. The Majority Target Set Selection problem is W[1]-hard parameterized
by the modular-width of the input graph.

2 Preliminaries on Structural Graph Parameters

We give formal definitions of several graph parameters used in this work. To get better
acquainted with these parameters, we provide a map of the considered parameters in Figure 1.

For a graph G = (V, E) the set U ⊆ V is called a vertex cover of G if for every edge
e ∈ E it holds that e ∩ U 6= ∅. The vertex cover number of a graph, denoted as vc(G), is the
least integer k for which there exists a vertex cover of size k.

As the vertex cover number is (usually) too restrictive, many authors focused on defining
other (i.e., weaker) structural parameters. Three most well-known parameters of this kind
are the path-width, the tree-width, and the clique-width. Classes of graphs with the bounded
tree-width (respectively the path-width) are contained in the so called sparse graph classes.

There are (more recently introduced) structural graph parameters which also generalize
the vertex cover number but, in contrast with e.g. the tree-width, these parameters focus on
dense graphs. First, up to our knowledge, of these parameters is the neighborhood diversity
defined by Lampis [17]. We denote the neighborhood diversity of a graph G = (V, E)
as nd(G).

ISAAC 2018
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Figure 1 A map of the considered parameters. A black arrow stands for a linear upper bound,
while a gray arrow stands for an exponential upper bound. That is, if a graph G has vc(G) ≤ k

then nd(G) ≤ 2k + k.

Neighborhood Diversity. We say that two distinct vertices u, v are of the same neighborhood
type if they share their respective neighborhoods, that is, when N(u) \ {v} = N(v) \ {u}.

I Definition 5 (Neighborhood diversity [17]). A graph G = (V, E) has neighborhood diversity
at most w (nd(G) ≤ w) if there exists a decomposition Dnd = (Ci)wi=1 of V = C1

·
∪ · · ·

·
∪ Cw

(we call the sets Ci types) such that all vertices in a type have the same neighborhood type.

Note that every type induces either a clique or an independent set in G and two types
are either joined by a complete bipartite graph or no edge between vertices of the two types
is present in G. Thus, we use the notion of a type graph – that is a graph TG representing
the graph G and its neighborhood diversity decomposition in the following way. The vertices
of type graph TG are the types C1, . . . , Cw and two such vertices are joined by an edge if
all the vertices of corresponding types are adjacent. We would like to point out that it is
possible to compute the neighborhood diversity of a graph in linear time [17].

Twin Cover. If two vertices u, v have the same neighborhood type and e = {u, v} is an
edge of the graph, we say that e is a twin edge.

I Definition 6 (Twin cover number [14]). A set of vertices T ⊆ V is a twin cover of a graph
G = (V, E) if for every edge e ∈ E either T ∩ e 6= ∅ or e is a twin edge. We say that G has
twin cover number t (tc(G) = t) if the size of a minimum twin cover of G is t.

Note that after removing T from a graph G the resulting graph consists of disjoint union
of cliques – we call them twin cliques. Moreover, for every vertex v in T and a twin clique
C holds that v is either adjacent to every vertex in C or to none of them. A twin cover
decomposition Dtc = (Ci)νi=1 of a graph G is a partition of V (G) such that each Ci is either
a vertex of the twin cover or a twin clique.

Note that the twin cover number can be upper-bounded by the vertex cover number. The
structure of graphs with bounded twin cover is very similar to the structure of graphs with
bounded vertex cover number. Thus, there is a hope that many of known algorithms for
graphs with bounded vertex cover number can be easily turned into algorithms for graphs
with bounded twin cover number.

Uniform Threshold Function. As it is possible to compute the neighborhood diversity
(or the twin cover) decomposition in polynomial time (or FPT-time, respectively), we may
assume that the decomposition is given in the input. Given a decomposition D (Dnd or Dtc) a
threshold function f : V (G)→ N is uniform with respect to D if f(u) = f(v) for every u, v ∈ C



P. Dvořák, D. Knop, and T. Toufar 18:5

and every C ∈ D. Observe that this notion generalizes the previously studied [6] model in
which the threshold function is required to satisfy f(u) = f(v) whenever |N(u)| = |N(v)|,
since this indeed holds if u, v ∈ C and C ∈ D. It is not hard to see that the uniform function
generalizes both the constant and the majority functions for the twin cover number and the
neighborhood diversity; this is true already for the later notion.

Moreover, if f(v) is bounded by a constant c for all v ∈ V (G), then there exists Dnd
with ‖Dnd‖ ≤ c · nd(G) such that f is uniform with respect to Dnd. We stress here that
this construction is not legal for the twin cover decompositions. Uniform Target Set
Selection is a variant of Target Set Selection, where the input instance (G, f, b,D) is
restricted in such a way that the function f is uniform with respect to D.

Modular-width. Both the neighborhood diversity and the twin cover number are generalized
by the modular-width. Here we deal with graphs created by an algebraic expression that
uses the following four operations:
1. Create an isolated vertex.
2. The disjoint union of two graphs, that is from graphs G = (V, E), H = (W, F ) create a

graph (V ∪W, E ∪ F ).
3. The complete join of two graphs, that is from graphs G = (V, E), H = (W, F ) create a

graph with vertex set V ∪W and edge set E ∪ F ∪
{
{v, w} : v ∈ V, w ∈W

}
. Note that

the edge set of the resulting graph can be also written as E ∪ F ∪ (V ×W ).
4. The substitution operation with respect to a template graph T with vertex set {v1, v2, . . . ,

vk} and graphs G1, G2, . . . , Gk created by an algebraic expression; here Gi = (Vi, Ei) for
i = 1, 2, . . . , k. The substitution operation, denoted by T (G1, G2, . . . , Gk), results in the
graph on vertex set V = V1 ∪ V2 ∪ · · · ∪ Vk and edge set

E = E1 ∪ E2 ∪ · · · ∪ Ek ∪
⋃

{vi,vj}∈E(T )

{
{u, v} : u ∈ Vi, v ∈ Vj

}
.

I Definition 7 (Modular-width [13]). Let A be an algebraic expression that uses only
operations 1–4 above. The width of the expression A is the maximum number of operands
used by any occurrence of operation 4 in A. The modular-width of a graph G, denoted
mw(G), is the least positive integer k such that G can be obtained from such an algebraic
expression of width at most k.

An algebraic expression of width mw(G) can be computed in linear time [22].

Restricted Modular-width. We would like to introduce here a restriction of the modular-
width that still generalizes both the neighborhood diversity and the twin cover number. The
algebraic expression used to define a graph G may contain the substitution operation at
most once and if it contains the substitution operation it has to be the last operation in the
expression. However, there is no limitation for the use of operations 1–3.

3 Positive Results

In this section we give proofs of Theorem 1 and 3. In the first part we discuss the crucial
property of dense structural parameters – the uniformity of neighborhoods. This, opposed
to e.g. the cluster vertex deletion number, allows us to design parameterized algorithms.
In this section by a decomposition D we mean a neighborhood diversity or a twin cover
decomposition.

ISAAC 2018
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I Lemma 8. Let G = (V, E) be a graph, D be a decomposition of G, S ⊆ V be a target set,
and f be a uniform threshold function with respect to D. Let C ∈ D and S = S0, S1, . . . be
an activation process arising from S. For each round i ∈ N0 one of the following holds either
1. Si ∩ C = S0 ∩ C, or
2. Si ∩ C = C.
Moreover, there exist j with j ∈ N0 such that for C the first item applies in rounds 0, . . . , j

and the second in rounds j + 1, . . ..

Proof. Since f is uniform, it is constant on C. The proof is by induction on the round
number i. The statement clearly holds for i = 0. Suppose that the statement is valid for
all i′ < i but not for i, that is, in the i-th round there are two vertices u, v ∈ C such that
u ∈ Si \ Si−1 and v /∈ Si. This is impossible, as both u and v have the same neighborhood
type and f(u) = f(v). Thus if u gets activated, then v must be activated as well. The
“moreover” part follows from the monotonicity of the activation process (Si ⊆ Si+1). J

Let C ∈ D. For a threshold function f which is constant on C we define f ′(C) as f(v) for
arbitrary vertex v in C. By Lemma 8, we say that C is activated in a round i if Si ∩ C = C

and Sj ∩ C = S0 ∩ C for every j < i. We denote aSi (v) the number |Si−1 ∩N(v)|, i.e., the
number of active neighbors of v in the round i in the activation process arising from the set
S. Thus, a vertex v is activated in the first round i when aSi (v) ≥ f(v) holds.

3.1 Uniformity and Twin Cover
In this subsection we present an algorithm for Uniform Target Set Selection paramet-
erized by the twin cover number.

Trivial Bounds on the Minimum Target Set. Let G = (V, E) be a graph with twin cover
T of size t and let C1, C2, . . . , Cq be the twin cliques of G. For a twin clique C by N(C) we
denote the common twin cover neighborhood, that is, N(v) ∩ T for any v ∈ C. We show
that there is a small number of possibilities how the optimal target set can look like. Let
bC = max(f ′(C)− |N(C)|, 0) for a twin clique C.

I Observation 9. If the minimum target set of G has size s, then B ≤ s ≤ B + t for
B =

∑q
i=1 bCi

.

Proof. Let S be a target set for G of size s. Suppose there is a twin clique C such that
|S ∩ C| = p < bC . It means that bC > 0. Let v ∈ C \ S. Note that p < |C|, thus such a
vertex v exists. For the vertex v it holds that aSi (v) < p + |N(C)| for every round i of the
process. Thus, the vertex v is never activated because p + |N(C)| < bC + |N(C)| = f ′(C)
and S is not a target set. On the other hand, if we put bC vertices from each twin clique C

into a set S′, then the set S′ ∪ T is a target set because every vertex not in S′ is activated in
the first round. J

Structure of the Solution. Let (G, f, b,Dtc) be an instance of Uniform Target Set
Selection with tc(G) = t. By Observation 9, if b <

∑
bC , then we automatically reject.

On the other hand, if b ≥ t +
∑

bC , then we automatically accept. Let w = b−
∑

bC . Thus,
to find a target set of size b we need to select w excess vertices from the twin cliques and the
twin cover. We will show there are at most g(t) interesting choices for these w excess vertices
for some computable function g and those choices can be efficiently generated. Since we can
check if a given set S ⊆ V (G) is a target set in polynomial time, there is an FPT-algorithm
for Uniform Target Set Selection.
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We start with an easy preprocessing. Let C be a twin clique with bC > 0. We select bC
vertices V ′ ⊆ C and remove them from the graph G. We also decrease the threshold value
by bC of every vertex which was adjacent to V ′ (recall that vertices in V ′ have the same
neighborhood type, thus any vertex adjacent to some vertex in V ′ is adjacent to all vertices
in V ′). Formally, we get an equivalent instance (G1, f1, b− bC ,D′tc), where G1 is G without
vertices V ′, D′tc is Dtc restricted to V (G1) and

f1(v) =
{

f(v) v 6∈ NG(V ′)
f(v)− bC v ∈ NG(V ′).

It is easy to see that the instances (G, f, b,Dtc) and (G1, f1, b−bC ,D′tc) are equivalent, because
any target set of G needs at least bC vertices in the twin clique C due to Observation 9.
Note that the function f1 is uniform with respect to D′tc. We repeat this process for all twin
cliques. From now on we suppose that the instance (G, f, b,Dtc) is already preprocessed.
Thus, for every twin clique C it holds that bC = 0 and f ′(C) ≤ N(C) ≤ t.

We say that a twin clique C is of a type (Q, r) for Q ⊆ T, r ≤ t if Q = N(C) and f ′(C) = r.
Two twin cliques C and D are of the same type if N(C) = N(D) and f ′(C) = f ′(D). Note
that there are at most (t + 1) · 2t distinct types of the twin cliques.

We start to create a possible target set S of size b. We add w1 (for some w1 ≤ w) vertices
from the twin cover T to S (there are at most 2t such choices). Now we need to select
w2 = w − w1 excess vertices from twin cliques to S.

The number of the twin cliques of one type may be large. Thus, for the twin cliques we
need some more clever way than try all possibilities. The intuition is that if we want to
select some excess vertices from a clique of a type (Q, r) it is a “better” choice to select the
vertices from large cliques of the type (Q, r). We assign to each type (Q, r) a number w(Q,r)
how many excess vertices would be in twin cliques of type (Q, r). We prove that it suffices
to distribute w(Q,r) excess vertices among the w(Q,r) largest twin cliques of the type (Q, r).

I Definition 10. Let C1, . . . , Cp be all twin cliques of type (Q, r) ordered by the size in a
descending order, i.e., for all i < p holds that |Ci| ≥ |Ci+1|. We say that a target set has a
hole (Ci, Cj) for i < j if |S ∩Ci| = 0 and |S ∩Cj | ≥ 1. A target set is (Q, r)-leaky if it has a
hole and it is (Q, r)-compact otherwise.

Our goal is to prove that if there is a target set S which is (Q, r)-leaky, then there is also a
target set R which is (Q, r)-compact and |R| = |S|.

I Lemma 11. Suppose there is a target set S for a graph G with a threshold function f and
S is (Q, r)-leaky for some twin clique type (Q, r). Then, there is a target set R such that:
1. It holds that |R| = |S|.
2. The sets R and S differ only at the twin cliques of the type (Q, r).
3. The set R is (Q, r)-compact.

Proof Sketch. Let set S has a hole (Ci, Cj) for the twin cliques of the type (Q, r). We create
a target set R by removing vertices from Cj and adding the same number of vertices from
Ci. Formally, R =

(
S \ Cj

)
∪X, where X ⊆ Ci and |X| = |S ∩ Cj |. The verification that R

is a target set is technical but rather straightforward. The whole proof is in the full version
of the paper. J

If we repeat Lemma 11 for every type (Q, r), we get a target set without any hole. To
summarize how to distribute w excess vertices:

ISAAC 2018



18:8 Target Set Selection in Dense Graph Classes

1. Pick w1 vertices from the twin cover T , in total 2t choices.
2. Distribute w2 = w − w1 excess vertices among t · 2t types of twin cliques, in total

(t · 2t)t = 2O(t2) choices.
3. Distribute w(Q,r) excess vertices among the w(Q,r) largest cliques of type (Q, r), in total

tt choices.
By this we create 2O(t2) candidates for a target set. For each candidate we test whether it is
a target set for G or not. If any candidate is a target set, then we find a target set of size b.
If no candidate is a target set, then by argumentation above we know the graph G has no
target set of size b. This finishes the proof of Theorem 3.

3.2 Neighborhood diversity

In this section we prove that the Uniform Target Set Selection problem admits an
FPT algorithm on graphs of the bounded neighborhood diversity. We again use Lemma 8.
Note that in each round of the activation process at least one type has to be activated. This
implies that there are at most nd(G) rounds of the activation process. We use this fact to
model the whole activation process as an integer linear program which is then solved using
Lenstra’s celebrated result:

I Proposition 12 ([18, 12]). Let p be the number of integral variables in a mixed integer
linear program and let L be the number of bits needed to encode the program. Then it is
possible to find an optimal solution in time O

(
p2.5p poly(L)

)
and a space polynomial in L.

There has to be an order in which the types are activated in order to activate whole
graph. Since there are t = nd(G) types, we can try all such orderings. Let us fix an order ≺
on types. To construct the ILP we further need to know which types are fully activated at
the beginning. Denote by c0 the number of such types. Once the order ≺ is fixed the set of
fully activated types at the beginning is determined by c0. Since c0 can attain values 0, . . . , t

we can try all t + 1 possibilities. Now, with both ≺ and c0 fixed, denote the set of the types
activated in the beginning by T0.

Observe further that, as the vertices in a type share all neighbors, the only thing that
matters is the number of activated vertices in each type and not the actual vertices activated.
Thus, we have variables xC which corresponds to the number of vertices in type C selected
into a target set S.

Let C be a type and nC be the number of vertices in C. Since we know when C is
activated, we know how many active vertices are in C in each round. There are xC vertices
before the activation of C and nC after the activation. To formulate the integer linear
program we denote the set of types by T and we write D ∈ N(C) if the two corresponding
vertices in the type graph TG are connected by an edge.

ILP Formulation.

minimize
∑
C∈T

xC

subject to f ′(C) ≤
∑

D≺C,D∈N(C)

nD +
∑

D�C,D∈N(C)

xD + [C is a clique]xC ∀C ∈ T \ T0

where 0 ≤ xC < nC ∀C ∈ T \ T0

xC = nC ∀C ∈ T0
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As there are at most t! orders of the set T and t + 1 choices of c0 this implies that the
Uniform Target Set Selection problem can be solved in time (t + 1)t!tO(t) poly(n) =
tO(t) poly(n). Thus, we have proven Theorem 1.

4 Hardness Reductions

In this section we prove that Target Set Selection is W[1]-hard on graphs of the bounded
neighborhood diversity for a general threshold function. We use an FPT-reduction from
k-Multicolored Clique.

k-Multicolored Clique Parameter: k
Input: A k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where Vc is an independent set for every

c ∈ [k] and they are pairwise disjoint.
Task: Find a clique of the size k.

Let G be an input of k-Multicolored Clique. We refer to a set Vc as to a color class of
G and to a set Ecd as to edges between color classes Vc and Vd. The problem is W[1]-hard [9]
even if every color class Vc has the same size and the number of edges between every Vc and
Vd is the same. For an easier notation, we denote the size of an arbitrary color class Vc by
n + 1 and the size of an arbitrary set Ecd by m + 1. We describe a reduction from the graph
G to an instance of Target Set Selection (G′, f : V → N, b) where nd(G′) is O(k2). The
reduction runs in time poly(|G|). The graph G has a clique of size k if and only if the graph
G′ has a target set of size b.

In the k-Multicolored Clique problem we need to select exactly one vertex from each
color class Vc and exactly one edge from each set Ecd. Moreover, we have to make certain
that if {u, v} ∈ Ecd is a selected edge, then u ∈ Vc and v ∈ Vd are selected vertices.

An Overview of Proof of Theorem 2. We present a way of encoding a vertex v in a color
class Vc of the graph G by two numbers v-pos and v-neg with v-pos + v-neg = n. We proceed
with encoding of edges similarly, however, edges are encoded by multiples of sufficiently large
number q. This we do in such a way that sum of the encoding of a vertex and an incident
edge is unique. We create three types of gadgets: for selection vertices, for selection edges,
and gadgets which check that the selected vertices are incident to the selected edges. Proofs
of lemmas and theorems in this section are quite technical and they are presented in the full
version of this paper.

4.1 Proof of Theorem 2
In order to present the hardness reduction we have to introduce some gadgets. We denote the
name of a gadget by capital letters and we write parameters of the gadget into parentheses
(e.g. L(s)). When speaking about concrete instance of a gadget kind L(s) we add a subscript,
i.e., Lc(s). We omit parameters of the gadget it they are clear from the context.

Selection Gadget. First, we describe gadgets of the graph G′ for selecting vertices and
edges of the graph G. For an overview of the reduction see Figure 2. The gadget L(s) is
formed by two types L-neg and L-pos of equal size s (the number s will be determined later);
we refer to these two types as the selection part. For a vertex v in the selection part we set
the value f(v) of the threshold to the degree of v. It means that if some vertex v from the
selection part is not selected into the target set, then all neighbors of v have to be active
before the vertex v can be activated by the activation process. The selection gadget L is
connected to the rest of the graph using only vertices from the selection part.
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The last part of the gadget L is formed by type L-guard of s + 1 vertices connected to
both types in the selection part. For each vertex v in L-guard type we set f(v) = s.

Numeration of Vertices and Edges. Now, we describe how we use the selection gadget.
Let Vc = {v0, . . . , vn}. For every color class Vc we create a selection gadget Lc = L(n). We
select a vertex vi ∈ Vc to the multicolor clique if i vertices in the Lc-pos type and n − i

vertices in the Lc-neg type of the gadget Lc are selected into the target set.
The selection of edges is similar, however, a bit more complicated. Let q ∈ N and

Ecd = {e0, . . . , em}. For every set Ecd we create a selection gadget Lcd of kind L(qm). We
select an edge ej ∈ Ecd to the multicolor clique if qj vertices in the Lcd-pos type of the
gadget Lcd are selected into the target set (and q(m− j) vertices in the Lcd-neg are selected
into the target set). Suppose s vertices in the Lcd-pos type are selected into the target set.
If s is not divisible by q, then it is an invalid selection. We introduce a new gadget which
controls that s has to be divisible by q.

Multiple Gadget. A multiple gadget M(q, s) consists of a selection gadget L(qs) and 3
other types: M -pos, M -neg of s vertices and M -guard of qs vertices. The type M -pos is
connected to the type L-pos and the type M -neg is connected to the type L-neg. The type
M -guard is connected to the types M -pos and M -neg. Still, the rest of graph G′ is connected
only to types L-pos and L-neg. Let {u1, . . . , us} and {w1, . . . , ws} be vertices in M -pos type
and M -neg type, respectively. We set thresholds f(ui) = f(wi) = qi. For each vertex v in
M -guard we set f(v) = s.

Incidence Gadget. So far we described how we encode in graph G′ selecting vertices and
edges to multicolor clique. It remains to describe how we encode the correct selection, i.e., if
v ∈ Vc and e ∈ Ecd are selected vertex and edge to multicolor clique, then v ∈ e. We create
Lc(n) selection gadget for a color class Vc. We set the number q to n2 and create a multiple
gadget Mcd of kind M(n2, m) (with selection gadget Lcd) for a set Ecd. We join gadgets
Lc and Mcd through an incidence gadget Ic:cd. The incidence gadget Ic:cd has three types
Ic:cd-pos and Ic:cd-neg of m + 1 vertices and Ic:cd-guard of n + n2m vertices. We connect
the Ic:cd-guard type to the types Ic:cd-pos and Ic:cd-neg. Furthermore, we connect the type
Ic:cd-pos to the types Lc-pos and Lcd-pos. Similarly, we connect the type Ic:cd-neg to the
types Lc-neg and Lcd-neg.

We set thresholds of all vertices in the Ic:cd-guard type to m + 2. Recall there are
m + 1 edges in the set Ecd. Thus, we can associate edges in Ecd with vertices in Ic:cd-pos
(Ic:cd-neg respectively) one-to-one. I.e., V (Ic:cd-pos) = {u` : e` ∈ Ecd} and V (Ic:cd-neg) =
{w` : e` ∈ Ecd}. Let vi ∈ Vc, ej ∈ Ecd and vi ∈ ej . Recall that selecting vi and ej into a
multicolor clique is encoded as selecting i vertices in Lc-pos type and n2j vertices in Lcd-pos
type into a target set. We set threshold of uj to i + n2j and threshold of wj to the “opposite”
value n− i + n2(m− j).

Since we set the coefficient q to n2, for each edge ej ∈ Ecd and each vertex vi ∈ Vc the
sum i + n2j is unique. Thus, every vertex in Ic:cd-pos (Ic:cd-neg) has a unique threshold. We
will use this number to check the incidence.

Reduction Correctness. We described how from the graph G with k color classes (instance
of k-Multicolored Clique) we create the graph G′ with the threshold function f (input
for Target Set Selection). For every color class Vc we create a selection gadget Lc. For
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Figure 2 An overview of the reduction. The number inside a type is the number of vertices of
the type. The threshold of vertices in a type is displayed next to the type in orange (light-gray).

every edge set Ecd we create a multiple gadget Mcd. We join the gadgets Lc and Mcd by an
incidence gadget Ic:cd (gadgets Ld and Mcd are joint by a gadget Id:cd). It is easy to see the
following observations by constructions of G′.

I Observation 13. The graph G′ has polynomial size in the size of the graph G.

I Observation 14. Neighborhood diversity of the graph G′ is O(k2).

To finish the construction of an instance of Target Set Selection, we set the budget b to
kn +

(
k
2
)
n2m. The main idea of proofs of the following theorems is that we select a vertex

vi ∈ Vc (or an edge ej ∈ Ecd) into a clique if and only if we select i vertices from the Lc-pos
type (or n2j vertices from the Lcd-pos type). Theorem 2 is a corollary of Observation 13, 14
and the following theorem.

I Theorem 15. The graph G contains a clique of size k if and only if the graph G′ with the
threshold function f contains a target set of size b.

4.2 Overview of Proof of Theorem 4
In fact this can be seen as a clever twist of the ideas contained in the proof of Theorem 2.
There are some nodes of the neighborhood diversity decomposition already operating in
the majority mode – e.g. guard vertices – these we keep untouched. For vertices with
threshold set to their degree one has to “double” the number of vertices in the neighborhood.
Finally, one has to deal with types having different thresholds for each of its vertices, which
is quite technical.

5 Conclusions

We have generalized ideas of previous works [3, 19] for the Target Set Selection problem.
The presented results give a new idea how to encode selecting vertices and edges in the
k-Multicolored Clique problem for showing W[1]-hardness. In particular, only few
problems are known to be W[1]-hard when parameterized by neighborhood diversity – which
is the case for the Target Set Selection problem.

Thus, we would like to address an open problem regarding structural parameterizations of
the Target Set Selection problem. Determine parameterized complexity of the Target
Set Selection problem parameterized by twin cover number. Furthermore, we are not
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aware of other positive results concerning the number of different thresholds instead of the
threshold upper-bound.

We would like to point out that in our proofs of W[1]-hardness the activation process
terminates after constant number of rounds (independent of the parameter value and the
size of the input graph). This is true also for all reductions given by Chopin et al. [6].
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