Distributed Approximation Algorithms for the Minimum Dominating Set in K_{h}-Minor-Free Graphs

Andrzej Czygrinow ${ }^{1}$
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, USA
aczygri@asu.edu

Michał Hanćkowiak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland mhanckow@amu.edu.pl
Wojciech Wawrzyniak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
wwawrzy@amu.edu.pl

Marcin Witkowski

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland mw@amu.edu.pl

Abstract

In this paper we will give two distributed approximation algorithms (in the Local model) for the minimum dominating set problem. First we will give a distributed algorithm which finds a dominating set D of size $O(\gamma(G))$ in a graph G which has no topological copy of K_{h}. The algorithm runs L_{h} rounds where L_{h} is a constant which depends on h only. This procedure can be used to obtain a distributed algorithm which given $\epsilon>0$ finds in a graph G with no K_{h}-minor a dominating set D of size at most $(1+\epsilon) \gamma(G)$. The second algorithm runs in $O\left(\log ^{*}|V(G)|\right)$ rounds.

2012 ACM Subject Classification Theory of computation \rightarrow Distributed computing models
Keywords and phrases Distributed algorithms, minor-closed family of graphs, MDS
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.22

1 Introduction

The minimum dominating set (MinDS) problem is one of the classical graph-theoretic problems which is of theoretical and practical importance. A subset D of the vertex set in a graph G is called a dominating set in G if every vertex of G is either in D or has a neighbor in D. In the minimum dominating set problem the objective is to find a dominating set D of the smallest size. In this paper we will study distributed approximation algorithms in the Local model for the MDS problem in K_{h}-minor-free graphs.

Although the MDS problem is NP-complete even in planar graphs, there are efficient approximation algorithms. Significant progress has been made in recent years in understanding distributed complexity of many classical graph-theoretic problems in some classes of sparse graphs. In the case of the maximum independent set problem, (MaxIS Problem), it is

[^0]known ([2]) that finding deterministically a constant approximation of $\alpha(G)$ even in the case when G is a cycle on n vertices requires $\Omega\left(\log ^{*} n\right)$ rounds. At the same time, it is possible to find an independent set in a planar graph G of size at least $(1-\epsilon) \alpha(G)$ in $O\left(\log ^{*} n\right)$ rounds ([2]). In fact, this result immediately extends to graphs G with no K_{h}-minor using the same approach. Even more can be proved for the maximum matching problem (MaxM Problem). On one hand, the above lower bound for the independence number extends to matchings and on the other hand, there is a distributed algorithm which finds in $O\left(\log ^{*} n\right)$ rounds a matching M of size at least $(1-\epsilon) \beta(G)$ even in graphs of bounded arboricity ([1]). This procedure relies on augmenting paths and is very specific to the maximum matching problem. At the same time, the lower bound for the approximation of maximum independent set, does not extend to the minimum dominating set problem, and a constant-approximation which runs in a constant number of rounds is known for planar graphs and graphs with bounded genus. Specifically, Lenzen et. al. gave in [4] a distributed algorithm which in $O(1)$ rounds finds a dominating set of size at most $126 \gamma(G)$ in a planar graph G and Amiri et. al. ([6]) gave $O(g)$-approximation for graphs of genus bounded by g which runs in $O(1)$ rounds. The landscape changes when randomization is allowed. It can be shown that there is a randomized algorithm which in $O(1)$ rounds finds with high probability an independent set I of size at least $(1-\epsilon) \alpha(G)$ in $O(1)$ rounds in a planar graph $G([2])$ and similar results can be obtained for the maximum matching. In addition, Lenzen and Wattenhofer [3] showed that there is a $O\left(a^{2}\right)$-approximation of a minimum dominating set can be found in the randomized time $O(\log \Delta)$ in a graph of arboricity a.

In this paper, we will propose deterministic distributed approximation algorithms for the MinDS problem in K_{h}-minor-free graph.

Recall that H is called a minor of G if H can be obtained from a subgraph of G by a sequence of edge contractions. A graph is called K_{h}-minor-free if it doesn't contains the complete graph K_{h} as a minor. For a graph $H, T H$, a topological copy of H, is a graph obtained from H by subdividing each edge $e \in H l_{e}$ times, for some $l_{e} \in N_{0}$. Many important classes of graphs, like for example planar graphs, graphs of bounded genus, or bounded tree-width are K_{h}-minor-free for some h. As a result our work on K_{h}-minor-free graphs generalizes previous results on planar and bounded-genus graphs.

Our algorithms work in the Local model. This is a synchronous model where a network is modeled as an undirected graph. Each vertex corresponds to a computational unit and an edge to a communication link between two units. Computations proceed in synchronous rounds and in each round a vertex can send and receive messages from its neighbors and can perform local computations. Neither the amount of local computations nor the size of messages is restricted in any way. In addition, we shall assume that vertices of G have unique identifiers from $\{1, \ldots, n\}$, where n is the order of G. Consequently, in the case of the MinDS problem, for an underlying network G the objective is to find a set $D \subseteq V(G)$, in the above model, which is a minimum dominating set and has size $O(\gamma(G))$.

We will prove two results on distributed algorithms for the minimum dominating set problem. Our main theorem shows that in the case of graphs H which no $T K_{h}$ it is possible to find a constant approximation of $\gamma(H)$ in $O(1)$ rounds. Specifically, we have the following theorem.

- Theorem 1. Let $h \geq 2$. There exists a distributed algorithm which in a graph H of order n which has no $T K_{h}$ finds in L_{h} rounds a dominating set D such that $|D| \leq C_{h} \gamma(H)$, where L_{h} and C_{h} are depending on h only.
We didn't try to optimize constants C_{h} and L_{h} and especially in the case of C_{h} our proof gives a very big constant. In addition, its value depends on the constant from one of the facts from [5] (see Lemma 3), which in turn, depends on h.

Theorem 1 generalizes results for planar graphs from [4] and bounded genus graphs from [6] to graphs with no topological copy of K_{h}. In addition, it gives a deterministic $O(1)$-approximation of the MinDS Problem which runs in a constant number of rounds in an important subclass of graphs of bounded arboricity. The proof of Theorem 1 is split into two main steps. In the first step, an algorithm finds certain partitions of $N(v)$ for vertices v, and in the second, for every set W in these partitions, W finds a vertex v such that $W \subseteq N(v)$ and v is a "safe" choice to be added to a dominating set. The proof uses a fact from [5], in addition with some new ideas.

Clearly, if G is a graph which is K_{h}-minor-free then it contains no $T K_{h}$. Consequently, Theorem 1 can also be used, in connection with methods from [2], to obtain a much better approximation ratio in $O\left(\log ^{*} n\right)$ rounds when restricted to graphs with no K_{h}-minor.

- Theorem 2. Let $h \geq 2$. There exists a distributed algorithm which given $\epsilon>0$ finds in a K_{h}-minor-free graph H of order n a dominating set D such that $|D| \leq(1+\epsilon) \gamma(H)$. The algorithm runs $C \log ^{*} n$ rounds where C depends on h and ϵ only.

Basically, to prove Theorem 2, we first find a constant approximation of $\gamma(H)$ in H using Theorem 1 and then apply a procedure from [2] to find a better approximation. This in turn, generalizes a corresponding result from [2] to graphs which are K_{h}-minor free. Note that once Theorem 1 is established, Theorem 2 can be proved by appealing to a fact from [2] which extends to graphs with no K_{h}-minors in a straightforward way and the rest of the paper is focused on proving Theorem 1. On the other hand, proving Theorem 1 requires new approach as the ideas from [4] and [6] are specific to planar graphs and graphs of bounded genus.

The rest of the paper is structured as follows. In Section 2, in addition to preliminary observations, we will discuss our main tool of building certain partitions of sets $N(v)$ arising from the so-called pseudo-covers. In Section 3 we will prove Theorem 1.

2 Preliminaries

In this section, we will introduce auxiliary concepts which are used in our algorithm. We will start with some definitions. Let $G=(V, E)$ be a graph. For two sets $A, B \subseteq V$, an A, B-path is a path which starts in a vertex from A, ends in a vertex from B and has all internal vertices from $V \backslash(A \cup B)$. In the case $A=\{a\}$, we will simplify the notation to an a, B-path.

Let $D \subset V$ and let $v \in V \backslash D$. A v, D-fan is a set of v, D-paths P_{1}, \ldots, P_{s} such that for $i \neq j, V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{v\}$. For $k, l \in Z^{+}$and set D, let $D_{k, l}$ be the set of vertices w such that there is w, D-fan consisting of k paths each of length at most l. We have the following fact from [5].

- Lemma 3. For $h, l \in Z^{+}$there is c such that the following holds. Let G be a graph with no $T K_{h}$ and let D be a dominating set in G. Then $\left|D_{h-1, l}\right| \leq c|D|$.

To describe the intuition behind our approach for approximating a minimum dominating set D^{*} consider a planar graph G. Let $v \in G$ be an arbitrary vertex. Then $N(v)$ is dominated by some vertices from D^{*}. It is possible that the minimum number of vertices needed to dominate $N(v)$ is "big", in this case, in view of Lemma 3 (with $l=1$), adding v or any other vertex of a similar type, will yield a dominating set of size $O\left(\left|D^{*}\right|\right)$. Consequently, we have to address the case when the number of such vertices in D^{*} is small. The main idea of how to build on this intuition is as follows. Supposing $|N(v)| \geq 3$ it is not possible to have three
different vertices which dominate the whole set $N(v)$, as it gives a copy of $K_{3,3}$. A similar fact should be true if instead of three vertices dominating $N(v)$, we have for some constant t sets U_{1}, \ldots, U_{t} such that the size of each each U_{i} is constant and vertices from U_{i} dominate $N(v)$. This however is not exactly true. Indeed, for example, it is possible that there is one vertex u dominating all but one vertex from $N(v)$ and many vertices v_{1}, \ldots, v_{s}, each dominating the remaining vertex from $N(v)$, so that $U_{i}=\left\{u, v_{i}\right\}$. However the contribution, i.e. the number of vertices covered in $N(v)$, by each v_{i} is minimal and, as it turns out, it can be ignored. Building on this, our approach is to find for $N(v)$, a family of the so-called pseudo-covers, that is sets of a constant size which cover almost all vertices from $N(v)$ and such that each vertex makes a substantially contribution. Note that $\{v\}$ is a choice for such a pseudo-cover. We will argue that the number of such pseudo-covers must be constant and will use these covers to partition $N(v)$ into a constant number of sets of which each, but the exceptional class, will be big and will be covered by a constant number of vertices. Of course, it is not clear which of these vertices should be included in a dominating set, but suppose initially that there are only two vertices v and u which cover a set in this partition. We claim that adding u is a reasonable choice. As indicated above, we will be able to assume that one of u and v is in D^{*}. If we are lucky then $u \in D^{*}$; If however $v \in D^{*}$, then since there is a constant number of vertices in pseudo-partitions, adding u or any other vertex because of v yields a constant approximation.

Describing these ideas more formally requires a little bit of preparation. Let $G=(V, E)$ be a graph. We say that $Z \subseteq V$ is a cover of $W \subseteq V$ if $Z \cap W=\emptyset$ and $W \subseteq \bigcup_{x \in Z} N(x)$.

Let $W \subseteq V$ and let $x \in V \backslash W$. We say that x is α-strong for W if $|N(x) \cap W| \geq \alpha|W|$. Using the same idea as in a proof of the Kövári-Sos-Turán theorem we have the following fact.

- Fact 4. Let $\alpha \in(0,1), t, s \in Z^{+}$and let $M:=\frac{(t-1) e^{s}}{\alpha^{s}}$. If $G=(V, E)$ is a graph with no $K_{t, s}$ and $W \subseteq V$ is such that $|W| \geq s / \alpha$, then there are at most $M \alpha$-strong vertices in $V \backslash W$ for W.

Proof. Let U denote the set of α-strong vertices for W. We will count the number of claws $K_{1, s}$ in the graph $G[U, W]$ with centers in U. On one hand, the number of claws is at least $|U|\binom{\alpha|W|}{s}$, and on the other hand, since $G[U, W]$ has no $K_{t, s}$, every s-element subset of W can be involved in at most $t-1$ claws. Thus

$$
|U|\binom{\alpha|W|}{s} \leq\binom{|W|}{s}(t-1)
$$

and so

$$
|U|\left(\frac{\alpha|W|}{s}\right)^{s} \leq\left(\frac{e|W|}{s}\right)^{s}(t-1)
$$

which gives $|U| \leq \frac{(t-1) e^{s}}{\alpha^{s}}$.
We are now ready to define the main concept which is used in our algorithm, the notion of an (α, q, l, K)-pseudo-cover.

- Definition 5. An (α, q, l, K)-pseudo-cover of a set $W \subseteq V$ is a vector of vertices $\left(x_{1}, \ldots, x_{m}\right)$ such that for every $i, x_{i} \notin W$, and the following conditions are satisfied.
(a) $\left|W \backslash \bigcup_{i=1}^{m} N\left(x_{i}\right)\right| \leq q$;
(b) x_{i} is α-strong for $W \backslash \bigcup_{j<i} N\left(x_{j}\right)$;
(c) $\left|N\left(x_{i}\right) \cap\left(W \backslash \bigcup_{j<i} N\left(x_{j}\right)\right)\right| \geq l$;
(d) $m \leq K$.

When using the concept, α will be a constant from $(0,1)$, and q, l, K will be constants which depend on h when we consider graphs with no $T K_{h}$. To be more precise,

$$
\begin{equation*}
K:=2 h-2, \alpha:=\frac{1}{K}, l:=\frac{h}{\alpha}+1, q:=K \cdot l . \tag{1}
\end{equation*}
$$

In addition, we will have

$$
s:=h, t:=\binom{h}{2}+h
$$

Also note, that in the degenerate case when $|W| \leq q$, we will allow the empty vector.
It is not difficult to see that any cover of a set W with at most K vertices contains an (α, q, l, K)-pseudo-cover with $\alpha=1 / K$ and $l=q / K$.

- Fact 6. For every q and every cover Z of W such that $|Z|=K$ there is an ordering of vertices of $Z,\left(x_{1}, \ldots, x_{K}\right)$, such that for some $m \leq K,\left(x_{1}, \ldots, x_{m}\right)$ is an (α, q, l, K)-pseudocover of W with $\alpha=\frac{1}{K}$ and $l=\frac{q}{K}$.
Proof. Let $l:=q / K$. If $|W| \leq q$, then the pseudo-cover is empty. Otherwise, let $x_{1} \in$ Z be such that $\left|N\left(x_{1}\right) \cap W\right|$ is maximum. Then $\left|N\left(x_{1}\right) \cap W\right| \geq|W| / K \geq l$. For the general step. Suppose $\left|W \backslash \bigcup_{j<i} N\left(x_{j}\right)\right|>q$. Then there exists $y \in Z \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}$ such that $\left|N(y) \cap\left(W \backslash \bigcup_{j<i} N\left(x_{j}\right)\right)\right| \geq\left|W \backslash \bigcup_{j<i} N\left(x_{j}\right)\right| / K$. Set $x_{i}:=y$. We have $\left|N(y) \cap\left(W \backslash \bigcup_{j<i} N\left(x_{j}\right)\right)\right|>q / K$.

One of the key observations used in the proof is that the number of (α, q, l, K)-pseudo-cover of a set W does not depend on $|W|$.

- Lemma 7. Let $\alpha \in(0,1) s, t, K \in Z^{+}$, let $l>s / \alpha$ and $q:=l \cdot K$. Then for every graph G with no $K_{s, t}$ and every $W \subseteq V(G)$ such that $|W| \geq l$, the number of (α, q, l, K)-pseudo-covers of W is at most $2\left(\frac{(t-1) e^{s}}{\alpha^{s}}\right)^{K}$.

Proof. Suppose the number of (α, q, l, K)-pseudo-covers is bigger than $C:=2\left(\frac{(t-1) e^{s}}{\alpha^{s}}\right)^{K}$. Since the first positions are α-strong for W and $|W| \geq s / \alpha$, by Fact 4 there can be at most $M:=\frac{(t-1) e^{s}}{\alpha^{s}}$ of (α, q, l, K)-pseudo-covers with distinct first positions. Let x_{1} be a vertex which appears most often in the first position of these covers. Then at least $C / M>1$ of the covers have x_{1} in the first position and out of these there can be at most one (α, q, l, K)-pseudo-cover which contains only x_{1}. If $\left|W \backslash N\left(x_{1}\right)\right| \leq l$ then no vertex can cover more than l vertices of $W \backslash N\left(x_{1}\right)$. Thus we may assume otherwise. Now we can iterate the above argument restricting attention to those (α, q, l, K)-pseudo-covers which have x_{1} in the first position. We have $\left|W \backslash N\left(x_{1}\right)\right|>l>s / \alpha$, and so by Fact 4 at least $(C / M-1) / M=(C-M) / M^{2}>1$ vectors have the second position equal to some x_{2}. Iterating the above gives that there are at least

$$
\left(C-M-M^{2}-\cdots-M^{i-1}\right) / M^{i}
$$

(α, q, l, K)-pseudo-covers starting with $x_{1}, x_{2}, \ldots, x_{i}$ for some x_{1}, \ldots, x_{i}. Since a pseudo-cover has at most K vertices, $C<2 M^{K}$ for the above quantity to be at most one when $i=K$; a contradiction.

Let v be such that there exist K vertices $x_{1}, \ldots, x_{K} \in V \backslash\{v\}$ with the property $N(v) \subseteq$ $\bigcup_{j \leq K} N\left(x_{j}\right)$. The number of such covers of $N(v)$ can be "large" but in view of Fact 6 and Lemma 7 the number of (α, q, l, K)- pseudo-covers such that $l>s / \alpha$ obtained from covers of

Figure 1 An illustration of refining partitions for three pseudo-covers of $N(v)$. For simplicity the sets in partitions are depicted as intervals but they can be arbitrary.
$N(v)$ is a constant independent of $|N(v)|$. In the rest of the section we will use the fact that the number of (α, q, l, K)-pseudo-covers is constant to refine partitions determined by the covers into a constant number of sets. Fix $0<\alpha<1$ and $s, K \in Z^{+}$and l so that $l>s / \alpha$. Let v be such that $|N(v)| \geq l$.

Let $\mathcal{T}(v)$ denote the set of (α, q, l, K)-pseudo-covers of $N(v)$. By Lemma 7, we have $|\mathcal{T}(v)| \leq C$ where $C:=2\left(\frac{(t-1) e^{s}}{\alpha^{s}}\right)^{K}$. For $S:=\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{T}(v)$ consider the following partition $\mathcal{P}_{S}=\left\{W_{0}, W_{1}, \ldots, W_{m}\right\}$ of $N(v)$. Let $W_{1}:=N\left(x_{1}\right) \cap N(v), W_{i}:=\left(N\left(x_{i}\right) \cap N(v)\right) \backslash$ $\bigcup_{1 \leq j<i} W_{j}$ for $i>1$, and let $W_{0}:=N(v) \backslash \bigcup_{j \leq m} N\left(x_{j}\right)$. Since S is an (α, q, l, K)-pseudocovers of $N(v)$, we have $\left|W_{0}\right| \leq q$.

Let $\mathcal{Q}(v)$ be the minimal partition which refines partitions \mathcal{P}_{S} over all (α, q, l, K)-pseudocovers S from $\mathcal{T}(v)$. For example, if there are only two partitions, $\mathcal{P}_{S}=\left\{W_{0}, W_{1}, \ldots, W_{m}\right\}$ and $\mathcal{P}_{T}=\left\{U_{0}, U_{1}, \ldots, U_{m}\right\}$, then $\mathcal{Q}(v)$ contains all non-empty intersections $W_{i} \cap U_{j}$.

- Fact 8. $|\mathcal{Q}(v)| \leq 2^{(K+1) C}$

Proof. For $S=\left(x_{1}, \ldots, x_{m}\right)$, we have $\left|\mathcal{P}_{S}\right| \leq m+1 \leq K+1$ and so there are at most $(K+1) C$ different subsets of $N(v)$ over all $S \in \mathcal{T}(v)$. Taking the refinement of these partitions results in at most $2^{(K+1) C}$ sets.

We will now modify $\mathcal{Q}(v)$ as follows. Let V_{0} be the union of these partition classes in $\mathcal{Q}(v)$ which are subsets of $W_{0}=N(v) \backslash \bigcup_{j=1}^{m} N\left(x_{j}\right)$ for at least one $S=\left(x_{1}, \ldots, x_{m}\right)$. Let $\left\{V_{1}, \ldots, V_{s}\right\}$ denote the remaining partition classes. Then $\left\{V_{0}, V_{1}, \ldots, V_{s}\right\}$ is a partition of $N(v)$ (See Figure 1 for an illustration). In addition, we have the following fact.

- Fact 9. The following conditions are satisfied.
(1) $\left|V_{0}\right| \leq C q$.
(2) For $i \geq 1$ and for every $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{T}(v), V_{i} \subset N\left(x_{j}\right)$ for some $j \in[m]$.

Proof. The number of vertices which belong to at least one set W_{0} is at most $C q$. For part (2), fix V_{i} for $i \geq 1$ and let $\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{T}(v)$. Then vertices from V_{i} are covered by $\bigcup_{j=1}^{m} N\left(x_{j}\right)$ because V_{i} doesn't intersect $N(v) \backslash \bigcup_{j=1}^{m} N\left(x_{j}\right)$. Let j_{1} be the smallest index such that $V_{i} \cap N\left(x_{j_{1}}\right) \neq \emptyset$ and suppose that for some $j_{2}>j_{1}$, we have $V_{i} \cap\left(N\left(x_{j_{2}}\right) \backslash N\left(x_{j_{1}}\right)\right) \neq \emptyset$. Then V_{i} intersects $W_{j_{1}}$, but since it is not contained in $W_{j_{1}}$, it intersects another set in the (α, q, l, K)-pseudo-cover determined by $\left(x_{1}, \ldots, x_{m}\right)$, and so it cannot belong to $\left\{V_{0}, V_{1}, \ldots, V_{s}\right\}$.

Figure 2 The bipartite graph G associated with H.

We will end this section with some more notation which will be used later. Recall that $\mathcal{T}(v)$ denotes the set of (α, q, l, K)-pseudo-covers of $N(v)$. For set of vertices U we will define $\mathcal{T}(U):=\bigcup_{v \in U} \mathcal{T}(v)$. For a set \mathcal{S} of (α, q, l, K)-pseudo-covers we let $V_{\mathcal{S}}$ be the set of vertices which belong to at least one pseudo-cover from \mathcal{S}. We will slightly abuse above notation and define

$$
\mathcal{T}(\mathcal{S}):=\mathcal{T}\left(V_{\mathcal{S}}\right)
$$

Using the above convention, we will use $\mathcal{T}^{(i)}(U):=\mathcal{T}\left(\mathcal{T}^{(i-1)}(U)\right)$ with $\mathcal{T}^{(1)}(U):=\mathcal{T}(U)$ and $\mathcal{T}^{(\leq k)}(U):=\bigcup_{1 \leq i \leq k} \mathcal{T}^{(i)}(U)$.

3 Algorithm

In this section we will give the main algorithm. The algorithm consists of two phases. In the first phase we simply add to a dominating set D vertices v which have only one vector in $\mathcal{T}(v)$, namely (v). In the second phase, we analyze sets in $\mathcal{Q}(v)$ and argue that if a set V_{i} is big enough then we will be able to find a "good" choice among a constant number of vertices from vectors in $\mathcal{T}(v)$ to dominate V_{i}.

Let $H=(V, F)$ be a graph with no $T K_{h}$ and recall that K, α, l, q are given in (1). It will be convenient to work in the double-cover of H which we are going to define next. We say that the bipartite graph $G=\left(V, V^{\prime}, E\right)$ is associated with H if $V^{\prime}=\left\{v^{\prime}: v \in V\right\}$ and we have $v u^{\prime} \in E$ if and only if $v u \in F$ or $u=v$. In other words, edge $v u \in F$ corresponds to two edges $v u^{\prime}, u v^{\prime}$ in E and $v v^{\prime} \in E$ for every v from V. Let $\gamma^{\prime}(G)$ denote the minimum size of a set $S \subseteq V$ which dominates V^{\prime} in G. Before discussing the first phase of the algorithm, we will mention a few facts on the relation between H and G.

- Fact 10. X is a dominating set in H if and only if $N_{G}(X)=V^{\prime}$.

Proof. Suppose X is a dominating set in H. Then every vertex $u \in V(H) \backslash X$ is adjacent to a vertex $v \in X$, and so $u^{\prime} v \in E(G)$, and for every $u \in X, u u^{\prime} \in E(G)$. Now, let $Y \subset V$ and let $u \in V(H) \backslash Y$. Since $N_{G}(Y)=V^{\prime}$, there is a vertex $v \in Y$ such that $u^{\prime} v \in E(G)$. Then $u v \in E(H)$ as $u^{\prime} \neq v^{\prime}$.

In particular, we have

$$
\gamma(H)=\gamma^{\prime}(G)
$$

Rather than studying topological minors in G in relation to topological minors in H, we note the following simple fact.

- Fact 11. Let $D \subseteq V, v \in V \backslash D$, and suppose there is a v, D-fan in G of size $2 t-1$ such that every path has length two. Then $v \in D_{t, 2}$ in H.

Proof. A v, D-fan in G consists of paths of the form v, u^{\prime}, w, where $w \in D$. Such paths are mapped to paths of length one (if the corresponding copy of u^{\prime} is in D) or paths of length two (if the corresponding copy of u^{\prime} is not in D). Thus for every vertex from D there are at most two paths that are mapped to ones that contain this vertex in H. As a result we can always choose t vertex disjoint paths of a v, D-fan in G out of the $2 t-1$ paths of v, D-fan in H.

Lemma 3 and Fact 11 give the following corollary.

- Corollary 12. If H has no $T K_{h}$ and $D \subset V$ is such that $N_{G}(D)=V^{\prime}$, then the number of vertices $v \in V$ such that there is a v, D-fan in G of size $2 h-1$ such that each path has length two is $O(|D|)$.

Since we will partition sets $N_{G}(v) \subseteq V^{\prime}$ (for $v \in V$), all the partition classes will be subsets of V^{\prime}. It will be convenient to introduce the following notion.

- Definition 13. We say that the partition $\left\{V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{s}^{\prime}\right\}$ of $N_{G}(v)$ from Fact 9 is associated with v.

Let $D^{*} \subset V$ be an optimal set which dominates V^{\prime} in G and let V^{*} be the set of vertices $v \in V \backslash D^{*}$ such that there is a v, D^{*}-fan consisting of $K+1$ paths, each of length at most two. Then, by Corollary $12,\left|V^{*}\right|=O\left(\left|D^{*}\right|\right)$. In view of the previous discussion adding vertices from $V^{*} \cup D^{*}$ to our solution results in a dominating set of size $O\left(\left|D^{*}\right|\right)$. The remaining vertices v from $V \backslash\left(V^{*} \cup D^{*}\right)$ will have $N(v)$ dominated by a "few" vertices from D^{*}. Suppose $v \in V \backslash\left(V^{*} \cup D^{*}\right)$. Then $N(v)$ is dominated by vertices from D^{*} and so there exist $d_{1}, \ldots, d_{m} \in D^{*}$ for some $m \leq K$, such that $N(v) \subseteq \bigcup N\left(d_{i}\right)$. Therefore $\left\{d_{1}, \ldots, d_{m}\right\}$ is a cover of $N(v)$ and by Fact $6,\left\{d_{1}, \ldots, d_{m}\right\}$ gives an (α, q, l, K)-pseudo-cover which belongs to $\mathcal{T}(v)$. In addition, by Fact 9 , if $\left\{V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{s}^{\prime}\right\}$ is the partition associated with v, then for every $i \geq 1, V_{i}^{\prime} \subset N\left(d_{j}\right)$ for some $j \leq m$. In view of the previous discussion, we have the following fact.

- Fact 14. Let $D^{*} \subseteq V$ be an optimal set which dominates V^{\prime} in G and let $v \in V \backslash\left(D^{*} \cup V^{*}\right)$. In addition, let $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{s}^{\prime}$ be the partition associated with v, and for $i \geq 1$, let $U_{i}=\{x \in$ $\left.S: S \in \mathcal{T}(v) \wedge V_{i}^{\prime} \subseteq N(x)\right\}$. Then $U_{i} \cap D^{*} \neq \emptyset$.

In the main part of our algorithm, we will find a set $D \subseteq V$ which dominates some vertices from V^{\prime} so that when $N_{G}(D)$ is removed from V^{\prime}, then every vertex in V has its degree bounded by a constant. To extend D and find a set which dominates all vertices from V^{\prime} we will rely on the following simple observation.

- Fact 15. Let $s \in Z^{+}$and let $X=\left(V, V^{\prime}, E\right)$ be a bipartite graph such that for every vertex $v \in V, d(v) \leq s$ and for every $v^{\prime} \in V^{\prime}, d\left(v^{\prime}\right) \geq 1$. Then $\gamma^{\prime}(X) \geq\left|V^{\prime}\right| / s$.

Proof. If $D \subseteq V$ is an optimal set which dominates V^{\prime}, then $s|D| \geq\left|E\left(D, V^{\prime}\right)\right| \geq\left|V^{\prime}\right|$.
Recall that for every $v \in V, \mathcal{T}(v) \neq \emptyset$ because $(v) \in \mathcal{T}(v)$. To motivate our discussion suppose first that $|\mathcal{T}(v)|=1$. Then either $v \in V^{*}$ (defined above) or otherwise, in view of Fact $14, v \in D^{*}$. In either case we can add such a vertex to our solution. In fact a stronger observation is true, if for some V_{i} in the partition associated with v, v is the only vertex in some $S \in \mathcal{T}(v)$ such that $V_{i} \subseteq N(v)$, then $v \in V^{*} \cup D^{*}$. Unfortunately, in many cases there
will be more than one vertex u such that $V_{i} \subseteq N(u)$ and the challenge is to select one which will lead to a constant approximation of $\gamma^{\prime}(G)$. The assumption that H has no $T K_{h}$ implies that the number of choices of u is bounded by a constant which depends on h only but only some of these vertices will be good choices. The algorithm will consist of two main phases. The first one deals with those vertices v for which $|\mathcal{T}(v)|=1$, and the second one addresses the more difficult case.

Phase 1

Input: Graph $H=(V, F)$ with no $T K_{h}$.

1. Consider the double cover $G=\left(V, V^{\prime}, E\right)$ of H. Let $D_{1}:=\emptyset$.
2. Compute $\mathcal{T}(v)$ for every $v \in V$. If $|\mathcal{T}(v)| \geq 2$ then mark v. Add all unmarked vertices to D_{1} and delete all vertices from V^{\prime} dominated by D_{1}.
Next fact follows from previous discussion.

- Lemma 16. Let D_{1} be the set obtained in Phase 1. Then $\left|D_{1}\right|=O(\gamma(H))$.

We will now continue our analysis assuming we have set D_{1} obtained in Phase 1 and G has been modified by possibly deleting some vertices from V^{\prime}. Let $V^{\prime \prime}$ denote the remaining vertices in V^{\prime}, that is $V^{\prime \prime}:=V^{\prime} \backslash N_{G}\left(D_{1}\right)$. In addition, we shall use $V_{i}^{\prime \prime}$ to denote $V_{i}^{\prime} \cap V^{\prime \prime}$.

Consider a sequence of constants $M_{0}, M_{1}, \ldots, M_{h}$ such that $M_{h} \geq\binom{ h}{2}+h$ and for every $1 \leq i \leq h$, we have

$$
M_{i-1}>\left(2^{(K+1) C}+1\right)\left(C q+M_{i} 2^{(K+1) C}\right)
$$

where $C=2\left(\frac{(t-1) e^{s}}{\alpha^{s}}\right)^{K}$ and K, q, s, t are defined in (1). In fact, we will only need that $M_{h-1} \geq\binom{ h}{2}+h$ but in the process described below, which uses constants M_{i}, we will allow it to continue more than $h-1$ times. Let $v \in V \backslash D_{1}$ and let V_{i}^{\prime} be a set in the partition associated with v which satisfies

$$
\left|V_{i}^{\prime \prime}\right| \geq M_{0}
$$

We set $v_{0}:=v$ and consider $V_{i}^{\prime \prime}$. For every $v_{1} \in V \backslash\left(D_{1} \cup\{v\}\right)$ which belongs to some $S \in \mathcal{T}(v)$ and is such that $V_{i}^{\prime \prime} \subseteq N\left(v_{0}\right)$ take partition $W_{0}^{\prime}, W_{1}^{\prime}, \ldots, W_{p}^{\prime}$ associated with v_{1} and let $W_{i}^{\prime \prime}:=W_{i}^{\prime} \cap V^{\prime \prime}$. We have $p \leq 2^{(K+1) C}$ by Fact $8,\left|W_{0}^{\prime}\right| \leq C q$ by Fact 9. Let $\mathcal{P}_{v_{0} v_{1}}^{V_{i}^{\prime \prime}}=\left\{W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}:\left|W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}\right| \geq M_{1} \wedge j \geq 1\right\}$. We have $\bigcup \mathcal{P} \mathcal{V}_{0}^{V_{i}^{\prime \prime}} v_{1} \subseteq V_{i}^{\prime \prime}$ and $\bigcup_{j \geq 0} V_{i}^{\prime \prime} \cap W_{j}^{\prime}=V_{i}^{\prime \prime}$. Therefore,

$$
\left|\bigcup \mathcal{P}_{v_{0} v_{1}}^{V_{i}^{\prime \prime}}\right| \geq\left|V_{i}^{\prime \prime}\right|-C q-2^{(K+1) C} \cdot M_{1}
$$

We call sets $W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime} \in \mathcal{P}_{v_{0} v_{1}}^{U}$ fragments. Now we iterate the process for every fragment $W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime} \in \mathcal{P}_{v_{0} v_{1}}^{V_{i}^{\prime \prime}}$, that is, we consider $v_{2} \in V \backslash\left(D_{1} \cup\left\{v_{1}\right\}\right)$ such that for some $S \in \mathcal{T}\left(v_{1}\right)$ we have $v_{2} \in S, W_{j}^{\prime} \subseteq N_{G}\left(v_{2}\right)$ and $v_{2} \neq v_{i}$ for $i<2$. Define $\mathcal{P}_{v_{0} v_{1} v_{2}}^{W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}}=\left\{Z_{k}^{\prime \prime} \cap W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}:\right.$ $\left.\left|Z_{k}^{\prime \prime} \cap W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}\right| \geq M_{2} \wedge k \geq 1\right\}$. We have

$$
\left|\bigcup \mathcal{P}_{v_{0} v_{1} v_{2}}^{W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}}\right| \geq\left|W_{j}^{\prime \prime} \cap V_{i}^{\prime \prime}\right|-2 C q-2^{(K+1) C} \cdot M_{2}
$$

We repeat the process for as long as possible (See Figure 3 for an illustration). We will now establish three claims about the above process. First claim states that the process must end after $h-1$ steps or the original graph H contains a $T K_{h}$. The second claim shows that in

Figure 3 Constructing fragments from a set U as vertices are added to a sequence starting with v_{0}.
the sequences of vertices obtained by the process, the last vertices are a good choice to be added to a solution. Finally, the last claim states that when last vertices are added then all but a constant number of vertices from $V_{i}^{\prime \prime}$ are dominated.

- Claim 17. If $v_{0}, v_{1}, \ldots, v_{i}$ is a sequence obtained in the above process, then $i \leq h-2$.

Proof. Suppose $i \geq h-1$. Then $\left\{v_{0}, \ldots, v_{h-1}\right\}$ contains distinct vertices, every fragment $U \in \mathcal{P}_{v_{0} \ldots v_{h-1}}^{W}$ has size $|U| \geq M_{h-1}$, and $U \subseteq N\left(v_{0}\right) \cap \cdots \cap N\left(v_{h-1}\right)$. Since $M_{h-1} \geq\binom{ h}{2}+h$, G contains $K_{h,\binom{h}{2}+h}$, and as a result H contains $T K_{h}$.

For every maximal sequence $v_{0}, v_{1}, \ldots, v_{j}$ obtained in the process above for $V_{i}^{\prime \prime}$, we add v_{j} to $D_{2}\left(V_{i}^{\prime}\right)$.

Let Z be the set of vertices $z \in V$ that belong to some S where $S \in \mathcal{T}^{(\leq h)}(d)$ for some $d \in D^{*}$. Then we have $|Z|=O\left(\left|D^{*}\right|\right)$ because there is a constant number of vertices which belong to some $S \in \mathcal{T}^{(\leq h)}(d)$. In addition, we have the following.

- Claim 18. We have $D_{2}\left(V_{i}^{\prime}\right) \subseteq V^{*} \cup D^{*} \cup Z$.

Proof. Suppose $v_{0} \ldots v_{i}$ is a maximal sequence. Let U be a fragment in $\mathcal{P}_{v_{0} \ldots v_{i}}^{W}$ and let $X_{0}^{\prime}, \ldots, X_{l}^{\prime}$ denote the partition associated with v_{i}. Then $U \subseteq X_{j}^{\prime}$ for some $j \geq 1$. By Fact 14, either $v_{i} \in V^{*} \cup D^{*}$ or for at least one $d \in D^{*}$, we have d in some $S \in \mathcal{T}\left(v_{i}\right)$ and $X_{j}^{\prime} \subseteq N_{G}(d)$. Recall that $\mathcal{T}(d)$ is non-empty and so there is a partition associated with d, but it can be trivial. We have $\left|U \cap Y_{j}^{\prime}\right| \geq M_{i+1}$ for at least one set Y_{j}^{\prime} such that $j \geq 1$ and Y_{j}^{\prime} is in the partition associated with d. Thus d is an option for v_{i+1} and so, since the sequence is maximal $d=v_{k}$ for some $k<i$. We have $i \leq h-2$ by Claim 17. Consequently $v_{i} \in V^{*} \cup D^{*} \cup Z$.

Finally we show that vertices from $D_{2}\left(V_{i}^{\prime}\right)$ cover all but a constant number of vertices in $V_{i}^{\prime \prime}$.

- Claim 19. There is a constant $L=L(K, C, l, h)$ such that $\left|V_{i}^{\prime \prime} \backslash \bigcup_{x \in D_{2}\left(V_{i}^{\prime}\right)} N_{G}(x)\right| \leq L$.

Proof. If $v_{0} v_{1} \ldots v_{j}$ is maximal and U is a fragment in $\mathcal{P}_{v_{0} v_{1} \ldots v_{j}}^{W}$, then $U \subseteq N\left(v_{j}\right)$ and $v_{j} \in D_{2}\left(V_{i}^{\prime}\right)$. For any fragment U and any sequence $v_{0} v_{1} \ldots v_{k}$ which is not maximal, U is partitioned using the process above, the sequence is extended, and the process terminates with a maximal sequence which has at most $h-1$ vertices. For every fragment U obtained in the process above, we have

$$
\left|\bigcup \mathcal{P}_{v_{0} \ldots v_{k}}^{U}\right| \geq|U|-k C q-2^{(K+1) C} M_{k}
$$

and the number of all possible fragments is constant. In addition, the number of vertices in the union of the exceptional sets is constant. Consequently $\left|V_{i}^{\prime \prime} \backslash \bigcup_{x \in D_{2}\left(V_{i}^{\prime}\right)} N(x)\right|$ is a constant.

We can now describe the second phase of the algorithm.

Phase 2

Input: $G=\left(V, V^{\prime}, E\right)$ and $D_{1} \subseteq V$

1. For every marked vertex $v \in V$ such that $d_{G}(v) \geq q$, construct $\mathcal{T}(v)$ consisting of all (α, q, l, K)-pseudo-covers of size at most K and the partition $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{s}^{\prime}$ associated with v in G.
2. Let $V:=V \backslash D_{1}$ and let $V^{\prime \prime}:=V^{\prime} \backslash \bigcup_{v \in D_{1}} N(v)$.
3. For every v and every set V_{i}^{\prime} in the partition associated with v let $V_{i}^{\prime \prime}:=V_{i}^{\prime} \cap V^{\prime \prime}$. If $\left|V_{i}^{\prime \prime}\right| \geq M_{0}$, compute $D_{2}\left(V_{i}^{\prime}\right)$ and add all vertices from $D_{2}\left(V_{i}^{\prime}\right)$ to D_{2}.
4. For every $v^{\prime} \in V^{\prime \prime} \backslash \bigcup_{v \in D_{2}} N(v)$ add its mate $v \in V$ to D_{3}.
5. Return $D:=D_{1} \cup D_{2} \cup D_{3}$.

Let Algorithm Dominating Set consist of Phase 1 followed by Phase 2. We will note a few facts about Algorithm Dominating Set which will complete our proof of Theorem 1.

First note the following:

- Fact 20. Algorithm Dominating Set runs in $O(1)$ rounds in the Local model.

Proof. Phase 1 runs in $O(1)$ rounds because computing the virtual graph G and $\mathcal{T}(v)$, in parallel for every v, requires only knowledge of vertices within distance two of v. Phase 2 runs in $O(1)$ rounds. Finding the partition is done locally by every vertex v and vertices in all sets considered in Phase 2 for v are within distance $O(1)$ of v.

In addition, because of the 4 th step of Phase 2 , set D returned by Algorithm DominftingSet dominates V^{\prime} in G and consequently V in H. Thus we have the following fact.

- Fact 21. Set D returned by Algorithm DominatingSet is a dominating set in H.

To finish our analysis, we will show that Algorithm DominatingSet returns a set of size $O(\gamma(H))$.

- Fact 22. Let $k \in Z$ and let H be a graph with no $T K_{k}$. There is a constant $s=s(k)$ such that for the set D returned by the algorithm Algorithm Dominating Set, $|D| \leq s \gamma(H)$.

Proof. Let $D^{*} \subseteq V$ be such that $\left|D^{*}\right|=\gamma^{\prime}(G)$. From Lemma 16, $\left|D_{1}\right|=O(\gamma(H))$. From Claim 18, we have $D_{2}\left(V_{i}^{\prime}\right) \subseteq V^{*} \cup D^{*} \cup Z$ for every vertex v and every set V_{i}^{\prime} considered in step 3. Thus $D_{2} \subseteq V^{*} \cup D^{*} \cup Z$ and since $|Z|=O(\gamma(H))$, we have $\left|D_{2}\right|=O(\gamma(H))$. Let $X:=G\left[V \backslash\left(D_{1} \cup D_{2}\right), V^{\prime \prime} \backslash \bigcup_{v \in D_{2}} N(v)\right]$ and let $v \in V \backslash\left(D_{1} \cup D_{2}\right)$. By Claim 19, for every set V_{i}^{\prime} with $i \geq 1$ in the partition associated with v, only a constant number of vertices L are not dominated by vertices in D_{2}. Since, by Fact 8 the number of sets V_{i}^{\prime} is at most $2^{(K+1) C}$ and by Fact $9,\left|V_{0}^{\prime}\right| \leq C q$, we have $d_{X}(v)$ bounded by some constant p for every $v \in V \backslash\left(D_{1} \cup D_{2}\right)$. By Fact $15, \gamma^{\prime}(X) \geq\left|V^{\prime \prime} \backslash \bigcup_{v \in D_{2}} N(v)\right| / p$ and at the same time vertices in $V^{\prime \prime} \backslash \bigcup_{v \in D_{2}} N(v)$ can only be dominated by vertices in $V \backslash\left(D_{1} \cup D_{2}\right)$ and so $\gamma^{\prime}(X) \leq\left|D^{*}\right|$. Consequently, $\left|D_{3}\right|=\left|V^{\prime \prime} \backslash \bigcup_{v \in D_{2}} N(v)\right|=O\left(\gamma^{\prime}(X)\right)=O\left(\left|D^{*}\right|\right)$.

Proof of Theorem 1. Combining Fact 20, Fact 21 and Fact 22 shows that given a graph H with no $T K_{h}$, Algorithm DominatingSet finds in L_{h} rounds a dominating set D such that $|D| \leq C_{h} \gamma(H)$ for some constants L_{h} and C_{h} which depend on h only.

As noted in the introduction, Theorem 1 in connection with methods developed in [2] (Theorem 3.4) immediately imply Theorem 2.

References

1 E. Szymańska A. Czygrinow, M. Hańćkowiak. Fast Distributed Algorithm for the Maximum Matching Problem in Bounded Arboricity Graphs. Proc. of 20th International Symposium, ISAAC, LNCS 5878, pages 668-678, 2009.
2 W. Wawrzyniak A. Czygrinow, M. Hańćkowiak. Fast distributed approximations in planar graphs. International Symposium on Distributed Computing, DISC, Arcachon, France, September 2008, LNCS 5218, pages 78-92, 2008.
3 R. Wattenhofer C. Lenzen. Minimum Dominating Set Approximation in Graphs of Bounded Arboricity. International Symposium on Distributed Computing, DISC 2010, pages 510524, 2010.
4 R. Wattenhofer C. Lenzen, Y. A. Oswald. Distributed minimum dominating set approximations in restricted families of graphs. Distrib. Comput., 26 (2), pages 119-137, 2013.
5 S. Gutner N. Alon. Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Electronic Colloquium on Computational Complexity, Report No. 66, 2008.
6 S. Siebertz S. A. Amiri, S. Schmid. A Local Constant Factor MDS Approximation for Bounded Genus Graphs. PODC 2016, Proceedings of the ACM Symp. on Principles of Distributed Computing, 227-233, 2016.

[^0]: ${ }^{1}$ Research supported in part by Simons Foundation Grant \# 521777.

 © Andrzej Czygrinow, Michał Hanćkowiak, Wojciech Wawrzyniak, and Marcin Witkowski; licensed under Creative Commons License CC-BY

