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Abstract

Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and tem-
poral graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer
Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to
transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More
specifically, we want to mark at most d vertices and to transform each layer into a cluster graph
using at most k edge additions or deletions per layer so that, if we remove the marked vertices,
we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a
sequence of layers and we want to transform each layer into a cluster graph so that consecutive
layers differ only slightly. That is, we want to transform each layer into a cluster graph with at
most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that
each two consecutive layers are the same after removing the vertices marked in the first of the
two layers. We study the combinatorial structure of the two problems via their parameterized
complexity with respect to the parameters d and k, among others. Despite the similar definition,
the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is
fixed-parameter tractable with running time kO(k+d)sO(1) for inputs of size s, whereas Temporal
Cluster Editing is W[1]-hard with respect to k even if d = 3.
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1 Introduction

Cluster Editing and its weighted form Correlation Clustering are two important
and well-studied models of graph clustering [1, 4, 6, 12, 18]. In the former, we are given a
graph and we aim to edit (that is, add or delete) the fewest number of edges in order to
obtain a cluster graph, a graph in which each connected component is a clique. Cluster
Editing has attracted a lot of attention from a parameterized-algorithms point of view
(e.g. [4, 6, 12, 18]) and the resulting contributions have found their way back into practice [4].

Meanwhile, additional information is now available and used in clustering methods. In
particular, research on clustering so-called multi-layer and temporal graphs grows rapidly
(e.g. [16, 22, 23, 24, 25]). A multi-layer graph is a set of graphs, called layers, on the same
vertex set [5, 16, 17]. In social networks, a layer can represent social interactions, geographic
closeness, common interests or activities [16].1 A temporal graph is a multi-layer graph in
which the layers are ordered linearly [14, 15, 19, 20, 24, 25]. Temporal graphs naturally
model the evolution of relationships of individuals over time or their set of time-stamped
interactions.

The goals in clustering multi-layer and temporal graphs are, respectively, to find a
clustering that is consistent with all layers [16, 17, 22, 23] or a clustering that slowly evolves
over time consistently with the graph [24, 25]. The methods used herein are often heuristic
and beyond observing NP-hardness, to the best of our knowledge, there is no deeper analysis
of the complexity of the general underlying computational problems that are attacked in
this way. Hence, there is also a lack of knowledge about the possible avenues for algorithmic
tractability. We initiate this research here.

We analyze the combinatorial structure behind cluster editing for multi-layer and temporal
graphs, defined formally below, via studying their parameterized complexity with respect
to the most basic parameters, such as the number of edits. That is, we aim to find fixed-
parameter algorithms, which have running time f(p) · `O(1) where p is the parameter and
` the input length, or to show W[1]-hardness, which indicates that there cannot be such
algorithms.

As we will see, both problems offer rich interactions between the layers on top of the
structure inherited from Cluster Editing. Our main contributions are an intricate fixed-
parameter algorithm for multi-layer cluster editing, whose underlying techniques should be
applicable to a broader range of multi-layer problems, and a hardness result for temporal
cluster editing, which shows that certain non-local structures harbor algorithmic intractability.

1 When considering the activity in different communities, we typically obtain a large number of layers [21].
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Temporal Cluster Editing (TCE). Berger-Wolf and Tantipathananandh [25] were motivated
by cluster detection problems from practice to study the following problem. Given a temporal
graph, edit each layer into a cluster graph, that is, add or remove edges such that the layer
becomes a disjoint union of cliques, while minimizing the total number of edits and the
number of vertices moving between different clusters in two consecutive layers. TCE is a
variant of this problem where we instead minimize the layer-wise maxima of the number of
edits and moving vertices, respectively. The problem can be formalized as follows.

Let G = (Gi)i∈[`] be a temporal graph with vertex set V , that is, Gi is the ith layer. Let
Gi = (V,Ei). An edge modification set for a graph G = (V,E) is a set of pairs of vertices
from V . A clustering for G is a sequenceM = (Mi)i∈[`] of edge modification sets such that
each layer Gi is turned into a cluster graph G′i = (V,Ei ⊕Mi).2 (Throughout this work, G′i
denotes the modified ith layer of the temporal or multi-layer graph and the corresponding
clustering understood from the context.) Intuitively, sets Mi contain the data that we need
to disregard in order to cluster our input and hence we want to minimize their sizes [24, 25].
For that, we say thatM is k-bounded for some integer k ∈ N if |Mi| ≤ k for each i ∈ `.

A fundamental property of clusterings of temporal graphs is their evolution over time. In
practice, these clusterings evolve only slowly as measured by the number of vertices switching
between clusters from one layer to another [24, 25]. This requirement can be formalized as
follows. Let d ∈ N. ClusteringM for G (as above) is temporally d-consistent if there exists a
sequence (Di)i∈[`−1] of vertex sets such that G′i[V \Di] = G′i+1[V \Di] for each i ∈ [`− 1].
Hence, the sets Di contain the vertices changing clusters. We arrive at the following.

Temporal Cluster Editing (TCE)
Input: A temporal graph G and two integers k, d.
Question: Is there a temporally d-consistent k-bounded clustering for G?

We also say that the corresponding sets Di ⊆ V and Mi ⊆
(

V
2
)
as above form a solution and

the vertices in Di are marked.
The most natural parameters are the “number k of edge modifications per layer”, the

“number d of marked vertices”, the “number ` of layers”, and the “number n = |V | of vertices”.
An overview on our results is shown in Figure 1. (Note that, within these parameters, we
have d ≤ n and k ≤ n2.) A straightforward reduction yields that TCE is NP-complete even
if both d = 0 and ` = 1 (?)3. On the positive side, we obtain an algorithm for TCE with
running time nO(k)`: The basic idea is to check whether any two possible cluster editing
sets for two consecutive layers allow for a small number of marked vertices by matching
techniques. As it turns out, even for d = 3, we cannot obtain an improved running time on
the order of (n`)o(k) unless the Exponential Time Hypothesis (ETH) fails. The reason is an
obstruction represented by small clusters which may have to be joined or split throughout
many layers, to be able to form clusters in some later layer. Finally, we give a polynomial
kernel with respect to the parameter combination (d, k, `) and show that the problem does
not admit a polynomial kernel for parameter “number n of vertices” unless NP ⊆ coNP/poly.

Multi-Layer Cluster Editing (MLCE). For clusterings of multi-layer graphs we typically
have to consider the tradeoff between closely matching individual layers and getting an

2 Herein, ⊕ denotes the symmetric difference: A⊕B = (A \B)∪ (B \A) and [`] denotes the set {1, . . . , `}
for ` ∈ N.

3 The proofs of results marked by (?) and proofs of correctness and safeness of reduction rules and
branching rules marked by (?) are omitted due to space constraints and deferred to a full version [7].
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(d, k)

W[1]-hard even for
d = 3 [Thm 12]

FPT [Thm 1] open
para-NP-
hard (?)

(k, `)

para-NP-hard (?)

(d, `)

FPT, No poly kernel
[Thm 11 & Prop 15]

n (same as (d, n), (k, n), (d, k, n))

Poly kernel [Thm 13]

(d, k, `)

(same as (d, n, `), (k, n, `), (d, k, n, `))

(n, `): Instance size

d

para-NP-hard

`

para-NP-hard
k

XP [Thm 11] para-NP-hard

Figure 1 Our results for TCE and MLCE in a Hasse diagram of the upper-boundedness relation
between the parameters the “number k of edge modifications per layer”, the “number d of marked
vertices”, the “number ` of layers”, and the “number n = |V | of vertices” and all of their combinations.
A node is split into two parts if the complexity results differ; the left part shows the result for
TCE, the right part for MLCE. Red entries mean that the corresponding parameterized problem
is para-NP-hard. Orange entries mean that the corresponding parameterized problem is W[1]-hard
while contained in XP. It is in FPT for all parameter combinations colored yellow or green and
admits a polynomial kernel for all parameter combinations colored green. It does not admit a
polynomial kernel for all parameter combinations that are colored yellow unless NP ⊆ coNP/poly. A
tight parameterized complexity classification for the gray colored parameter combination is open.

overall sufficient fit [22, 23]. A local upper bound on the number of allowed edits per layer
and a global set of marked vertices allow us to study the influence of this tradeoff on the
complexity of multi-layer cluster editing. Formally, a clusteringM = (Mi)i∈[`] for a multi-
layer graph {Gi | i ∈ [`]} is defined in the same way as for temporal graphs. ClusteringM is
totally d-consistent if there is a single subset D of vertices such that G′i[V \D] = G′j [V \D]
for all i, j ∈ [`].4 In Multi-Layer Cluster Editing (MLCE) the input is a multi-layer
graph G and two integers k and d and we ask for a totally d-consistent k-bounded clustering
for G.

To briefly summarize our results for MLCE: While strong overall fit (small parameter d)
or closely matched layers (small parameter k) alone do not lead to fixed-parameter tractability,
jointly they do. Indeed, we obtain an kO(k+d) · n3 · `-time algorithm, in contrast to TCE.
At first glance, this is surprising because in the temporal case, we only need to satisfy the
consistency condition “locally”. This requires less interaction among layers and thus, seemed
to be easier to tackle than the multi-layer case. The algorithm uses a novel method that
allows us make decisions over a large number of layers at once. It can be compared with
greedy localization [9] in that some of the decisions are greedy and transient, meaning that
they seem intuitively favorable and can be reversed in individual layers if they later turn out
to be wrong. However, the application of this method is not straightforward, requires new
techniques to deal with the interaction between layers and consequently intricately tuned
branching and reduction rules.

4 Below we drop the qualifiers “temporally” and “totally” if they are clear from the context.
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Algorithm 1: MLCE.
Input:

A set of graphs G1, . . . , G` = (V,E1), . . . , (V,E`) two integers k and d.
A set of marked vertices D, edge modification sets M1, . . . ,M`.
A set B ⊆

(
V \D

2
)
of permanent vertex pairs.

1 if |D| > d or there is an i ∈ [`] such that |Mi ∩B| > k then return false
2 Apply the first applicable rule in the following ordered list: 1, Greedy Rule, 2,

Clean-up Rule, 3, and 4.
3 return true

We in fact completely classify MLCE in terms of fixed-parameter tractability and
existence of polynomial-size problem kernels with respect to the parameters k, d, `, and n,
and all of their combinations, see Figure 1 for an overview. MLCE is para-NP-hard for
all parameter combinations which are smaller or incomparable to k + d. Straightforward
reductions yield NP-completeness even if both d = 0 and ` = 1 or both k = 0 and ` = 3; the
problem is polynomial-time solvable if k = 0 and ` ≤ 2 (?). Finally, the kernelization results
for TCE also hold for MLCE, that is, the problem admits a polynomial kernel with respect
to (d, k, `) and does not admit a polynomial kernel for the “number n of vertices” unless
NP ⊆ coNP/poly.

Related Work. We are not aware of studies of the fundamental algorithmic properties of
multilayer and temporal graph clustering. In terms of parameterized algorithms, only the
indirect approach of aggregating clusterings into one has been studied for multilayer [3,
11] and temporal graphs [24]. These approaches are less accurate, however [2, 25]. The
approximability of temporal versions of k-means clustering and its variants was studied by
Dey et al. [10].

2 Multi-Layer Cluster Editing (MLCE)

In this section, we show that MLCE can be solved efficiently for small k and d.

I Theorem 1. MLCE is FPT with respect to the number k of edge modifications per layer
and number d of marked vertices combined. It can be solved in kO(k+d) · n3 · ` time.

We describe a recursive search-tree algorithm (see algorithm 1) for the following input:
An instance I of MLCE consisting of a multi-layer graph G1, . . . , G` = (V,E1), . . . , (V,E`)
and two integers k and d.
A constraint P = (D, (Mi)i∈[`], B), consisting of a set of marked vertices D ⊆ V , edge
modification sets M1, . . . ,M` ⊆

(
V
2
)
, and a set B ⊆

(
V \D

2
)
of permanent vertex pairs.

The algorithm follows the greedy localization approach [9] in which we make some decisions
greedily, which we possibly revert through branching later on. The greedy decisions herein
give us some structure that we can exploit to keep the search-tree size small. The edge
modification sets Mi represent both the greedy decisions and those that we made through
branching. The set B contains only those made by branching.

Throughout the algorithm, we try to maintain a property that the constraint at hand is
good which intuitively means that the constraint can be turned into a solution (if one exists).

ISAAC 2018
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I Definition 2 (Good Constraint). Let I be an instance of MLCE. A constraint P =
(D,M1, . . . ,M`, B) is good for I if there is a solution S = (M?

1 , . . . ,M
?
` , D

?) such that (i)
D ⊆ D?, (ii) there is no {u, v} ∈ B such that u ∈ D?, and (iii) for all i ∈ [`] we have
Mi ∩B = M?

i ∩B. We also say that S witnesses that P is good.

Furthermore, it is easy to see that an “empty” constraint is good.

I Observation 3. For any yes-instance I = (G1, . . . , G`, d, k) of MLCE, we have that
P0 = (D = ∅,M1 = ∅, . . . ,M` = ∅, B = ∅) is a good constraint.

We also call the above constraint P0 trivial. The initial call of our algorithm is with the
input instance of MLCE together with the trivial constraint P0.

Our algorithm uses various different branching rules to search for a solution to an MLCE
input instance: A branching rule takes as input an instance I of MLCE and a constraint
P and returns a set of constraints P (1), . . . , P (x). When a branching rule is applied, the
algorithm invokes a recursive call for each constraint returned by the branching rule and
returns true if at least one of the recursive calls returns true; otherwise, it returns false.
For that to be correct, whenever a branching rule is invoked with a good constraint, at least
one of the constraints returned by the branching rule has to be a good constraint as well. In
this case we say that a branching rule is safe.

In the following, we introduce the branching rules used by the algorithm and prove that
each of them is safe. This together with Theorem 3 will allow us to prove by induction
that the algorithm eventually finds a solution for the input instance of MLCE if it is a
yes-instance. To make the description of the branching rules more readable, we introduce
four types of non-marked vertex pairs. Say that a vertex pair {u, v} ∈

(
V \D

2
)
is

settled if {u, v} ∈ Ei ⊕Mi for all i ∈ ` or {u, v} /∈ Ei ⊕Mi for all i ∈ [`] (edge always
present or never present),
frequent if |{i | {u, v} ∈ Ei ⊕Mi}| ≥ 2`

3 (edge almost always present),
scarce if |{i | {u, v} ∈ Ei ⊕Mi}| ≤ `

3 (edge almost never present), and
unsettled otherwise, that is, `

3 < |{i | {u, v} ∈ Ei ⊕Mi}| < 2`
3 (edge sometimes present).

Note that, if a vertex pair {u, v} falls in one of the above categories, both u, v are not marked.
Our aim with the first two rules is to settle all pairs in

(
V \D

2
)
. In order to achieve our

running time bound, we can only afford to exhaustively search through all unsettled vertex
pairs:

I Branching Rule 1 (?). If there is an unsettled vertex pair {u, v} ∈
(

V \D
2
)
, then output

the following up to four constraints:
1. For all i ∈ [`], put M (1)

i = Mi ∪ ({{u, v}} \ Ei), D(1) = D, and B(1) = B ∪ {{u, v}}.
2. For all i ∈ [`], put M (2)

i = Mi ∪ ({{u, v}} ∩ Ei), D(2) = D, and B(2) = B ∪ {{u, v}}.
3. If there is no x ∈ V \D with {u, x} ∈ B, then D(3) = D ∪ {u}, the rest stays the same.
4. If there is no x ∈ V \D with {v, x} ∈ B, then D(4) = D ∪ {v}, the rest stays the same.

The following Greedy Rule deals with all frequent and scarce vertex pairs. It only
produces one constraint and hence no branching occurs in that sense. For formal reasons it
is nevertheless useful to treat the Greedy Rule as a special case of a branching rule. Note
that the algorithm also invokes a recursive call with the output constraint of this rule. The
rule greedily adds the edge corresponding to a frequent vertex pair in all layers where it is
not present and removes edges corresponding to scarce vertex pairs in all layers where it is
present. Intuitively, the Greedy Rule is safe, because all of its decisions can be reverted later.

I Greedy Rule (?). If there is a frequent or a scarce vertex pair {u, v} ∈
(

V \D
2
)
, then return

one of the following two constraints:
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Frequent: for all i ∈ [`] put M (1)
i = Mi ∪ ({{u, v}} \ Ei), the rest stays the same.

Scarce: for all i ∈ [`] put M (1)
i = Mi ∪ ({{u, v}} ∩ Ei), the rest stays the same.

After the above two rules have been applied exhaustively, all pairs in
(

V \D
2
)
are settled.

With the following rule we edit the subgraphs induced by all non-marked vertices into
cluster graphs. This branching rule represents a well-known rule from the classical Cluster
Editing with the addition that we also branch on marking vertices.

I Branching Rule 2 (?). If there is an induced P3 = ({u, v}, {v, w}) in G′i[V \D] for some
i ∈ [`], where G′i = (V,Ei ⊕Mi), then return the following up to six constraints:
1. If {u, v} /∈ B: for all i ∈ [`] putM (1)

i = Mi⊕{{u, v}}, D(1) = D, and B(1) = B∪{{u, v}}.
2. If {v, w} /∈ B: for all i ∈ [`] putM (2)

i = Mi⊕{{v, w}}, D(2) = D, and B(2) = B∪{{v, w}}.
3. If {u,w} /∈ B: for all i ∈ [`] put M (3)

i = Mi ⊕ {{u,w}}, D(3) = D, and B(3) =
B ∪ {{u,w}}.

4. For each x ∈ {u, v, w}: If there is no y ∈ V \ D such that {x, y} ∈ B, then return a
constraint with D(·) = D ∪ {x}, the rest stays the same.

If none of the above possibilities apply, then reject the current branch.5

The next rule keeps the sets of edge modifications Mi free of marked vertices. Pairs in Mi

can become marked if vertices of vertex pairs processed by the Greedy Rule are marked by
other branching rules further down the search tree. Like the Greedy Rule, it only produces
one constraint and hence no branching occurs, so it is also a degenerate branching rule. Note
that the algorithm also invokes a recursive call with the output constraint of this rule.

I Clean-up Rule (?). If there is an i ∈ [`] such that there is a {u, v} ∈Mi with u ∈ D, then
return a constraint with M (1)

i = Mi \ {{u, v}}, the rest stays the same.

The next rule tries to repair any budget violations that might occur. Since with the
Greedy Rule we greedily make decisions and do not exhaustively search through the whole
search space, we expect that some of the choices were not correct. This rule will then revert
these choices. Also, to have a correct estimate of the sizes of the current edge modification
sets, this rule requires that the Clean-up Rule is not applicable. For technical reasons, it also
requires that 1 and the Greedy Rule are not applicable.

I Branching Rule 3 (?). If there is an Mi for some i ∈ [`] with |Mi| > k, then if |Mi \B| ≤
k + 1, let M ′i = Mi \B, otherwise, take any M ′i ⊆Mi \B with |M ′i | = k + 1 and return the
following constraints:
1. For each {u, v} ∈ M ′i return a constraint in which for all j ∈ [`] we put M (·)

j =
Mj ⊕ {{u, v}}, D(·) = D, and B(·) = B ∪ {{u, v}}.

2. For each {u, v} ∈M ′i :
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If there is no x ∈ V \D such that {v, x} ∈ B, then return a constraint with D(·) =
D ∪ {v}, B(·) = B and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If M ′i = ∅, then reject the current branch.

5 This technically does not fit the definition of a branching rule but we can achieve the same effect by
returning trivially unsatisfiable constraints such as a constraint with |D(·)| > d.

ISAAC 2018



24:8 Cluster Editing in Multi-Layer and Temporal Graphs

The last rule, 4, requires that all other rules are not applicable. In this case the non-
marked vertices induce the same cluster graph in every layer. 4 checks whether in every layer
it is possible to turn the whole layer (including the marked vertices) into a cluster graph
such that the cluster graph induced by the non-marked vertices stays the same and the edge
modification budget is not violated in any layer. If this is not the case for a layer i, the rule
checks whether it is necessary to revert a greedy decision or whether there is an induced
P3 where exactly one vertex is marked and it is necessary to modify the vertex pair not
containing the marked vertex. To achieve the latter we introduce a modified version of a
known kernelization algorithm [13] for classic Cluster Editing. We call the algorithm K

and it takes as input a tuple (Gi, k,D,Mi, B) and either outputs a distinct failure symbol
or two sets R and C, where R contains all unmarked vertex pairs modified by K and C

contains unmarked vertex pairs of the produced kernel that are part of induced P3s. The
formal description is as follows.

I Modified Kernelization Algorithm K. Given an input (Gi, k,D,Mi, B). First, set all
vertex pairs in Mi ∪B to obligatory and exhaustively apply the following modified versions of
standard data reduction rules for Cluster Editing to G′i = (V,Ei⊕Mi). Let ki = k−|Mi|
and R = ∅.

If ki < 0 or there is an induced P3 where all vertex pairs are obligatory, then abort and
output a failure symbol.
If a vertex pair {u, v} is involved in ki + 1 induced P3’s, then, if it is obligatory, abort
and output a failure symbol, otherwise modify it, set it to obligatory, and reduce ki by
one. If u /∈ D and v /∈ D, then add {u, v} to R.
If there is an isolated clique, then remove it.

Let G(R)
i be the reduced version of Gi. If the number of vertices in G(R)

i is larger than k2
i +2ki,

then abort and output a failure symbol. Otherwise, let C be the set of all vertex pairs of
unmarked (not contained in D) vertices that are part of an induced P3 in G(R)

i . Output R
and C.

I Branching Rule 4 (?). For all 1 ≤ i ≤ ` we use Mi to denote the set of all possible
edge modifications where each edge is incident to at least one marked vertex, that turn
G′i = (V,Ei ⊕Mi) into a cluster graph. More specifically, we have

Mi = {M ⊆
(

V
2
)
| ∀e ∈M : e ∩D 6= ∅ ∧ G′′i = (V,Ei ⊕ (Mi ∪M)) is a cluster graph}.

If there is an 1 ≤ i ≤ ` such that minM∈Mi
|M | > k− |Mi| then let M ′i = Mi \B and invoke

the modified kernelization algorithm K on (Gi, k,D,Mi, B). If it outputs a failure symbol
and M ′i = ∅, then reject the current branch. Otherwise let R and C be the sets output by K
or R = C = ∅ if K output a failure symbol, and return the following constraints:
1. For each {u, v} ∈M ′i :

Return a constraint in which for all j ∈ [`] we put M (·)
j = Mj ⊕ {{u, v}}, D(·) = D,

and B(·) = B ∪ {{u, v}}.
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
If there is no x ∈ V \D such that {v, x} ∈ B, then return a constraint with D(·) =
D ∪ {v}, B(·) = B and 1 ≤ j ≤ `: M (·)

j = Mj \ {{u, v}}.
2. For each u ∈ V \D such that {u, v} ∈ R for some v ∈ V : If there is no x ∈ V \D such

that {u, x} ∈ B, then return a constraint with D(·) = D ∪ {u}, B(·) = B, and 1 ≤ j ≤ `:
M

(·)
j = Mj . If R 6= ∅, then output a constraint with D(·) = D, B(·) = B ∪Mi ∪R, and

1 ≤ j ≤ `: M (·)
j = Mj ⊕R.
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3. For each {u, v} ∈ C:
If there is no x ∈ V \D such that {u, x} ∈ B, then return a constraint with D(·) =
D ∪ {u}, and the rest stays the same. If there is no x ∈ V \D such that {v, x} ∈ B,
then return a constraint with D(·) = D ∪ {v}, and the rest stays the same.
Return a constraint with D(·) = D, B(·) = B ∪Mi ∪ R ∪ {{u, v}}, and 1 ≤ j ≤ `:
M

(·)
j = Mj ⊕R⊕ {{u, v}}.

We now prove the correctness of the algorithm. By a straightforward analysis of the
branching rules it follows that, if none is applicable, then the current constraint P yields a
solution. Hence, whenever the algorithm outputs true, then the input is indeed a yes-instance.

I Lemma 4 (?). Given an instance I of MLCE, if algorithm 1 outputs true on input I
and the trivial partial solution P0, then I is a yes-instance.

To show that, whenever the input instance I of the algorithm is a yes-instance, then
the algorithm outputs true, we define the quality of a good constraint and show that the
algorithm increases the quality until it eventually finds a solution.

I Definition 5 (Quality of a constraint). Let I = (G1, . . . , G`, k, d) be an instance of MLCE.
The quality γI(P ) of a constraint P = (D,M1, . . . ,M`, B) for I is γI(P ) = |D| + |B| −
|{{u, v} ∈

(
V \D

2
)
| {u, v} is frequent or scarce}|.

I Lemma 6 (?). Let P be a good constraint for a yes-instance of MLCE. If applicable, each
of the Greedy Rule and Branching Rules 1, 2, 3, and 4 return a good constraint with strictly
increased quality in comparison to P .

Next we show that the notion of quality of a good constraint is indeed a measure that allows
us to argue that the algorithm eventually produces a solution (if it exists).

I Lemma 7 (?). Let I be a yes-instance of MLCE, then there is a constant cI ≥ 0 such that
for every good constraint P we have that γI(P ) ≤ cI and there is at least one good constraint
Pmax with γI(Pmax) = cI . Furthermore, for any good constraint P ′max with γI(P ′max) = cI ,
we have that algorithm 1 outputs true on input I and P ′max.

We can now show the correctness of algorithm 1. Theorem 4 ensures that we only output
true if the input is actually a yes-instance and Lemmas 6 and 7 together with the safeness
of all branching rules ensures that if the input is a yes-instance, the algorithm outputs true.

I Corollary 8 (Correctness of algorithm 1) (?). Given a MLCE instance I, algorithm 1
outputs true on input I and the trivial good constraint P0 if and only if I is a yes-instance.

It remains to show that algorithm 1 has the claimed running time upper-bound. We
can check that all branching rules create at most O(k4) recursive calls. The differentiation
between unsettled, frequent and scarce vertex pairs ensures that the edge modification sets
in sufficiently many layers increase for the search tree to have depth of at most O(k + d).
The time needed to apply a branching rule is dominated by 4, where we essentially have to
solve classical Cluster Editing in every layer.

I Lemma 9 (?). The running time of algorithm 1 is in kO(k+d) ·O(n3 · `).
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3 Temporal Cluster Editing (TCE)

In this section we provide an algorithm for TCE with a running time nO(k)` and show that
the running time cannot substantially be improved unless the Exponential Time Hypothesis
(ETH) fails. The algorithm uses the following algorithm for the two-layer case as a subroutine.
The algorithm uses similar ideas as Exercise 4.5 and its hint in Cygan et al. [8].

I Proposition 10 (?). If k = 0 and ` = 2, then TCE and MLCE can be solved in
O(n2 logn) time, where n denotes the number of vertices.

I Theorem 11. TCE can be solved in O(` · n4k+2 logn) time.

Proof. Given an instance ((Gi)i∈[`], k, d) of TCE, build an `-partite graph G as follows: For
each possible cluster editing set of Gi of size at most k, add a vertex to the ith part of G.
Note that G contains O(n2k`) vertices since each part contains O(n2k) vertices. For each i,
1 ≤ i ≤ n − 1, and each pair of vertices u, v in G such that u is in part i and v is in part
(i + 1) add to G the edge {u, v} if the algorithm of Theorem 10 accepts on input of the
following instance of MLCE. Let Mu,Mv be the cluster editing sets corresponding to u
and v, respectively. The MLCE instance consists of a multi-layer graph with the two layers
(V,Ei ⊕Mu) and (V,Ei ⊕Mv), edit budget equal to zero, and marking budget equal to d.
For each pair of vertices u, v, constructing the corresponding MLCE instance and solving
it takes O(n2 logn) time, amounting to overall O(` · n4k+2 logn) time, because there are at
most n4k` pairs of vertices to consider. Finally, we test whether there is a path from a vertex
in the first part to a vertex in the last part in G. As there are at most n4k` edges in G, this
takes O(n4k`) time. Hence, overall the running time is O(` · n4k+3 logn). The correctness is
deferred to a full version [7]. J

Theorem 11 implies that TCE is fixed-parameter tractable when parameterized by the
number n of vertices. At first glance, it seems wasteful to iterate over all possible cluster
editing sets for each layer. Rather, the interaction between two consecutive layers seems to
be limited by k and d, since the necessary edits are local to induced P3, and the necessary
markings are local to incongruent clusters (perhaps resulting from destroying P3s). However,
to our surprise, when the number of layers grows, this interaction spirals out of control. As
the reduction of the following hardness result implies, we have to take into account splitting
up small clusters in an early layer (even though locally they were already cliques), so as to
be able to form cluster graphs a large number of layers later on. This behavior stands in
stark contrast to MLCE, where the combinatorial explosion is limited to k and d.

I Theorem 12 (?). TCE is W[1]-hard with respect to k, even if d = 3. Moreover, it does
not admit an f(k)(n`)o(k)-time algorithm unless the ETH fails.

4 Kernelization for MLCE and TCE

In this section we investigate the kernelizability of MLCE and TCE for different combinations
of the four parameters as introduced in section 1. More specifically, we identify the parameter
combinations for which MLCE and TCE admit polynomial kernels, and then we identify
the parameter combinations for which no polynomial kernels exist, unless NP ⊆ coNP/poly.

We first present a polynomial kernel for MLCE for the parameter combination (k, d, `)
and then argue that essentially the same reduction rules give a polynomial kernel for TCE.

I Theorem 13. MLCE admits a kernel of size O(`3 · (k + d)4) and TCE admits a kernel
of size O(`3 · (k + d · `)4). Both kernels can be computed in O(` · n3) time.
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We provide several reduction rules that subsequently modify the instance and we assume
that if a particular rule is to be applied, then the instance is reduced with respect to all
previous rules, that is, all previous rules were already exhaustively applied. We introduce
Multi-Layer Cluster Editing with Separate Budgets (MLCEwSB) which differs
from MLCE only in that, instead of a global upper bound k on the number of edits, we
receive ` individual budgets ki, i ∈ [`], and we require that |Mi| ≤ ki.

We first transform the input instance of MLCE to an equivalent instance of MLCEwSB
by letting ki = k for every i ∈ [`]. Then we apply all our reduction rules to MLCEwSB.
Finally, we transform the resulting instance of MLCEwSB to an equivalent instance of
MLCE with just a small increase of the vertex set. Through the presentation, let (G1 =
(V,E1), . . . , G` = (V,E`), k1, . . . , k`, d) be the current instance and k = max{ki | i ∈ [`]}.

Next, we apply slightly modified versions of well known rules for classical Cluster
Editing [13] and apply them on each layer individually (?). These rules are known to
produce a kernel of size k2 + 2k. Notably, we leave out a rule that removes isolated cliques.
Hence, after the application of these rules we either conclude that we face a no-instance
or every layer i consists of a set Ri ⊆ V , that contains the vertices v that appear in some
induced P3 in Gi, and a number of isolated cliques. Furthermore, let R =

⋃`
i=1 Ri.

As a major difference to Cluster Editing for a single layer, we cannot simply remove
the vertices that are not involved in any P3 since we require the cluster graphs in individual
layers not to differ too much. Only vertices in the clusters that do not change can be removed.

I Reduction Rule 1 (?). If there is a subset A ⊆ V \ R such that for each layer i ∈ [`],
the subset A is the vertex set of a connected component of Gi, then remove A (and the
corresponding edges) from every Gi.

The next rule allows us to reduce vertices that appear in exactly the same clusters.

I Reduction Rule 2 (?). If there is a set A ⊆ V \R with |A| ≥ k+ d+ 3 such that for every
layer i ∈ [`] it holds that all vertices of A are in the same connected component of Gi, then
select an arbitrary v ∈ A and remove v from every Gi.

The next rule shows that the remaining clusters in a yes-instance cannot be too large.

I Reduction Rule 3 (?). If there is a layer i ∈ [`] and a connected component A of Gi with
|A \R| ≥ k + 2d+ 3, then answer NO.

Now we introduce our final rule bounding the number of vertices in the instance.

I Reduction Rule 4 (?). If |V | > ` · (k2 + 2k + d · (k + 2d+ 2) + 2k), then answer NO.

After bounding the size of the instance through 4 it remains to transform the resulting
instance of MLCEwSB to an equivalent instance of MLCE. To this end we introduce new
vertex set A of size exactly 2k + 2 to V and to each Ei introduce all edges from

(
A
2
)
. Then,

for each i ∈ {1, . . . , `} we remove k − ki arbitrary edges between vertices of A from Ei and
set ki = k. It is straightforward to show that this produces an equivalent instance, which
can be turned into an equivalent instance of MLCE in an obvious way.

Since no rule increases k, d, or `, |V | = O(` · (k + d)2), the resulting instance can be
described using O(`3 · (k + d)4) bits and it is equivalent to the original instance, it remains
to show that the kernelization is computable in polynomial time.

I Lemma 14 (?). The kernelization can be done in O(` · n3) time.
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Lastly, we argue that slightly modified reduction rules can be applied to TCE (with
individual edge-modification budgets, where the resulting instance can be transformed back).
Intuitively this follows from the following observations: The reduction rules do not mark
vertices, and the union of all marked vertices of a TCE solution together with the edge
modification sets forms a solution for a MLCE instance, where the maximal number of
marked vertices is d · `. Hence, replacing d with d · ` in the description of all reductions rules
yields a set of rules that produce a kernel of size O(`3 · (k + d · `)4) for TCE (?).

In contrast, we have the following.

I Proposition 15 (?). MLCE and TCE do not admit polynomial kernels with respect to
the number n of vertices, unless NP ⊆ coNP/poly.

5 Conclusion

Our results highlight that TCE and MLCE are much richer in structure than classical
Cluster Editing. Techniques for the classical problem seem to only carry over somewhat
for kernelization algorithms and otherwise new methods are necessary. In this regard, we
contribute our fixed-parameter algorithm for MLCE with respect to the combination of k
and d. In contrast, the W[1]-hardness for TCE with respect to k for d = 3 highlights the
obstacles we need to overcome. Perhaps we can break the temporal non-locality by bounding
the number of allowed modifications at one vertex in any interval of layers of some fixed size.
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