
Parameterized Query Complexity of Hitting Set
Using Stability of Sunflowers
Arijit Bishnu
Indian Statistical Institute, Kolkata, India

Arijit Ghosh
The Institute of Mathematical Sciences, Chennai, India

Sudeshna Kolay
Eindhoven University of Technology, Eindhoven, Netherlands

Gopinath Mishra
Indian Statistical Institute, Kolkata, India

Saket Saurabh
The Institute of Mathematical Sciences, Chennai, India

Abstract
In this paper, we study the query complexity of parameterized decision and optimization versions
of Hitting-Set. We also investigate the query complexity of Packing. In doing so, we use
generalizations to hypergraphs of an earlier query model, known as BIS introduced by Beame et
al. in ITCS’18. The query models considered are the GPIS and GPISE oracles. The GPIS and
GPISE oracles are used for the decision and optimization versions of the problems, respectively.
We use color coding and queries to the oracles to generate subsamples from the hypergraph,
that retain some structural properties of the original hypergraph. We use the stability of the
sunflowers in a non-trivial way to do so.

2012 ACM Subject Classification Theory of computation→ Fixed parameter tractability, The-
ory of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Query complexity, Hitting set, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.25

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1807.
06272.

1 Introduction

In query complexity models for graph problems, the aim is to design algorithms that have
access to the vertices V (G) of a graph G, but not the edge set E(G). Instead, these algorithms
construct local copies by using oracles to probe or infer about a property of a part of the
graph. Due to the lack of knowledge about global structures, often it is difficult to design
algorithms even for problems that are classically known to have polynomial time algorithms.

A natural optimization question in this model is to minimize the number of queries to
the oracle to solve the problem. The most generic approach towards this is to ask as few
queries to the oracle before the local copy of the graph is an equivalent sample of the actual
graph. This spawns the study of query complexity. The query complexity of the algorithm
is the number of queries made to the oracle. Keeping this in mind, several query models
have been designed through the years. Let us take the example of the problem of finding a
global minimum cut that has led to the introduction of different query models, in order to

© Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2018.25
https://arxiv.org/abs/1807.06272
https://arxiv.org/abs/1807.06272
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Hitting Set Using Stability of Sunflowers

achieve a query complexity that is less than the complexity of the actual graph. The query
models started from the simple neighbor query, but soon people realized that this was not
ideal for minimizing the query complexity for most problems [7, 9]. Therefore, in the case
of the minimum cut problem, the cut query was introduced to achieve subquadratic query
complexity [13].

There is a vast literature available on the query complexity of problems with classical
polynomial time algorithms (Refer to book [8]). However, there has been almost negligible
work on algorithmically hard problems [10, 11, 12]. In this paper, we use ideas of para-
meterized complexity in order to study the query complexity of NP-hard problems. The
Hitting Set and Vertex Cover problems are test problems for all new techniques of
parameterized complexity and also in every subarea that parameterized complexity has
explored. We continue the tradition and study the query complexity of these problems.
We start by defining a generalization of a recently introduced query model [2] to handle
hypergraphs.

1.1 The model

A hypergraph is a set system (U(H),F(H)), where U(H) is the set of vertices and F(H)
is the set of hyperedges. A hypergraph H′ is a sub-hypergraph of H if U(H′) ⊆ U(H)
and F(H′) ⊆ F(H). For a hyperedge F ∈ F(H), U(F) or simply F denotes the subset of
elements that form the hyperedge. A d-uniform hypergraph has each hyperedge of size d. A
packing in a hypergraph H is a family F ′ of hyperedges such that for any two hyperedges
F1, F2 ∈ F ′, U(F1) ∩ U(F2) = ∅.

For us “choose a random hash function h : V → [N]”, means that each vertex in V is
colored with one of the N colors uniformly and independently at random.

In this paper, for a problem instance (I, k) of a parameterized problem Π, a high
probability event means that it occurs with probability at least 1− 1

kc , where k is the given
parameter and c is a constant. The set {1, 2, . . . , n} is denoted by [n]. For a function f(k),
the set of functions O(f(k) · log k), is denoted by Õ(f(k)).

Motivated by [2] and [11], we consider the following oracles to look at the parameterized
query complexity of NP hard graph problems.
Generalized d-partite independent set oracle (GPIS): For a d-uniform hypergraphH, given

d pairwise disjoint non-empty subsets A1, . . . , Ad ⊆ U(H) as input, a GPIS query oracle
answers whether there exists an edge (u1, . . . , ud) ∈ F(H) such that ui ∈ Ai, for each
i ∈ [d].

Generalized d-partite independent set edge oracle (GPISE): For a d-uniform hypergraph
H, given d pairwise disjoint non-empty subsets A1, . . . , Ad ⊆ U(H) as input, a GPISE
query oracle outputs a hyperedge (u1, . . . , ud) ∈ F(H) such that ui ∈ Ai, for each i ∈ [d];
otherwise, the GPISE oracle reports NULL.

For d = 2, GPIS oracle is same as Bipartite Independent Set (BIS) oracle introduced by
Beame et al. [2]. Similarly, we can define BISE oracle as GPISE oracle for d = 2. Notice
that BIS is an existence query and is a natural extension of edge existence query. To get
a clear motivation behind BIS query, please refer to [2]. BISE (GPISE) is powerful over
BIS (GPIS) as BISE (GPISE) can return an edge (a hyperedge) between sets.

As mentioned earlier, queries like degree query, edge existence query, neighbor query,
that obtain local information about the graph have its limitation in terms of not being able
to achieve efficient query costs [7, 9]. This necessitates looking at powerful queries that

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:3

goes beyond obtaining local information and generalizes earlier queries. Beame et al. [2]
introduced BIS query model and approximately estimated the number of edges in a graph.

In the context of NP-Hard problems, it is not known if any problem can have efficient query
complexity with conventional query models. So, it is reasonable to study query complexity
for parameterized versions of NP-Hard problems. Iwama and Yoshida [11] initiated the study
of parameterized version of some NP-Hard problems in the graph property testing framework
with the access to standard oracles. We will give the details of their work in Section 1.3 and
compare with ours. Now, a natural question to ask is “can we improve the query complexity
(of NP-Hard problems) with no assumption on the input by considering a relatively stronger
oracle” ? As a first step in this direction, we use GPIS (GPISE) oracles, which are nothing
but BIS oracle for hypergraphs, to study parameterized decision (optimization) version of
Hitting Set. We believe that these query models will be useful to study the (parameterized)
query complexity of other NP-Hard problems.

1.2 Problem definition and our results

The d-Hitting-Set problem is defined as follows. Note that d is a constant in this paper
and HS(H) denote a minimum hitting set of a hypergraph H.

d-Hitting-Set
Input: The set of vertices U(H) of a d-uniform hypergraph H, the access to a GPISE
oracle, and a positive integer k.
Output: A set HS(H) having at most k vertices such that any hyperedge in H intersects
with HS(H) if such a set exists. Otherwise, we report such a set does not exist.

The d-Decision-Hitting-Set problem is the usual decision version of d-Hitting-Set;
here the oracle access is to GPIS instead of GPISE.

In our solution framework, we make queries to oracles to build a reduced instance of the
problem. On this reduced instance, one can run the traditional (FPT) algorithms. While
stating the results, we will bother only about the number of queries required to build the
reduced instance. In the query complexity setting, the algorithms are required to make
bounded number of queries (good bounds on the total time complexity is not an issue). Our
main focus in this paper is to make the query complexity results parameterized, in the sense
that they have query complexities bounded by some input parameters of the problem. So,
our bounds on the query complexity are not directly comparable with the time complexities
of the FPT algorithms in the literature of parameterized complexity. Our results hold with
high probability. Our methods use the technique of color coding [1, 5] to restrict the number
of queries required to generate a reduced instance of interest. The main result of our paper
is the following.

I Theorem 1.1. d-Hitting-Set can be solved with Õ(k2d) GPISE queries and d-Decision-
Hitting-Set can be solved with Õ(k2d2) GPIS queries.

Our solution to d-Hitting-Set needs us to solve another problem of interest termed as
d-Packing in a hypergraph, which is a generalization of Matching in a graph. We describe
the sketch of our query procedure to solve d-Packing in Section 2. Section 3 has the detailed
study on Hitting Set. Table 1 gives the overview of our results.

ISAAC 2018

25:4 Hitting Set Using Stability of Sunflowers

Table 1 Query complexities for hypergraph problems using GPIS and GPISE oracles. Observe
that Vertex Cover results follow by putting d = 2 in the above table.

Problems Query Oracles
GPIS GPISE

d-Hitting-Set — Õ(k2d)
d-Decision-Hitting-Set Õ(k2d2

) Õ(k2d)
d-Promised-Hitting-Set — Õ(kd)

d-Packing — Õ(k2d)

1.3 Related Works

Several query complexity models have been proposed in the literature to study various
problems [7, 9]. The only work prior to ours related to parameterization in the query
complexity model was by Iwama and Yoshida [11]. They studied property testing for several
parameterized NP optimization problems in the query complexity model. For the query,
they could ask for the degree of a vertex, neighbors of a vertex and had an added power
of sampling an edge uniformly at random, which is quite unlike in usual query complexity
models. To justify the added power of the oracle to sample edges uniformly at random, they
have shown that Ω(

√
n) degree and neighbor queries are required to solve Vertex-Cover.

Apart from that, an important assumption in their work is that the algorithms knew the
number of edges, which is not what is usually done in query complexity models. Also, the
algorithms that are designed gives correct answer only for stable instances. In contrast, our
query oracles do not use any randomness, does not know the number of edges, consider all
instances, and have a unifying structure. Hence, in this paper, oracles have less power than
that of [11] in the context of amount of randomness used by the oracles. Of significance
to us, is the vertex cover problem. Their vertex cover algorithm admits a query complexity
of Õ(2k

ε2) and either finds a vertex cover of size at most k or decides that there is no vertex
cover of size bounded by k even if we delete εm edges, where the number of edges m is known
in advance. In contrast, our algorithm uses BISE query for the vertex cover problem; it
does not need to estimate the number of edges. Our algorithm admits a query complexity
of Õ(k4) and we either find a vertex cover of size at most k if it exists or decide that there
is no vertex cover of size bounded by k. If it is promised that the vertex cover is bounded
by k, then we can give an algorithm that makes Õ(k2) BISE queries. These results on
the Vertex Cover are not the main focus of this paper and are mentioned in the full
version [3]. The main foucus of this paper is our results on d-Hitting-Set; extension of
Vertex Cover to d-Hitting-Set requires a deeper understanding of stability of sunflowers
under random sampling. Hence, it is evident that GPIS (BIS) and GPISE (BISE) open up
a new dimension in the study of query complexity. It will be interesting to study what other
NP-hard problems can be solved efficiently with these oracles.

Recent papers have considered strengthened query complexity models. In [2], the BIS
oracle was introduced to design better edge estimation algorithms. In the same work, the IS
oracle was also introduced, to estimate the number of edges, where the input to the oracle
is a vertex subset A ⊆ V (G) and the output is 1, if the subgraph of G induced by A is an
independent set and 0, otherwise. Similarly, in [13], the cut query was introduced to obtain
better query complexity for minimum cut problem.

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:5

2 d-Packing

We first define d-Packing and then design the query procedure.

d-Packing
Input: The set of vertices U(H) of a d-uniform hypergraph H, the access to a GPISE
oracle, and a positive integer k.
Output: A pairwise disjoint set of at least k hyperedges if such a set of hyperedges
exists. Otherwise, we report such a set of hyperedges does not exist.
As the usual matching in a graph (denoted here as Matching) is a special case of

d-Packing, we explain the main ideas of the query procedure of d-Packing with Matching.
In Matching, our objective is to either report a matching of at least k edges or decide there
does not exist a matching of size at least k. We use a hash function to color all the vertices
of G. In fixing the number of colors needed, we need to ensure that the endpoints of the
matched edges belong to different color classes. If the hash function uses O(k2) colors, then
with constant probability the endpoints of a k-sized edge set, that certifies the existence of a
matching of size at least k, will be in different color classes. For each pair of color classes,
we query the BISE oracle and construct a subgraph Ĝ according to the outputs of BISE
queries. We will show that if G has a matching of k edges, then Ĝ has a matching of k
edges. As Ĝ is a subgraph of G, any matching of Ĝ is also a matching of G and the size of
maximum matching in Ĝ is less than that of G. So, we report the required answer from the
matching of Ĝ. By repeating the query procedure for O(log k) times and taking maximum of
all the outcomes, we can report the correct answer with high probability. We carry over the
above ideas to the hypergraph setting with the oracle being GPISE. Let Pack(H) denote a
maximum packing of H.

I Theorem 2.1. d-Packing can be solved with Õ(k2d) GPISE queries.

Proof Sketch. Observe that it is enough to give an algorithm that solves d-Packing with
probability at least 2/3 by using O(k2d) GPISE queries. The details are in the full version [3].

We choose a random hash function h : U(H)→ [γk2], where γ = 100d2. Let Ui = {u ∈
U(H) : h(u) = i}, where i ∈ [γk2]. Note that {U1, . . . , Uγk2} form a partition of U(H),
where some of the Ui’s can be empty. We make a GPISE query with input (Ui1 , . . . , Uid)
for each 1 ≤ i1 < . . . < id ≤ γk2 such that Uij 6= ∅ ∀j ∈ [d]. Observe that we make O(k2d)
queries to the GPISE oracle. Let F ′ be the set of hyperedges that are output by the O(k2d)
GPISE queries. Now, we can generate a sub-hypergraph Ĥ of H such that U(Ĥ) = U(H)
and F(Ĥ) = F ′. We find Pack(Ĥ). If

∣∣∣Pack(Ĥ)
∣∣∣ ≥ k, then we report Pack(Ĥ) as Pack(H).

Otherwise, we report there does not exist a packing of size k. The correctness of our query
procedure follows from Lemma 2.2 (proof is in the full version [3]) along with the fact that
any packing of Ĥ is also a packing of H, as Ĥ is a sub-hypergraph of H.

I Lemma 2.2. If |Pack(H)| ≥ k, then
∣∣∣Pack(Ĥ)

∣∣∣ ≥ k with probability at least 2/3. J

3 Algorithm for Hitting Set (Theorem 1.1)

3.1 Our ideas in a nutshell
The main ideas explained with Vertex Cover
The d-Hitting-Set problem with d = 2 is Vertex-Cover. We first explain the intuition
behind our algorithm for d-Hitting-Set with Vertex Cover. The first step is to solve
the problem on instances where there is a promise of a Vertex-Cover solution of size

ISAAC 2018

25:6 Hitting Set Using Stability of Sunflowers

at most k. For this promised version, we use a hash function to color all the vertices of
the graph G. We sample a subgraph of G by querying the BISE oracle for each pair of
color classes. We sample several such subgraphs of G using the BISE oracle, and finally
take the union of these subgraphs to form a single subgraph Ĝ of G. Finally, we analyse
that a minimum vertex cover of Ĝ is also a minimum vertex cover of G and vice versa.
Our analysis is inspired by the analysis of the streaming algorithm for Vertex-Cover [4],
and presented in the full version [3]. The non-promised version of Vertex-Cover can be
solved by using the algorithm for the promised version along with the algorithm explained
for Matching in Section 2. If there exists a matching of size more than k, then the vertex
cover is also more than k. Otherwise, the vertex cover is bounded by 2k. Now we can use
our algorithm for the promised version of Vertex Cover to find an exact vertex cover from
which we can give final answer to the non-promised Vertex Cover. When we consider
the decision version of Vertex-Cover, we only need access to the BIS oracle. We use
the fact that the Vertex-Cover problem has an efficient representative set of edges [5]
associated with it (please refer to the full version [3]) to solve Decision-Vertex-Cover.
This helps us to design an algorithm with access to the BIS oracle. This technique also
works for d-Decision-Hitting-Set.

Moving from Vertex Cover to d-Hitting-Set
The algorithm for d-Hitting-Set, having a query complexity of Õ(k2d) GPISE queries, will
use an algorithm admitting query complexity Õ(kd) for a promised version of this problem.
In the promised version, we are guaranteed that the input instance has a hitting set of size at
most k. The main idea to solve the promised version is to sample a suitable sub-hypergraph
having bounded number of hyperedges, using GPISE queries, such that the hitting set of
the sampled hypergraph is a hitting set of the original hypergraph and vice versa. We use
the stability of sunflowers under random sampling. Recall that a hypergraph can be thought
of as a set system. The core of a sunflower is the pairwise intersection of the hyperedges
present in the sunflower, which is formally defined as follows.

I Definition 3.1. Let H be a d-uniform hypergraph; S = {F1, . . . , Ft} ⊆ F(H) is a t-
sunflower in H if there exists C ⊆ U(H) such that Fi ∩ Fj = C for all 1 ≤ i < j ≤ t. C is
defined to be the core of the sunflower S in H and P = {Fi \C : i ∈ [t]} is defined as the set
of petals of the sunflower S in H.

The core of a sunflower can be large, or significant, or small; based on the number of
hyperedges forming the sunflower. We define large, significant and small in such a way that
each large core is significant and each significant (and thus, large) core must intersect with
any hitting set. The formal definition of different types of cores is given below.

I Definition 3.2. Let SH(C) denote the maximum integer t such that C is the core of a
t-sunflower in H. If SH(C) > 10dk, the core C is said to be large. If SH(C) > k, core C is
said to be significant.

The promise that the hitting set is bounded by k, will help us (i) to bound the number
of hyperedges that do not contain any large core as a subset, (ii) to guarantee that all the
large cores, that do not contain any significant cores as subsets in the original hypergraph,
are significant in the sampled hypergraph with high probability, and hence will intersect any
hitting set of the sampled hypergraph, (iii) to guarantee that all the hyperedges that do
not contain any large core as a subset, are present in the sampled hypergraph with high
probability. Using the above properties, we can prove that reporting the hitting set of the
sampled hypergraph as the hitting set of the original graph is correct with high probability.
The formal definitions and arguments are given in Section 3.3.

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:7

In this Section we also give algorithm for d-Decision-Hitting-Set, where we have access
to the GPIS oracle and obtain an algorithm with query complexity Õ(k2d2). The main idea
to solve d-Decision-Hitting-Set is to use the concept of representative sets [5] (For details
see the full version [3]). The size of a k-representative set corresponding to a hypergraph is
bounded by O(kd). Thus, the number of vertices that are present in the k-representative
set is also bounded by O(dkd). All the O(dkd) vertices will be uniquely colored with high
probability if enough number of colors are used for the hash function. Then we make GPIS
queries to extract a sufficient number of hyperedges such that the hyperedges corresponding
to the representative set are embedded in the sampled sub-hypergraph. The formal arguments
are given in Section 3.3.

3.2 d-Promised-Hitting-Set
In this part, we study the following problem.

d-Promised-Hitting-Set
Input: The set of vertices U(H) of a d-uniform hypergraph H such that |HS(H)| ≤ k
and the access to a GPISE oracle, and a positive integer k.
Output: A hitting set of H that is of size at most k.

For d-Promised-Hitting-Set, we design an algorithm with query complexity Õ(kd).

I Theorem 3.3. There exists an algorithm that makes Õ(kd) GPISE queries and solves
d-Promised-Hitting-Set with high probability.

Here, we give an outline of the algorithm. The first step of designing this algorithm
involves, for a positive integer b, a sampling primitive Sb for the problem. Let H be the
d-uniform hypergraph whose vertex set U(H) is known and hyperedge set F(H) is unknown
to us. Let h : U(H) → [b] be a random hash function. Let Ui = {u ∈ U(H) : h(u) = i},
where i ∈ [b]. Note that U1, . . . , Ub form a partition of U(H), some of the Ui’s can be empty.
We make a GPISE query with input (Ui1 , . . . , Uid) for each 1 ≤ i1 < . . . < id ≤ b such
that Uij 6= ∅ ∀j ∈ [d]. Observe that we make O(bd) queries to the oracle. Let F ′ be the
set of hyperedges that are output by the O(bd) GPISE queries. Now, we can generate a
sub-hypergraph Hh of H such that U(Hh) = U(H) and F(Hh) = F ′.

Henceforth, the term edge and graph would essentially mean a hyperedge and a d-uniform
hypergraph, respectively.

We find α log k samples by calling the sampling primitive Sβk for α log k times, where α =
100d2 and β = 100d32d+5. Let the subgraphs resulting from the sampling be H1, . . . ,Hα log k.
Let Ĥ = H1 ∪ . . .∪Hα log k. Note that we can construct Ĥ by making Õ(kd) GPISE queries.
Observe that if we prove the following lemma, then we are done with the proof of Theorem 3.3
(the detailed proof is in the full version [3]).

I Lemma 3.4. If |HS(H)| ≤ k, then HS(H) = HS(Ĥ) with high probability.

To prove Lemma 3.4, we need some intermediate results. We state the following proposition
and then define some sets, which will be needed for our analysis.

I Proposition 3.5 ([6]). Let H be a d-uniform hypergraph. If |F(H)| > d!kd, then there
exists a (k + 1)-sunflower in H.

I Definition 3.6. In the hypergraph H, C is the set of large cores; Fs is the family of edges
that do not contain any large core; C′ is the family of large cores none of which contain a
significant core as a proper subset.

ISAAC 2018

25:8 Hitting Set Using Stability of Sunflowers

The following two results (Lemma 3.7 and 3.8) give useful bounds with respect to the
input instances of d-Promised-Hitting-Set.

I Lemma 3.7. If |HS(H)| ≤ k, then |Fs| ≤ d!(10dk)d.

Proof. If |Fs| > d!(10dk)d, then there exists a (10dk+1)-sunflower S in H by Proposition 3.5
such that each edge in S belongs to Fs. First, since HS(H) ≤ k, the core CH(S) of S must
be non-empty. Note that CH(S) is a large core and CH(S) is contained in every edge in S.
Observe that we arrived at a contradiction, because any edge in S is also an edge in Fs and
any edge in Fs does not contain a large core by definition. Hence, |Fs| ≤ d!(10dk)d. J

I Lemma 3.8. If |HS(H)| ≤ k, then |C′| ≤ (d− 1)!kd−1.

Proof. Let us consider the set system of all cores in C′. Note that the number of elements
present in each core in C′ is at most d − 1. If |C′| > (d − 1)! · kd−1, then there exists a
k + 1-sunflower S ′. Let C1, . . . , Ck+1 be the sets present in the sunflower S ′ and let CS′ be
the core of S ′. Observe that if CS′ = C1 ∩ . . . ∩ Ck+1 = ∅, then |HS(H)| > k.

Now consider the following observation for the case when CS′ is non-empty.

I Observation 3.9. If CS′ is non-empty, then CS′ is the pair-wise intersection of a family
of k + 1 edges in H.

Proof. Let Ai be the set of at least 10dk edges that form a sunflower with core Ci, where
i ∈ [k+ 1]. Observe that this is possible as each Ci is a large core. Before proceeding further,
note that Ci ∩ Cj = CS′ and (Ci \ CS′) ∩ (Cj \ CS′) = ∅ for all i, j ∈ [k + 1] and i 6= j.

Consider Bi ⊆ Ai such that for each F ∈ Bi, F ∩ Cj = CS′ ∀j 6= i and |Bi| ≥ 9dk. First,
we argue that Bi exists for each i ∈ [k + 1]. Recall that for each j ∈ [k + 1], |Cj | ≤ d − 1.
Also, for any pair of edges F1, F2 ∈ Ai, (F1 \ Ci) ∩ (F2 \ Ci) = ∅. Thus, using the fact that
Ci ∩ Cj = CS′ for i 6= j, a vertex in Cj \ CS′ can belong to at most one edge in Ai. This
implies that there are at most (d− 1)k < dk sets F in Ai such that F ∩ Cj 6= CS′ for some
j 6= i ∈ [k + 1]. We can safely assume that k + 1 ≥ d and therefore, the number of edges
F ∈ Ai such that F ∩Cj = CS′ ∀j 6= i ∈ [k + 1] is at least 10dk − dk = 9dk. Next, we argue
that there exists k + 1 edges F1, . . . , Fk+1 such that Fi ∈ Bi ∀i ∈ [k + 1] and Fi ∩ Fj = CS′

for all i, j ∈ [k + 1] and i 6= j. We show the existence of the Fi’s inductively. For the
base case, take any arbitrary edge in B1 as F1. Assume that we have chosen F1, . . . , Fp,
where 1 ≤ p ≤ k, such that the required conditions hold. We will show that there exists
Fp+1 ∈ Bp+1 such that Fi ∩ Fp+1 = CS′ for each i ∈ [p]. By construction of Bi’s, no edge in
Bp+1 intersects with Ci \ CS′ , i ≤ p; but every edge in Bp+1 contains CS′ . Also, none of the
chosen edges out of F1, . . . , Fp, intersects Cp+1 \ CS′ . So, if we can select an edge F ∈ Bp+1
such that F \ Cp+1 is disjoint from Fi \ Ci ∀i ∈ [p], then we are done. Note that for two
edges F ′, F ′′ ∈ Bp+1, F ′ \ Cp+1 and F ′′ \ Cp+1 are disjoint. Consider the set B′p+1 ⊆ Bp+1
such that each edge F ∈ B′p+1 intersects with at least one out of {F1 \ C1, . . . , Fp \ Cp}.∣∣B′p+1

∣∣ ≤ dp ≤ dk, because (Fi \ Ci) ∩ (Fj \ Cj) = ∅ ∀i 6= j ∈ [p] and |Fi| ≤ d, i ∈ [p]. As
|Bp+1| ≥ 9dk, we select any edge in Bp+1 \B′p+1 as Fp+1. J

The above observation implies the following. If CS′ is non-empty, then there exists a (k + 1)-
sunflower in H. So, SH(CS′) > k or equivalently CS′ is a significant core. Note that each
Ci contains CS′ , which is a significant core; which contradicts the definition of C′. Hence,
|C′| ≤ (d− 1)!kd−1. J

The following Lemma provides insight into the structure of Ĥ and thereby is the most
important part of proving Lemma 3.4.

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:9

I Lemma 3.10. Let Ĥ = H1 ∪ . . . ∪Hα log k. If |HS(H)| ≤ k, then (a) Fs ⊆ F(Ĥ), and (b)
∀C ∈ C′, SĤ(C) > k hold with high probability.

Proof Sketch. First, consider the two claims stated below.

I Claim 3.11. ∀i ∈ [α log k], P(F ∈ F(Hi) | F ∈ Fs) ≥ 1
2 .

I Claim 3.12. ∀i ∈ [α log k], P(SHi
(C) > k | C ∈ C′) ≥ 1

2 .

The proofs of Claims 3.11 and 3.12 are involved which we prove below. Observe that
Lemma 3.10 follows from Claim 3.11 and 3.12. The detailed proof of Lemma 3.10 is in the
full version [3]. J

Proof of Claim 3.11. Without loss of generality, we will prove the statement for the graph
H1. Let h : U(H)→ [βk] be the random hash function used in the sampling of H1. Observe
that by the construction of H1, F ∈ F(H1) if the following two conditions hold.

h(u) = h(v) if and only if u = v, where u, v ∈ F .
For any F ′ 6= F and F ′ ∈ F(H), F ′ and F differ in the color of at least one vertex.

Hence, P(F /∈ F(H1) | F ∈ Fs) ≤
∑

u,v∈F :u 6=v
P(h(u) = h(v)) + P(E1), where

E1 : ∃ an edge F ′ ∈ F(H) such that F ′ 6= F and {h(z) : z ∈ F} = {h(z) : z ∈ F ′}.

Before we bound the probability of the occurrence of E1, we show the existence of a set
D ⊆ U(H) \ F of bounded cardinality such that each edge in F(H) \ {F} intersects with D.

I Observation 3.13. Let F ∈ Fs. Then there exists a set D ⊆ U(H) \F such that each edge
in F(H) \ {F} intersects with D and |D| ≤ 2d+5d2k.

Proof. For each C ⊂ F , consider the hypergraph HC such that U(HC) = U(H) \ C and
F(Hc) = {F ′ \C : F ′ ∈ F(H) and F ′ ∩ F = C}. First, we prove that the size of HS(HC) is
at most dSH(C). For the sake of contradiction, assume that |HS(HC)| > dSH(C). Then
we argue that there exists F ′ ⊆ F(HC) such that each pair of hyperedges in F ′ are vertex
disjoint and |F ′| > SH(C). If |F ′| ≤ SH(C), then the vertex set {w : w ∈ F ′, F ′ ∈ F ′} is a
hitting set of Hc and it has size at most dSH(C), which is a contradiction. Therefore, there
is a F ′ ⊆ F(HC) such that each pair of hyperedges in F ′ is vertex disjoint and |F ′| > SH(C).
Observe that the set of edges {F ′′∪C : F ′′ ∈ F ′} forms a t-sunflower in H, where t > SH(C);
which contradicts the definition of SH(C).

The required set D is (HS(H) \ F) ∪
⋃
C⊂F

HS(HC).

If a hyperedge F ∗ in F(H) \ {F} intesects with F , then it must intersect with HS(HC)
for some C ⊂ F ; otherwise F ∗ intersects with HS(H)\F . So, each hyperedge in F(H)\{F},
intersects with D. Now, we bound the size of D.

|D| ≤ |HS(H)|+

∣∣∣∣∣ ⋃
C⊂F

HS(HC)

∣∣∣∣∣
≤ k +

∑
C⊂F

dSH(C) (∵ |HS(H)| ≤ k and |HS(HC)| ≤ dSH(C))

≤ k + 2d · d · 10dk (∵ F does not contain any large core)
≤ 2d+5d2k

J

ISAAC 2018

25:10 Hitting Set Using Stability of Sunflowers

With respect to the set D, we define another event E2 such that E2 ⊇ E1

E2 : ∃ z ∈ D such that h(z) = h(y) for some y ∈ F.

We will now bound P(E2).
So, P(E2) ≤ d |D|βk = d·2d+5d2k

βk = d32d+5

β < 1
10 . Putting everything together,

P(F /∈ F(H1)|F ∈ Fs) ≤
∑

u,v∈F :u 6=v
P(h(u) = h(v)) + P(E1)

≤ d2

βk
+ P(E2) ≤ d2

βk
+ 1

10 <
1
2 .

J

Proof of Claim 3.12. Without loss of generality, we will prove the statement for the graph
H1. Let h : U(H)→ [βk] be the random hash function used in the sampling of H1.

Let S be the sunflower with core C and F ′ be the set of edges corresponding to sunflower
S. Note that |F ′| > 10dk. Let F ′′ ⊆ F ′ be such that ∀F ∈ F ′′, (F \ C) ∩HS(H) = ∅, and
|F ′′| = (10d− 1)k. Note that such an F ′′ exists as |F ′′| > 10dk and HS(H) ≤ k.

For F ∈ F ′′, let XF be the indicator random variable that takes value 1 if and only if
there exists F ′ ∈ F ′ such that F ′ ∈ F(H1) and {h(v) | v ∈ F} = {h(v) | v ∈ F ′}. Define
X =

∑
F∈F ′′

XF . Observe that SH1(C) is a random variable such that SH1(C) ≥ X. Recall

that we have to prove P(SH1(C) > k | C ∈ C′) ≥ 1
2 . So, if we can show P(X ≤ k) < 1

2 , then
we are done. Observe that XF = 1 if the following events occur.
E1: h(u) = h(v) if and only if u = v, where u, v ∈ F .
E2: There does not exist y ∈ F and z ∈ HS(H) \ C such that h(y) = h(z).
So, P(XF = 1) ≥ P(E1 and E2) and using the fact that |HS(H)| ≤ k, we have

P(XF = 0) ≤
∑

u,v∈F ;u6=v
P(h(u) = h(v)) +

∑
y∈F

∑
z∈HS(H)\{u}

P(h(y) = h(z))

≤ d2

βk
+ d · |HS(H)|

βk
<

1
200

Hence, E[X] =
∑

F∈F ′′
P(XF = 1) ≥ (10d− 1)k · 199

200 > 9dk.

P(X ≤ k) ≤ P(
∣∣∣F ′′

∣∣∣−X ≥ (10d− 2)k) (∵ |F
′′
| = (10d− 1)k)

≤
E[
∣∣∣F ′′

∣∣∣−X]

(10d− 2)k <
(10d− 1)k − 9dk

(10d− 2)k ≤ d− 1
10d− 2 <

1
2 .

The first inequality is by Markov and second one is due to E[X] > 9dk. J

Now, we have all the ingredients to prove Lemma 3.4.

Proof of Lemma 3.4. First, since Ĥ is a subgraph of H, a minimum hitting set of H is also
a hitting set of Ĥ. To prove this Lemma, it remains to show that when |HS(H)| ≤ k, then a
minimum hitting set of Ĥ is also a hitting set of H. By Lemma 3.10, it is true that with
high probability Fs ⊆ F(Ĥ) and SĤ(C) > k if C ∈ C′. It is enough to show that when
Fs ⊆ F(Ĥ) and SĤ(C) > k, ∀C ∈ C′, then a minimum hitting set of Ĥ is also a minimum
hitting set of H.

First we show that each significant core intersects with HS(H). Suppose there exists a
significant core C that does not intersect with HS(H). Let S be a t-sunflower in H, t > k,
such that C is the core of S. Then each of the t petals of S must intersect with HS(H).

A. Bishnu, A. Ghosh, S. Kolay, G. Mishra, and S. Saurabh 25:11

But the petals of any sunflower are disjoint. This implies HS(H) ≥ t > k, which is a
contradiction. So, each significant core intersects with HS(H). As large cores are significant,
each large core also intersects with HS(H).

Let us consider a subhypergraph of H, say H̃1, with the following definition. Take a large
core C1 in H that contains a significant core C2 as a subset. Let S1 be a sunflower with
core C1. Let S2 be a sunflower with core C2 that has more than k petals. Note that there
can be at most one hyperedge F1 of S1 that is also present in S2. We delete all hyperedges
participating in S1 except F1. The remaining hyperedges remain the same as in H. Notice
that a hitting set of H̃1 is also a hitting set of H; the significant core C2 remains significant
in H̃1. Thus, any hitting set of H̃1 must intersect with C and therefore, must hit all the
hyperedges of S1. We can think of this as a reduction rule, where the input hypergraph and
the output hypergraph have the same sized minimum hitting sets. Let H̃ be a hypergraph
obtained after applying the above reduction rule exhaustively on H. The following properties
must hold for H̃: (i) HS(H) = HS(H̃), (ii) all large cores in H̃ do not contain significant
cores as subsets, (iii) all hyperedges of Fs in H are still present in H̃.

By Lemma 3.10, it is also true with high probability that SĤ(C) > k when C is a large
core of H̃ that does not contain any significant core as a subset. Note that the arguments
in Lemma 3.10 can be made for such large cores without significant cores in H̃. Thus, we
continue the arguments with the assumption that SĤ(C) > k when C is a large core of H̃
that does not contain any significant core as a subset.

Now we show that when HS(H) ≤ k, HS(H̃) = HS(Ĥ). We know that Fs ⊆ F(H̃).
That is, any hyperedge that does not contain any large core as a subset, is present in H̃.
Each hyperedge in Fs must be covered by any hitting set of H as well as any hitting set of
H̃ and Ĥ. Now, it is enough to argue that an hyperedge F ∈ F(H̃) \ Fs, must be covered by
any hitting set of Ĥ. Note that each F ∈ F(H̃) \ Fs contains a large core, say Ĉ, which does
not contain a significant core as a subset. By our assumption, Ĉ is a significant core in Ĥ
and therefore, must be hit by any hitting set of Ĥ.

Putting everything together, when |HS(H|) ≤ k, each edge in H is covered by any hitting
set of Ĥ. Thus, HS(H) = HS(Ĥ). J

3.3 Algorithms for d-Hitting-Set and d-Decision-Hitting-Set
Now, we explain the algorithms for d-Hitting-Set and d-Decision-Hitting-Set.

I Theorem 3.14. d-Hitting-Set can be solved with Õ(k2d) GPISE queries.

Proof. Let Pack(H) denote a maximum packing of hypergraph H. By Theorem 2.1, with
high probability, we can find Pack(H) if |Pack(H)| ≥ k + 1 or decide that there does not
exist any packing of size k + 1, by making Õ(k2d) GPISE queries.

If |Pack(H)| ≥ k + 1, then |HS(H)| ≥ k + 1. So, in this case we report that there does
not exist any hitting set of size at most k. Otherwise, if |Pack(H)| ≤ k, then |HS(H)| ≤ dk.
As |HS(H)| ≤ dk, HS(H) can be found using our algorithm for d-Promised-Hitting-Set
by making Õ(kd) GPISE queries. If |HS(H)| ≤ k, with high probability we output HS(H)
and if |HS(H)| > k, we report there does not exist a hitting set of size at most k. The total
query complexity is Õ(k2d). J

I Theorem 3.15. d-Decision-Hitting-Set can be solved with Õ(k2d2) GPIS queries.

Proof. Observe that, it is enough to give an algorithm that solves d-Decision-Hitting-Set
with probability at least 2/3 by using O(k2d2) GPIS queries. The details are in the full
version [3].

ISAAC 2018

25:12 Hitting Set Using Stability of Sunflowers

We choose a random hash function h : U(H) → [γk2d], where γ = 1009dd2. Let
Ui = {u ∈ U(H) : h(u) = i}, where i ∈ [γk2d]. Note that Ui’s form a partition of U(H),
where some of the Ui’s can be empty. We make a GPIS query with input (Ui1 , . . . , Uid)
for each 1 ≤ i1 < . . . < id ≤ γk2d such that Uij 6= ∅ ∀j ∈ [d]. Recall that the output
of a GPIS query is Yes or No. We create a hypergraph Ĥ where we create a vertex
for each part Ui, i ∈ [γk2d]. We abuse notation and denote U(Ĥ) = {U1, . . . , Uγk2d}
and F(Ĥ) = {(Ui1 , . . . , Uid) : GPIS oracle answers yes when given (Ui1 , . . . , Uid) as input}.
Observe that we make O(k2d2) queries to the GPIS oracle. We find HS(Ĥ) and report
|HS(H)| ≤ k if and only if

∣∣∣HS(Ĥ)
∣∣∣ ≤ k. The correctness of our query procedure follows

from the following Lemma (proof is in the full version [3]).

I Lemma 3.16. If
∣∣∣HS(Ĥ)

∣∣∣ ≤ k, then |HS(H)| ≤ k with probability at least 2/3. J

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color Coding. In Encyclopedia of Alg., pages

335–338. Springer, 2016.
2 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rasht-

chian, and Makrand Sinha. Edge Estimation with Independent Set Oracles. In ITCS, pages
38:1–38:21, 2018.

3 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh.
Parameterized Query Complexity of Hitting Set using Stability of Sunflowers. CoRR,
abs/1807.06272, 2018. arXiv:1807.06272.

4 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via
Sampling with Applications to Finding Matchings and Related Problems in Dynamic Graph
Streams. In SODA, pages 1326–1344, 2016.

5 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

6 P. Erdős and R. Rado. Intersection Theorems for Systems of Sets. Journal of the London
Mathematical Society, s1-35(1):85–90, 1960.

7 Uriel Feige. On Sums of Independent Random Variables with Unbounded Variance and
Estimating the Average Degree in a Graph. SIAM J. Comput., 35(4):964–984, 2006.

8 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
9 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random

Struct. Algorithms, 32(4):473–493, 2008.
10 Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee.

Set Cover in Sub-linear Time. In SODA, pages 2467–2486, 2018.
11 Kazuo Iwama and Yuichi Yoshida. Parameterized Testability. TOCT, 9(4):16:1–16:16,

2018.
12 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-

time algorithm for approximating the minimum vertex cover size. In SODA, pages 1123–
1131, 2012.

13 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing Exact Minimum
Cuts Without Knowing the Graph. In ITCS, pages 39:1–39:16, 2018.

http://arxiv.org/abs/1807.06272

	Introduction
	The model
	Problem definition and our results
	Related Works

	d-Packing
	Algorithm for Hitting Set (Theorem 1.1)
	Our ideas in a nutshell
	d-Promised-Hitting-Set
	Algorithms for d-Hitting-Set and d-Decision-Hitting-Set

