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—— Abstract

Diversity maximization is an important geometric optimization problem with many applications
in recommender systems, machine learning or search engines among others. A typical diversifi-
cation problem is as follows: Given a finite metric space (X, d) and a parameter k € N, find a
subset of k elements of X that has maximum diversity. There are many functions that measure
diversity. One of the most popular measures, called remote-clique, is the sum of the pairwise
distances of the chosen elements. In this paper, we present novel results on three widely used
diversity measures: Remote-clique, remote-star and remote-bipartition.

Our main result are polynomial time approximation schemes for these three diversification
problems under the assumption that the metric space is doubling. This setting has been discussed
in the recent literature. The existence of such a PTAS however was left open.

Our results also hold in the setting where the distances are raised to a fixed power ¢ > 1,
giving rise to more variants of diversity functions, similar in spirit to the variations of clustering
problems depending on the power applied to the pairwise distances. Finally, we provide a proof
of NP-hardness for remote-clique with squared distances in doubling metric spaces.
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1 Introduction

A dispersion or diversity maximization problem is as follows: Given a ground set X and a
natural number k € N, find a subset S C X among those of cardinality k£ that maximizes a
certain diversity function div(S).
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Diversity Maximization in Doubling Metrics

While diversity maximization has been of interest in the algorithms and operations
research community for some time already, see e.g. [11, 5, 25, 20|, the problem received
considerable attention in the recent literature regarding information retrieval, recommender
systems, machine learning and data mining, see e.g. [28, 29, 23, 24, 1].

Distances used in these applications may be metric or non-metric. However, most popular
distances either are metric or correspond to the g-th power of metric distances for some
q > 1. The cosine distance for a set X C R?\ {0}, for example, is a popular non-metric
measure of dissimilarity for text documents [26], which can be interpreted as the squared
Euclidean distance of the input vectors, after scaling all vectors to unit length.

In this paper we focus on three popular diversity functions over metric spaces, see e.g.
[11, 5, 2, 21, 17, 7, 6, 4]. In particular, for a given n-point metric space (X, d), a constant
¢ € R>; and a parameter k € Z with 2 < k < n, we consider the family of problems

max  div{(T),
TCX,|T|=k

where div?(T") corresponds to one of the following three diversity functions:

1
Remote-clique: cl?(T') := Z d?(u,v) = 3 Z d?(u,v).
{u,v}E(g) u,veT
—star: st4(T) ‘= mi q
Remote-star: st?(T) := min Z d(z,u).
ueT\{z}

Remote-bipartition: bp?(T) := min di(l,r).

@ LCT,|L|=[|T|/2] ZELTZET\L (&)

Here, d?(u,v) is the g-th power of the distance between u and v. In the literature, these
problems have been mainly considered for ¢ = 1 to which we refer as standard remote-clique,
remote-star and remote-bipartition respectively.

In the present work, we present polynomial time approximation schemes for the generalized
versions (¢ > 1) of the remote-clique, remote-star and remote-bipartition problems in the
case where the metric space is doubling. The latter is a general and robust class of metric
spaces that have low intrinsic dimension. We provide a proper definition in Section 2.

Contributions of this paper

Suppose that (X, d) is a metric space of bounded doubling dimension D and that the power
q > 1 is fixed. In this setting, our main results are as follows:
i) We show that there exist polynomial time approximation schemes (PTAS) for the
remote-clique, remote-star and remote-bipartition problems. In other words, for each
e > 0 and for each of the three diversity functions cl?(T'), st?(T) and bp?(T'), there
exists a polynomial time algorithm that computes a k-subset of X whose diversity is at
least (1 — €) times the diversity of the optimal set. We prove this result by means of a
single and very simple algorithm that identifies a cluster which is then rounded, while
all points outside of the cluster have to be in the optimal solution.
ii) For the standard (¢ = 1) remote-clique problem we refine our generic algorithm into a
fast PTAS that runs in time O(n(k +&~2)) + (¢~ log k)°¢ ") - k.
iii) For the remote-bipartition problem, our algorithm assumes access to a polynomial time
oracle that, for any k-set T, returns the value of bp?(T'). For ¢ = 1, this corresponds to
the metric min-bisection problem, known to be NP-hard and admitting a PTAS [16].
We generalize this last result and provide a PTAS for min-bisection over doubling metric
spaces for any constant g > 1, thus validating our main result.
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Table 1 Current best approximation ratios and hardness results for remote-clique, remote-star
and remote-bipartition with a highlight on our results. The sign T indicated that the result assumes
hardness of the planted-clique problem.

Problem Distance Unbounded dimension Fixed (doubling) dimension
class Approx. Hardness Approx. Hardness
Metri 1/2 [2 1/2 PTAS (Thm. 4 -
clique, ¢ = 1 etric /2 [20, 5] /2+¢€1[6] S (Thm. 4)
¢y and £, PTAS[9,10] NP-hard [9] PTAS [15, 9, 10] -
clique, ¢ = 2 Euclidean PTAS [9, 10] NP-hard [9] PTAS [9, 10] NP-hard (Thm. 8)
star, g =1 Metric 1/2 [11] 1/24+¢ 1 [8] PTAS (Thm. 4) -
bipartition, ¢ = 1 Metric 1/3 [11] 1/2+¢t[8 PTAS (Thm. 4) -
3 problems, any Metric - 279 +¢+[8] PTAS (Thm.4) NP-hard (Thm. 8)

const. ¢ > 1

iv) We provide the first NP-hardness proof for remote-clique in fixed doubling dimension.
More precisely, we prove that the version of remote-clique with squared Euclidean
distances in R? is NP-hard.

Related work

For the standard case ¢ = 1 and for general metrics, Chandra and Halldérsson [11] provided
a thorough study of several diversity problems, including remote-clique, remote-star and
remote-bipartition. They observed that all three problems are NP-hard by reductions from
the CLIQUE-problem and provided a %—factor and a %—factor approximation algorithm for
remote-star and remote-bipartition respectively. Several approximation algorithms are known

for remote-clique as well [25, 20, 5] with the current best factor being 2.

» Remark. Borodin et al. [6] proved that the approximation factor of % is best possible
for standard remote-clique over general metrics under the assumption that the planted-
clique problem [3] is hard. In the full version we prove that, under the same assumption
and for any ¢ > 1, neither remote-clique, remote-star nor remote-bipartition admits a
constant approximation factor higher than 27%. Thus, none of the three problems nor their
generalizations for ¢ > 1 admits a PTAS over general metrics.

In terms of relevant special cases for standard remote-clique, Ravi et al. [25] provided
an efficient exact algorithm for instances over the real line, and a factor of % over the
Euclidean plane. Later on, Fekete and Meijer [15] provided the first PTAS for this problem
for fixed-dimensional ¢; distances, and an improved factor of g over the Euclidean plane.
Very recently, Cevallos et al. [9, 10] provided PTASs over £; and ¢y distances of unbounded
dimension as well as for distances of negative type, a class that contains some popular non-
metric distances including the cosine distance. We remark however that the running times of
all previously mentioned PTASs [15, 9, 10] have a dependence on n given by high-degree
polynomials (in the worst case) and thus are not suited for large data sets.

For remote-star and remote-bipartition, to the best of the authors’ knowledge there were
no previous results in the literature on improved approximability for any fixed-dimensional
setting, nor for other non-trivial special settings beyond general metrics. Moreover, there
was no proof of NP-hardness for any of the three problems in a fixed-dimensional setting. In
particular, showing NP-hardness of a fixed-dimensional geometric version of remote-clique
was left as an open problem in [15].

33:3
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Further related results and implications

In applications of diversity maximization in the area of information retrieval, common
challenges come from the fact that the data sets are very large and /or are naturally embedded
in a high dimensional vector space. There is active research in dimensionality reduction
techniques, see [13] for a survey. It has also been remarked that in many scenarios such as
human motion data and face recognition, data points have a hidden intrinsic dimension that
is very low and independent from the ambient dimension, and there are ongoing efforts to
develop algorithms and data structures that exploit this fact, see [27, 22, 14, 18]. One of
the most common and theoretically robust notions of intrinsic dimension is precisely the
doubling dimension. We remark that our algorithm does not need to embed the input points
into a vector space (of low dimension or otherwise) and does not require knowledge of the
doubling dimension, as this parameter only plays a role in the run-time analysis.

A sensible approach when dealing with very large data sets is to perform a core-set
reduction of the input as a pre-processing step. This procedure quickly filters through the
input points and discards most of them, leaving only a small subset — the core-set — that is
guaranteed to contain a near-optimal solution. There are several recent results on core-set
reductions for standard (¢ = 1) dispersion problems, see [21, 2, 7]. In particular, Ceccarello
et al. [7] recently presented a PTAS-preserving reduction (resulting in an arbitrarily small
deterioration of the approximation factor) for all three problems in doubling metric spaces,
with the existence of a PTAS left open. Their construction allows for our algorithm to run
in a machine of restricted memory and adapts it to streaming and distributed models of
computation. Besides showing that a PTAS exists, we can also combine our results with
theirs. We refer the interested reader to the previously mentioned references and limit
ourselves to remark a direct consequence of Theorem 4 and [7, Theorems 3 and 9].

» Corollary 1. For ¢ =1 and any constant € > 0, our three diversity problems over metric
spaces of constant doubling dimension D admit (1 — €)-approximations that execute as
single-pass and 2-pass streaming algorithms, in space O(e~Pk?) and O(e~Pk) respectively.

Organization of the paper. In Section 2, we provide some needed notation and background
techniques. Section 3 presents our general algorithm (Theorem 4) and Section 4 is dedicated
to the NP-hardness result (Theorem 8). Due to space constraints, the description of the
faster PTAS for standard remote-clique and the PTAS for the generalized min-bisection
problem as well as the proofs of some lemmas have been deferred to the full version of this

paper [8].

2 Preliminaries

A (finite) metric space is a tuple (X, d), where X is a finite set and d: X x X — R>¢ is a
symmetric distance function that satisfies the triangle inequality with d(u,u) = 0 for each
point u € X. For a point v € X and a parameter r € R>q, the ball centered at u of radius
r is defined as B(u,r) := {v € X : d(u,v) < r}. The doubling dimension of (X,d) is the
smallest D € R>g such that any ball in X can be covered by at most 2P balls of half its
radius. In other words, for each u € X and r > 0, there exist points vy, -- ,v; € X with
t < 2P such that B(u,r) C U!_; B(v;,r/2). A family of metric spaces is doubling if their
doubling dimensions are bounded by a constant. It is well known that all metric spaces
induced by a normed vector space of bounded dimension are doubling.

We rely on the standard cell-decomposition technique and grid-rounding, see [19]. We
assume without loss of generality that the diameter of (X, d), i.e. the largest distance between
two points, is 1. For a parameter § > 0, the following greedy procedure partitions X into
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cells of radius d. Initially, define all points in X to be white. While there exist white points,
pick one that we call u, color it red and assign all white points v € X with d(u,v) < 4§ to u
and color them blue. A cell is now comprised of a red point, declared to be the cell center,
and all the blue points assigned to it. Grid rounding means to move or round each point to
its respective cell center. This incurs a location error of at most ¢ for each point.

How many cells and thus different points does this algorithm produce? If (X,d) is of
constant doubling dimension D, a direct consequence of the definition of D is that for any
parameters r and p in R+, a ball of radius 7 can be covered by at most (2/p)” balls of radius
pr. Since X is contained in a ball of radius 1, the number of cells produced is bounded by
(4/0)P. Indeed, X can be covered by (4/6)P balls of radius §/2 and each such ball contains
at most one cell center since, by construction, the distance between any two cell centers is
strictly larger than d. Notice that this procedure executes in time O((# cells) - | X|) and that
it requires no knowledge of the value of the doubling dimension D.

The following two lemmas correspond respectively to standard inequalities used for powers

of metric distances and to trivial relations among our three diversity functions, see also [12].

Their proofs are deferred to the full version.
» Lemma 2. Fiz a constant ¢ > 1. For any three points u,v,w € X one has
d¥(u, w) < 2971 [d(u,v) + d?(v,w)] or equivalently (1)
d(u,v) > 27"V q9(u, w) — d?(v, w). (2)
For any numbers z,y € R>g and 0 <e <1,
(x +ey)? <29+ 2% - max{z?, y?}. (3)

» Lemma 3. Fiz a constant ¢ > 1. For any k-set T C X,

g std(T) < cd(T) <297 'k -st9(T)  and (4)

20k — 1)
k

Whenever we deal with remote-bipartition, we assume for simplicity that k is even — all

~bpY(T) < c¥(T) < (274 1) -bp!(T) (assuming that k is even). (5)

our results can easily be extended to the odd case, up to a change in constants by a factor
20(9), Therefore, the diversity functions correspond to the sum of (]2“), (k—1) and k?/4
terms, respectively for remote-clique, remote-star and remote-bipartition. Consequently, for
each function div? and for a given instance, we fix an optimal k-set denoted by O PTy;,« and
define its average optimal value Agiya as follows:

Aclq = Clq(OPTclq)/ 9 ;

Astq = Stq(OPTbtq)/(k’ — 1),

Appa 1= bpq(OPprq)/(k2/4).

Whenever the diversity function div? is clear from context, or for general statements on
all three functions, we use OPT and A as short-hands for O PTgjye and Agjve respectively.

» Remark. It directly follows from Lemma 3 that for a common metric space and common
parameters ¢ > 1 and k, the average optimal values Acje, Agta and Appe are all just a constant
away from each other (a constant 2°(?) that is independent of n and k). We heavily use this

property linking our three problems in the proof of our key structural result (Theorem 5).

A similar result does not extend to other common diversity maximization problems such
as remote-edge, remote-tree and remote-cycle, see [11] for definitions. This seems to be a
bottleneck for possibly adapting our approach to those problems.

33:5
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3 A PTAS for all three diversity problems

We now come to our main result which is the following theorem.

» Theorem 4. For any constant ¢ € R>1, the q-th power versions of the remote-clique,
remote-star and remote-bipartion problems admit PTASs over doubling metric spaces.

Let us fix a constant error parameter £ > 0. Our algorithm is based on grid rounding.
However, if we think about the case ¢ = 1, a direct implementation of this technique requires
a cell decomposition of radius O(e - A), which is manageable only if A is large enough with
respect to the diameter. Otherwise, the number of cells produced may be super-constant in
n. Hence, a difficult instance is one where A is very small, which intuitively occurs only in
the degenerate case where most of the input points are densely clustered in a small region,
with very few points outside of it. The algorithmic idea is thus to partition the input points
into a main cluster and a collection of outliers, and treat these sets differently.

3.1 Key structural result

We identify in any instance a main cluster containing most of the input points. This cluster
corresponds to a ball with a radius that is bounded with respect to A/, Thanks to the
nature of the diversity functions, we can guarantee that all outliers are contained in OPT.

» Theorem 5. Fiz a constant ¢ > 1. For each diversity function div? in {cl?,st?, bp?} and
a fized optimal k-set OPTgiva C X, there is a point zg = zo(div?) in OPTgive so that

X\ B(20, cdivi (Adiva)?) € OPTgsys,
where ccla = 2, cspa = 4, and cppe = 6.

Proof. For each function div? in {cl?, st?, bp?}, let zop = zo(div?) be the center of the
minimum weight spanning star in OPTgiye so that st?(OPTgiye) = ZuEOPTd;\,q di(20,u).
Consider a point s = s(div?) outside of the ball B(zp, cgiva(Adive)'/9), i.c.

dq(ZO, S) > (Cdivq)q - Agiya. (6)

Assume that s is not in OPTg;ye and define the k-set OPTy;,q := OPTgiya U {s}\ {20}. We
will show for each diversity function that div?(OPTy;,q) > div?(OPTgiya), thus contradicting
the optimality of OPTg;ye. To simplify notation in the remainder of the proof, we make the
corresponding function clear from context and remove the subscripts div?.

For remote-clique, we have

A?(OPT') = cl!(OPT) = Y [d(s,u) — d(z0,u)]

weOPT\{z0}

> > [279 (2, 5) — 2d(20, u)] (by (2))
uweOPT\{z0}
k—1 .

= di(zp,8) — 2 - st1(OPT) (by choice of zp)
k—1 2

> 57 (298) =2 4 cl’(OPT) (by (6) and (4))

=20k~ 1)A—2(k —1)A =0 (by def. of A).
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For remote-star, let z be the center of the minimum weight spanning star in OPT’ so
that st?(OPT') = d¥(z, s) + 2 ueOPT\ {2} 47(2,u). We claim that

d(zp,z) < 29A, (7)
as otherwise we obtain

st?(OPT) + st?(OPT’) = d%(z, s) + Z [d9(z0, u) + d9(z,u)]

we€OPT\{z0}
> Y iz, z) (by (1)
ueOPT\{z0}
k—1
> S (29A) = 2(k — 1)A =2 - st9(OPT) (negating (7)).

Inequality (7) implies in particular that z # s, hence z € OPT. Notice by the minimality of
the remote-star function that st?(OPT) < -qpp d?(2,u). By inequalities (2), (6) and (7),
we obtain

st?(OPT') — st(OPT) > > d'(z,u)— > d'(z,u) =d(z,5) — d’(z, %)
u€OPT u€OPT
> 270N a5, 5) — 2d9(z, 2)
> 270D (49A) — 2(29A) = 0.
For remote-bipartition, let OPT’ = L’ U R be the minimum weight bipartition of OPT’

so that bp?(OPT') = > ver rer A1(¢, 7). Assume without loss of generality that s € L'. We
claim that

29 +1
S d9(z0,7) < ;F kA, (8)
reR

as otherwise we obtain

k
4 > a M e

bp?(OPT) > 511 cl (OPT) > 501+ 1)St (OPT) (by (5) and (4))

k k

e q > q C
521+ 1) Z d¥(z0,u) > 202+ 1) Zd (z0,7) (as R C OPT)
ueOPT reR
q 2

: SR IiA bp?(OPT) (negating (8)).

T opitl) 2

Define L := L' U {z} \ {s} and notice that L U R = OPT. By the minimality of the
remote-bipartition function, bp?(OPT) <3, ; > . pd?(¢,r). Hence,

bp?(OPT') — bp?(OPT) > > > " d(f,r) = > > di(L,r)

(eEL' reER leLTER
—qusr — d?(z, )]
reER
> Z [27(Q71)dq(205 S) - 2dq(207r)] (by (2))
reR
- 1A (674) —2) " di(z (by (6))
2(] 1 0,7 Y
reR
>3k -A—(27+1Dk-A>0. (by (8))-
This completes the proof of the theorem. <

ISAAC 2018
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3.2 The algorithm

For any diversity function and a fixed optimal k-set, we refer to the ball B := B(zg, cA/9)
defined in Theorem 5 as the main cluster and to zy as the instance center. Our algorithm
consists of two phases: Finding the main cluster B and performing grid rounding on B. We
remark that for a well-dispersed instance, B may well contain all input points. In that case,
our algorithm amounts to a direct application of the grid rounding procedure.

Finding the main cluster

There are several possible ways to (approximately) find B. For simplicity, we present a naive
approach based on exhaustive search. A smarter technique is described in the full version,
where we provide a more refined algorithm for standard remote-clique.

Assuming without loss of generality that the instance diameter is 1, we obtain for each
diversity function the bounds 1/k% < A'/¢ < 1. Hence, by performing O(logk) trials, we
can “guess” the value of A9 up to a constant factor arbitrarily close to one, which means
that for any constant A > 0, we can find an estimate A’ so that (1 — M)A < A'/a < Al/,
Similarly, by trying out all n input points, we can “guess” the instance center zy. For each one
of these guesses, we perform the second phase (described in the next paragraph) and output
the best k-set found over all trials. To simplify our exposition, we assume in what follows
that we have found A9 and z (and thus B) exactly. Our analysis can be adapted to any
constant-factor estimation of A'/9, as it is enough to find a slightly larger ball B’ containing
B and to slightly change the value of constant c. More precisely, if we have an estimate
A’ so that (1 — N)AY? < A2 < A/ and we set ¢ := 1%, then B’ := B(z, A'Y/9) is
guaranteed to contain B and hence all points outside of B’ are in OPT.

Rounding the cluster

We now assume that we have found the main cluster B (see the previous paragraph). For a
constant ¢ > 0 to be defined later, with 1/§ = ©(2%/¢), we perform a cell decomposition of
radius A7 over B. As the radius of ball B is ¢A!/4, this decomposition produces at most
(4- gﬁ—i//Z)D = (4¢/8)P = O(29/€)P cells, i.e. constantly many cells. Let 7 : B — B be the
function that maps each point to its cell center. For notational convenience, we extend this
into a function 7 : X — X by applying the identity on X \ B =: B (and thinking of each
point in B as the center of its own cell). Finally, for any set T C X, we denote by #(T) the
multiset over set 7(T) having multiplicities |[7~1(u) N T| for each u € 7(T).

Next, we perform exhaustive search to find a k-set T' in X with the property that
divi(#(T)) > div?(#(OPT)). (9)

This can be done in polynomial time as follows: We try out all multisets in #(X) that a)
contain B and b) have cardinality k counting multiplicities. Then, we keep the multiset with
largest diversity and return any k-set T that is a pre-image of this multiset. Clearly, this
search considers only k©("/ 9" multisets and is bound to consider #(OPT).

As mentioned in the introduction, our algorithm assumes access to a polynomial-time
oracle that, for any k-set T', returns the value of div?(T) or a (1 + ¢)-factor estimate of it
which is sufficient for our purposes. The use of this estimate produces a corresponding small
deterioration in our final approximation guarantee, but for simplicity we ignore this in the
remainder. No exact efficient algorithm is known to compute bp?(T) for a given k-set T.
However, we provide a PTAS for this problem in the full version.
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3.3 Analysis

What is the approximation guarantee of our algorithm? By an application of inequality (3),
our cell decomposition gives the following guarantee for each pair of points.

» Lemma 6. Let m: X — X be a map such that d(u, w(u)) < SAY9 for each u in X. Then,
for any pair of points u,v € X,

|d?(u,v) — d(m(u), w(v))| < 29716 - (A + min{d?(u, v),d?(n(u), 7(v))}).
Proof. We consider two cases. If d(u,v) < d(w(u), 7(v)), we have by hypothesis

d?(m(w),w(v)) < [d(m(u),u) + d(u,v) + d(v, 7 (v))]* < [d(u,v) + 2590
d?

(u,v) + 29116 - max{A, d?(u,v)} < d¥(u,v) + 27715 - (A + d(u,v)),

IN A

where we used inequality (3) in the second line. This proves the claim.
Similarly, if d(7(u), 7(v)) < d(u,v), then

@, v) < d9(m(w), 7(v)) + 2716 - (A + di(m(w), 7(v)),
which again proves the claim. |

Lemma 6, together with the definition of A, implies the following result whose proof is
deferred to the full version.

» Lemma 7. Let m: X — X be a map such that d(u,n(u)) < SAY9 for each u in X. Then,
for each one of our three diversity functions and for each k-set T C X,

|div¥(T) — div?(#(T))| < 29716 - [div?(OPT) + div!(T)] < 29725 - div?(OPT).
Applying the previous lemma twice as well as inequality (9) once, we conclude that

divy(T) > dive(#(T)) — 27125 - div?(OPT) > div!(#(OPT)) — 29%25 - div?(OPT)
> divI(OPT) — 29735 - div?(OPT) = (1 — 29736) - div?(OPT).

Hence, in order to achieve an approximation factor of 1 — ¢, it suffices to select § := ¢/29+3.
The number of cells produced by the cell decomposition is thus bounded by (2¢7°¢/e)P =
0O(27/¢)P. This completes the analysis of our algorithm and the proof of Theorem 4.

4 Proof of NP-hardness

In this section, we present the first proof of NP-hardness for any of the three diversity
problems in fixed dimension (in fact, the only other diversity maximization problem known
to be NP-hard in a fixed-dimensional setting is remote-edge [30]). In particular, we prove
NP-hardness for the squared distances (¢ = 2) version of remote-clique in the case where all
input points are unit vectors in the Euclidean space R?, i.e. X C S2.

» Theorem 8. The squared distances version (q = 2) of the remote-clique problem is NP-hard
over the three-dimensional Euclidean space.

We remark that squared Euclidean distances over unit vectors correspond precisely to
the popular cosine distances, hence the case considered is highly relevant.

For a k-set T C S? with Euclidean distances, the function cl?(T') := Z{u,v}e(g) d?(u,v)
has very particular geometric properties related to the concept of centroid. The centroid of a
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Figure 1 Reduction from K-SUM to remote-clique with ¢ = 2, |X| = 2|M| and k = 2K.

k-set T is defined as zp := % > wer u- It represents the coordinate-wise average of the points
in 7. The following result greatly simplifies the computation of function cl?(7") in terms of
the centroid. We state it for a general dimension D even though we only use it for the case
D = 3. Its proof is deferred to the full version.

» Lemma 9. For a k-set T C SP~! C RP with centroid zp := + > e U,
AX(T) = k2 - (1— [|=r]?).

We present a reduction from the K-SUM problem which is known to be NP-hard: Given
a set M of integer numbers in the range [—t, ¢] for some threshold ¢ and a positive integer K,
determine whether there is a K-set S C M that sums to zero. Given such an instance of
K-SUM, we define the following instance X C S? of remote-clique with ¢ = 2, | X| = 2|M|
and k = 2K, see Figure 1. For each m € M, set m' := % and define

X = {€m = (—V1-m2m 0)": méM}U{rm = (V1-m2,0,m)": meM}.

Due to the scaling down by a factor of ﬁ, the y- and z-components of all points in X

are upper bounded by \/% in absolute value, while their z-components are lower bounded

by 4/1 — % in absolute value. The points are thus tightly clustered around one of the two

antipodal points +(1,0,0), and X is partitioned into a left cluster and a right cluster.

From Lemma 9, it is clear that solving this instance of remote-clique is equivalent to
finding the k-set whose centroid is closest to the origin. Hence, the proof of Theorem 8 is
complete once we show the following claim.

» Lemma 10. If M has a K-set S with zero sum, then X has a k-set T with centroid zp = 0.

Otherwise, for every k-set T'C X we have ||zp| > M%/Q

Proof. Suppose that M has a K-set S with zero sum and define the k-set T := {€,,, 7 :
m € S} C X. Recall that its centroid zz corresponds to the component-wise average of the
points in T, so we analyze these components separately. In z, all points of T on the left
cluster are zero and those on the right cluster have a zero sum, so (zr), = 0. In y, all points
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of T on the right cluster are zero and those on the left cluster have a zero sum, so (2r), = 0.
And in z, each point £,, of T on the left cluster is canceled out by its paired point 7, on the
right cluster, so (z1), = 0. Therefore, zr = 0.

Finally, we prove the contrapositive of the second statement, i.e. we assume that there
is a k-set T'C X with ||zp| < M%/Q The set T must contain exactly K points in the left
cluster and K points in the right cluster. Indeed, if 7" had at most K — 1 points in the left
cluster, then the z-component of its centroid would give

(orde 2 (6 = D1+ (K + D1 2 = =D+ (64D (1- %) =1-

and hence ||zr|| > |(21).] > 1— & > M{%ﬂ for K > 2 and t > 1, leading to a contradiction.
Let T = L U R be the corresponding (balanced) bipartition of T' given by the left and
right clusters. Each of L and R must correspond to a K-set of M with zero sum. Otherwise,

without loss of generality L corresponds to a K-set S of M with sum at least 1, but then

1

1 , 1
T K32 > m= NG
meS

(21)y = 9K m
mesS

and thus ||zr|| > |(21)y] > again a contradiction. This completes the proof. <

1
2tK3/2)
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