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Abstract
An instance of the maximum weight strongly stable matching problem with incomplete lists and
ties is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being a linearly
ordered list of ties, which are vertices equally good for a given vertex. We are also given a weight
function w on the set E. An edge (x, y) ∈ E \M is a blocking edge for M if by getting matched
to each other neither of the vertices x and y would become worse off and at least one of them
would become better off. A matching is strongly stable if there is no blocking edge with respect
to it. The goal is to compute a strongly stable matching of maximum weight with respect to w.

We give a polyhedral characterisation of the problem and prove that the strongly stable
matching polytope is integral. This result implies that the maximum weight strongly stable
matching problem can be solved in polynomial time. Thereby answering an open question by
Gusfield and Irving [6]. The main result of this paper is an efficient O(nm log (Wn)) time
algorithm for computing a maximum weight strongly stable matching, where we denote n = |V |,
m = |E| and W is a maximum weight of an edge in G. For small edge weights we show that the
problem can be solved in O(nm) time. Note that the fastest known algorithm for the unweighted
version of the problem has O(nm) runtime [9]. Our algorithm is based on the rotation structure
which was constructed for strongly stable matchings in [12].
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1 Introduction

An instance of the Stable marriage problem with ties and incomplete lists (smti)
is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being a linearly
ordered list of ties, which are vertices equally good for a given vertex. Ties are disjoint and
may contain one vertex. Let b1 and b2 be two vertices incident to a in G. Depending on
the preference of a one of the following holds. (1) a (strictly) prefers b1 to b2 - denoted as
b1 �a b2, (2) a is indifferent between b1 and b2 - denoted as b1 =a b2, (3) a (strictly) prefers
b2 to b1 - denoted as b1 ≺a b2. If a prefers b1 to b2 or is indifferent between them then we
say that a weakly prefers b1 to b2 and denote it as b1 �a b2.

An edge (a, b) ∈ E \M is a blocking edge with respect to M if by getting matched with
each other neither of the vertices a and b would become worse off and at least one of them
would become better off than in M . Formally an edge (a, b) ∈ E \M is blocking if either
a �b M(b) and b �a M(a) or a �b M(b) and b �a M(a) hold.

By M(a) we denote a partner of a in the matching M . If a is unmatched in M we abuse
the notation and write b �a M(a) for each (a, b) ∈ E. We assume that every vertex prefers
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42:2 An Algorithm for the Maximum Weight Strongly Stable Matching Problem

to be matched to its neightbour in G rather than to remain unmatched. We say that a
matching is strongly stable if there is no blocking edge with respect to it.

We study a version of the problem where besides the graph G and preference lists we
are also given a weight function w : E → N. We define the weight of a matching M to be
w(M) =

∑
e∈M w(e). The goal is to find a strongly stable matching M maximising w(M).

Motivation. The stable matching problem and its extensions have widespread application
to matching schemes [19]. One of the most known examples are the labor market for medical
interns and the college admissions market.

It is known that the deferred acceptance algorithm [5] calculates a stable matching optimal
for one side of the market. The extension to the weighted variant of the problem allows us to
define suitable objective functions and use them to obtain various optimal stable matchings.

The notion of strong stability allows us to prevent the following scenarios. Suppose that
agent a is matched to M(a) and a is indifferent between M(a) and b. Also assume that b
prefers a over M(b). The agent b to improve their situation may be inclined to use an action,
like bribery, to convince a to accept them. Since a would not get worse and b would get
better by getting matched to each other, they might undermine the current assignment.

Previous results. The variant of the problem with strict preferences known as the stable
marriage problem (smi) has been extensively studied in the literature. In their seminal paper
Gale and Shapley [5] showed that every instance of the problem admits a stable matching
and described an O(n+m) time algorithm for computing such a matching. Many structural
properties of the problem have been described over the years. In [6] Gusfield and Irving have
proven that the set of stable marriage solutions forms a distributive lattice. They also show
that even though the lattice can be of exponential size, it can be compactly represented as a
set of closed sets of a certain partial order on O(m) elements. The representation can be
built in O(m) time based on the notion of rotation.

Vande Vate [25] initiated the study of the stable marriage problem using the polyhedral
approach. He described a stable marriage polytope and showed its integrality. His description
has been extended by Rothblum [21] to the case of incomplete preference lists. In subsequent
papers several simpler proofs of the integrality of the stable marriage polytope have been
given [20], [24]. It has been also proven that any fractional solution in the stable marriage
polytope can be expressed as a convex combination of integral solutions [24]. These results
imply that the maximum weight stable marriage problem can be solved in polynomial time.

Several efficient algorithms for this problem have been developed over the years. Gusfield
and Irving [6] described an O(m2 logn) algorithm. The authors exploit the rotation structure
and reduce the problem to finding a maximum weight closed subset of a poset. This
classical problem can in turn be reduced to computing a maximum flow. The flow network
obtained from the reduction consists of O(m) nodes and O(m) edges. Gusfield and Irving
use O(nm logn) algorithm by Sleator and Tarjan [23] to solve the maximum flow problem
and obtain O(m2 logn) complexity. A faster maximum flow algorithm would lead to the
improvement in their algorithm. Feder [2] showed that if K = O((m/ log2 m)2) then the
weighted stable marriage problem can be solved in O(m

√
K) time and O(nm logK) for

arbitrary K where K is the weight of the solution. Note that algorithms by Gusfield and
Irving and by Feder assume a certain monotonicity condition on edge weights, however in
the case of bipartite graphs this condition can be dropped as we show later.
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The problem of computing a strongly stable matching in instances of smti has received a
significant attention in the literature. Irving [7] gave an O(n4) algorithm for the problem
under the assumption that the graph is complete and there is an equal number of men
and women. In [14] Manlove extended this algorithm to incomplete bipartite graphs. His
algorithm has O(m2) time complexity. Kavitha et al. [9] gave an O(nm) algorithm for the
problem. The structure of the set of solutions to the problem has been proven to be similar to
the structure of the case of no ties. In [15] Manlove has proven that the set of solutions forms
a distributive lattice. Recently, Kunysz et al. [12] gave an O(nm) algorithm for constructing
a compact representation of the lattice and generalized the notion of rotation to the strong
stability setting. To the best of our knowledge the weighted version of the strongly stable
matching problem has not been studied in the literature yet.

Our results. Gusfield and Irving [6] asked whether there is an LP representation of an
instance of smti under strong stability similar to the case of no ties. The problem was again
posed by Manlove [16] in his recent book. We solve this problem, adapting techniques used in
[24] to our setting. We prove that any fractional solution to the polytope can be expressed as
a convex combination of integral solutions. Thus the polytope is integral and the maximum
weight strongly stable matching problem can be solved in polynomial time.

A natural question is whether the rotation structure can be exploited to obtain a faster
algorithm. We answer this question affirmatively and give an O(nm log (Wn)) algorithm,
where W is the maximum weight of an edge. We also show that if W is sufficiently small then
the problem can be solved in O(nm) time. The technique of Gusfield and Irving cannot be
directly applied to our problem. In the setting without ties the authors base their algorithm
on the fact that there is a one-to-one correspondence between stable matchings and closed
sets of a certain poset of size O(m). In our problem a similar one-to-one correspondence exists
between equivalence classes of strongly stable matchings under a certain equivalence relation
and closed sets of a poset of size O(m). The correspondence allows us to represent exactly
one matching from each equivalence class based on a computation of so called maximal
sequence of strongly stable matchings. The main obstacle is that each equivalence class may
contain exponentially many matchings and there is a possibility that a represented matching
is not of maximum weight within its class. The primary novelty of this paper is an algorithm
for computing so called heavy maximal sequence of strongly stable matchings, which allows
us to represent a matching of maximum weight from each equivalence class. As a result
we reduce our problem to finding a maximum weight closed set of a poset, and solve this
problem using Feder algorithm [2].

Related work. Stable matchings have been extensively studied in non-bipartite instances
with strict preferences. Feder [1] has shown that in this setting the maximum weight stable
matching problem is NP -hard and he gave a 2-approximation algorithm for the problem.

In smti instances three different notions of stability can be defined depending on the
definition of a blocking edge. Namely weak, strong and super stability. Weakly stable
matchings can be of different sizes. Iwama et al. [8] have proven that the problem of finding
a maximum size weakly stable matching is NP -hard. Several approximation algorithms are
known for the problem [17], [10], [18]. It is also known that the weighted version of the
problem is NP -hard and it is not approximable within a factor n1−ε for any ε > 0 unless
P = NP [13]. The structure of stable matchings under the notion of super stability is well
understood. In [3] Fleiner et al. gave a reduction to the 2-SAT problem which results in fast
algorithms for a range of problems related to finding “optimal” super stable matchings.

ISAAC 2018
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2 Preliminaries

Let I be an instance of smti. Denote the set of all strongly stable matchings in I byM(I).
Let V (I) and E(I) be respectively sets of vertices and edges of the underlying bipartite
graph G = (A ∪B,E(I)) of I. As is customary we call the vertices of A and B respectively
men and women. We say that an instance I is solvable if there is a strongly stable matching
in G. We define the rank of w in v’s preference list, denoted by rank(v, w), to be 1 plus the
number of ties which are preferred to w by v. A matching is man-optimal if every man gets
the best partner among all his possible partners in any strongly stable matching.

I Theorem 1 ([9]). There is an O(nm) algorithm to determine a man-optimal strongly
stable matching of the given instance or report that no strongly stable matching exists.

2.1 Lattice Structure
In this subsection we give a brief overview of results related to the lattice structure ofM(I).
As we will see later the lattice can be of exponential size, however its representation of
polynomial size can be constructed. Such a representation is described in the next subsection.

I Theorem 2 (Rural Hospitals Theorem, [14]). In a given instance of smti, the same vertices
are matched in all strongly stable matchings.

We define an equivalence relation ∼ onM(I) as follows. For two strongly stable matchings
M and N , M ∼ N if and only if each man m is indifferent betweenM(m) and N(m). Denote
by [M ] the equivalence class containing M and denote by X the set of equivalence classes of
M(I) under ∼.

Strongly stable matchings belonging to the same equivalence class can be easily charac-
terised. For a given strongly stable matching M we define an auxiliary graph HM = (V ′, E′)
where V ′ is the set of vertices matched in M and E′ = {(a, b) ∈ E : a, b ∈ V ′ ∧ b =a

M(a) ∧ a =b M(b)}. The following lemma characterises the set [M ].

I Lemma 3 ([15]). Let M ∈ M(I). Then M ′ is a strongly stable matching such that
M ′ ∼M if and only if M ′ is a perfect matching in HM .

For two strongly stable matchings M and N we say that M dominates N and write
N �M if each man m weakly prefers M(m) to N(m). If M dominates N and there exists
a man m who strictly prefers M(m) to N(m) then we say that M strictly dominates N ,
denote it by N ≺M and we call N a successor of M . Next we define a partial order �∗ on
X . For any two equivalence classes [M ] and [N ], we define [M ] �∗ [N ] if and only if M � N .

Let M and N be two strongly stable matchings. Consider the symmetric difference
M ⊕N . Theorem 2 implies that this set contains only alternating cycles.

I Lemma 4 ([15]). Let M and N be two strongly stable matchings. Consider any alternating
cycle C of M ⊕ N . Let (m0, w0,m1, w1, ...,mk−1, wk−1) be the sequence of vertices of C
where mi are men and wi are women. Then there are only three possibilities:

(∀mi)wi =mi
wi+1 and (∀wi)mi =wi

mi−1

(∀mi)wi ≺mi
wi+1 and (∀wi)mi �wi

mi−1

(∀mi)wi �mi
wi+1 and (∀wi)mi ≺wi

mi−1

Subscripts are taken modulo k.
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Below we introduce two operations transforming pairs of strongly stable matchings into
other strongly stable matchings. Let M and N be two strongly stable matchings. Consider
any man m and his partners M(m) and N(m). By M ∧ N we denote the matching
such that if M(m) �m N(m) then (m,M(m)) ∈ M ∧ N and if M(m) ≺m N(m) then
(m,N(m)) ∈M∧N . Similarly byM∨N we denote the matching such that ifM(m) �m N(m)
then (m,N(m)) ∈M ∨N and if M(m) �m N(m) then (m,M(m)) ∈M ∨N .

It is proven in [15] that both M ∨ N and M ∧ N are strongly stable matchings, and
M,N �M ∨N and M,N �M ∧N . Operations ∨ and ∧ can be extended to the set X . For
[M ], [N ] ∈ X we simply define [M ] ∨ [N ] = [M ∨N ], [M ] ∧ [N ] = [M ∧N ].

A lattice is a partially ordered set in which every two elements a, b have a unique infimum
(denoted a ∨ b) and a unique supremum (denoted a ∧ b). A lattice L with operations
join ∨ and meet ∧ is distributive if for any three elements x, y, z of L the following holds:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

I Theorem 5 ([15]). The partial order (X ,�∗) with operations meet ∨ and join ∧ defined
above forms a distributive lattice.

2.2 Rotations

In this subsection we review known theorems about rotations in instances of smti under
strong stability. These results were previously given in [12] and [11].

Let M and N be two strongly stable matchings such that N ≺ M . We say that N is
a strict successor of M if and only if there is no strongly stable matching M ′ such that
N ≺ M ′ ≺ M . Let M0 be a man-optimal strongly stable matching, and let Mz be a
woman optimal strongly stable matching. We call a sequence (M0,M1, . . . ,Mz) such that
M0 �M1 � . . . �Mz and Mi+1 is a strict successor of Mi, a maximal sequence of strongly
stable matchings.

I Theorem 6 ([12]). There is an O(nm) time algorithm to compute a maximal sequence of
strongly stable matchings.

Let M and N be two strongly stable matchings such that N is a strict successor of
M . Consider some matchings M ′ ∈ [M ], N ′ ∈ [N ]. Note that from the definition of ∼ it
follows that for every vertex v we have rank(v,M(v))− rank(v,N(v)) = rank(v,M ′(v))−
rank(v,N ′(v)). In other words when we transform a matching from [M ] into some matching
from [N ], the change of v’s rank does not depend on the choice of matchings from equivalence
classes. This observation motivates the definition of rotation.

Let M and N be two strongly stable matchings such that N is a strict successor of M .
For any vertex v denote rv = rank(v,M(v)) and r′v = rank(v,N(v)). We say that a set of
triples ρ([M ], [N ]) = {(v, rv, r′v) : v ∈ V (I), rv 6= r′v} is a rotation transforming [M ] into [N ].

Let ρ be a rotation and M,N be two strongly stable matchings such that N is a strict
successor of M . We say that the set of alternating cycles M ⊕ N realizes a rotation ρ if
ρ = ρ([M ], [N ]). There are potentially many sets of cycles realizing a given rotation. A
rotation ρ is exposed in [M ] if ρ = ρ([M ], [N ]) for some N which is a strict successor of M .
We say that ρ = ρ([M ], [N ]) transforms M ′ into N ′ if M ′ ∈ [M ] and N ′ ∈ [N ].

I Theorem 7 ([12]). Let S = (M0,M1, . . . ,Mz) be a maximal sequence of strongly stable
matchings. For i ∈ {0, 1, . . . , z − 1} denote ρi = ρ([Mi], [Mi+1]). Then the set D(I) =
{ρ0, ρ1, . . . , ρz−1} does not depend on the choice of S, and ρi 6= ρj for i 6= j.

ISAAC 2018
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Note that given a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz)
we can easily compute rotations (ρ0, ρ1, . . . , ρz−1) where ρi = ρ([Mi], [Mi+1]). Moreover the
set CS(ρi) = Mi ⊕Mi+1 realizes ρi for each i.

I Definition 8. Let D(I) be the set of all rotations in I. We define the order ≺ on elements
of D(I) as follows. We say that a rotation ρ precedes rotation ρ′ and write ρ ≺ ρ′ if and
only if for every maximal sequence S = (M0,M1, . . . ,Mz) of strongly stable matchings we
have ρ = ρ([Mi], [Mi+1]) and ρ′ = ρ([Mj ], [Mj+1]) for some i, j such that i < j.

Let Z be a subset of D(I). We say that Z is a closed set if there is no ρ ∈ D(I) \Z such
that ρ ≺ ρ′ for some ρ′ ∈ Z. It turns out that each closed set corresponds to an equivalence
class of ∼. Given Z we can efficiently find an equivalence class corresponding to it.

Assume that we are given a maximal sequence S = (M0,M1, . . . ,Mz) of strongly stable
matchings, the set of rotations D(I), and for each rotation ρi = ρ([Mi], [Mi+1]) a set of cycles
CS(ρi) = Mi ⊕Mi+1 realizing it. Let Z = {ρa0 , ρa1 , . . . , ρak−1} be a closed set. We order its
elements so that there are no i, j such that i < j and ρai � ρaj . We define a sequence of
strongly stable matchings N0 = M0, Ni+1 = Ni ⊕ CS(ρai

). We denote fS(Z) = Nk. Note
that the sequence {Ni} depends on the ordering of elements of Z, however its last element
fS(Z) = M0 ⊕ CS(ρa0)⊕ CS(ρa1)⊕ . . .⊕ CS(ρak−1) is the same regardless of the ordering.

I Lemma 9. For each equivalence class [M ] there is a closed set X such that fS(X) ∈ [M ].
Let Z1 and Z2 be closed sets. Then Z1 6= Z2 implies that [fS(Z1)] 6= [fS(Z2)].

For each closed set Z we define gS(Z) = [fS(Z)]. It can be proven that gS does not
depend on the choice of S and that gS is a bijection between closed sets of D(I,≺) and the
set X . The above discussion is summarized in the following theorem.

I Theorem 10 ([12]). There is a one-to-one correspondence between the set X of equivalence
classes of ∼ and the closed sets of (D(I),≺).

It is important to note that given the function fS we can get one strongly stable matching
from each equivalence class and that depending on the choice of S these matchings may differ.
In other words if S 6= S ′ then it may happen that fS(Z) 6= fS′(Z) for some Z, however
regardless of the choice of S and S ′ we have [fS(Z)] = [fS′(Z)].

Note that from Definition 8 alone it is non-trivial how to efficiently construct the relation
≺ on D(I). Construction of an explicit representation of the relation ≺ would take Ω(m2)
time, because D(I) might have Ω(m) elements.

I Theorem 11 ([12]). There is a graph G′ = (D(I), E′) such that |E′| = O(m), and the
closed sets in G′ are exactly the same as the closed sets in the poset (D(I),≺). Such a graph
can be constructed in O(nm) time.

3 Strongly Stable Matching Polytope

Let us denote the set of men as A = {a1, a2, . . . , ap} and the set of women as B =
{b1, b2, . . . , bq}. Additionally by PSSM we denote a strongly stable matching polytope described
by the following set of inequalities.
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q∑
j=1

xi,j ≤ 1 ∀i(1 ≤ i ≤ p) (1)

p∑
i=1

xi,j ≤ 1 ∀j(1 ≤ j ≤ q) (2)

xi,j ≥ 0 ∀(i, j)(1 ≤ i ≤ p, 1 ≤ j ≤ q) (3)∑
k:bk�ai

bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:bk=ai
bj

xi,k ≥ 1 ∀(i, j)(ai, bj) ∈ E (4)

∑
k:bk�ai

bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:ak=bj
ai

xk,j ≥ 1 ∀(i, j)(ai, bj) ∈ E (5)

Inequalities (1), (2) and (3) are standard matching constraints. If x ∈ PSSM is an integral
solution, then constraints (4) and (5) for an edge (ai, bj) imply that (ai, bj) does not block
the matching associated with x. Thus integral solutions of PSSM are exactly strongly stable
matchings of G. We call such solutions strongly stable matching solutions.

Note that if there are no ties in the instance then the terms
∑
k:ak=bj

ai
xk,j and∑

k:bk=ai
bj
xi,k in (4) and (5) reduce to xi,j and the description of the polytope is identical

to the well known description of the stable marriage polytope (see [24]). The proof of the
next lemma is based on self-duality of the associated linear program and complementary
slackness conditions.

I Lemma 12. Let x ∈ PSSM be a feasible solution. Then for each 1 ≤ i ≤ p, 1 ≤ j ≤ q the
following hold:

xi,j > 0⇒
∑

k:bk�ai
bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:bk=ai
bj

xi,k = 1

xi,j > 0⇒
∑

k:bk�ai
bj

xi,k +
∑

k:ak�bj
ai

xk,j +
∑

k:ak=bj
ai

xk,j = 1

xi,j > 0⇒
q∑

k=1
xi,k = 1

xi,j > 0⇒
p∑
k=1

xk,j = 1

It is important to note that for each feasible solution x if xi,j > 0 then
∑
k:ak=bj

ai
xk,j =∑

k:bk=ai
bj
xi,k. Lemma 12 allows us to prove Theorem 13 which shows that each fractional

solution to PSSM can be expressed as a convex combination of strongly stable matchings. The
proof is constructive and given a fractional solution one can obtain matchings constituting
such a convex combination. Theorem 13 also implies that PSSM is integral.

I Theorem 13. The polytope PSSM is the convex hull of the strongly stable matching
solutions.

Proof. Let x ∈ PSSM be a feasible solution. For each man ai such that xi,j > 0 for some
j we perform the following construction. From Lemma 12 it follows that

∑q
k=1 xi,k = 1.

For ai we arrange all the xi,k for k = 1, 2, . . . , q in order of decreasing preference for ai. If
there are any ties we pick an arbitrary order amongst tied variables. We cover the interval

ISAAC 2018
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(0, 1] with smaller intervals (vi,k, vi,k + xi,k] where intervals are arranged in the same order
as variables xi,k. We slightly abuse the notation here and by xi,k we denote corresponding
interval (v, v + xi,k]. We denote such an arrangement as Xi. Similarly for each woman
bj such that xi,j > 0 for some i we construct an arrangement Yj . The difference is that
for women we order intervals in the increasing order of preference and we again order tied
variables arbitrarily. Let us by Ti(j) denote the interval spanned by all intervals xi,k such
that bk =ai

bj . Note that such intervals are next to each other in the arrangement. Similarly
by T ′j(i) we denote the interval spanned by xk,j such that ak =bj ai.

Let u be any real number belonging to (0, 1]. We first construct an auxiliary graph
Hu = (A′ ∪ B′, F ) as follows. Let A′ ⊆ A and B′ ⊆ B be sets of men and women for
which we created arrangements Xi, Yj , i.e., A′ = {ai : 1 ≤ i ≤ p ∧ ∃j(xi,j > 0)} and
B′ = {bj : 1 ≤ j ≤ q ∧ ∃i(xi,j > 0)}. For each man ai if u lies in the subinterval spanned by
xi,j , we add to F edges corresponding to variables in the tie Ti(j) in Xi. Obviously each man
is indifferent between all the edges incident to him. We now prove that this holds for women
as well. Note that from Lemma 12 it follows that if xi,j > 0 then intervals Ti(j) and T ′j(i)
coincide in arrangements Xi and Yj . Let us assume that there are two edges (ai, bj), (ak, bj)
in Hu. Then u lies in the subintervals spanned by Ti(j) and Tk(j). So in particular u lies in
the subintervals spanned by T ′j(i) and T ′j(k). This implies that T ′j(i) and T ′j(k) are identical
so we have ai =bj

ak. Hence each woman is indifferent between edges incident to her in Hu.
We are going to show that there exists a perfect matching in Hu. Let us first create a

variable y. For each i ∈ A′ we consider Xi, and assume that u lies in the subinterval spanned
by xi,j . For each k such that xi,k > 0 and bk =ai bj we set yi,k = xi,k

|Ti(j)| , where |Ti(j)| is
the length of Ti(j). From the definition we know that for each i we have

∑
j yi,j = 1 and

similarly for each j we have
∑
i yi,j = 1. Thus y is a fractional perfect matching in Hu and

there exists a perfect matching Mu in Hu (see [22] for the details of the construction).
We now show that Mu is strongly stable. Let ai ∈ A be a man matched in Mu to some

bj . Assume that bk �ai bj . In Xi the tie corresponding to xi,k lies to the left of the tie
corresponding to xi,j . Recall that the tie corresponding to xi,k coincides in Xi and Yk, thus
from the construction of Yk it follows that bk strictly prefers Mu(bk) to ai, hence (ai, bk)
does not block the matching. We can analogously prove that if there exists ak such that
ak �bj

ai then (ak, bj) does not block the matching. Thus Mu is strongly stable.
It remains to show how to express x as a convex combination of strongly stable matchings.

Note that as we move u from 0 to 1 graphs Hu change. We denote a sequence of graphs that
we can obtain in this way by H1, H2, . . . ,Hq and let (Ii, Ii+1] be an interval corresponding
to Hi for each i. From the discussion above we know that each of the graphs Hi admits
a perfect matching Mi. Let yi be the incidence vector of Mi. One can easily see that
x =

∑q−1
i=1 (Ii+1 − Ii)yi, thus the theorem holds. J

4 Maximum Weight Strongly Stable Matching

In this section we give an efficient algorithm for computing a maximum weight strongly
stable matching. We first show that given a matching M we can easily find a maximum
weight matching amongst the ones belonging to [M ].

I Definition 14. We say that a strongly stable matching M is heavy if for each strongly
stable matching M ′ such that M ′ ∈ [M ] we have w(M) ≥ w(M ′).

In order to characterise heavy matchings belonging to [M ] we first extend the definition
of HM (see Section 2) so that each edge is of the same weight as in G. The following lemma
is a direct consequence of Lemma 3 and allows us to find a heavy matching belonging to a
given equivalence class.
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I Lemma 15. Let M ∈ M(I). Then M ′ is a heavy strongly stable matching such that
M ′ ∼M if and only if M ′ is a maximum weight perfect matching in HM .

In order to solve the general problem we need the following definition.

I Definition 16. Let S = (M0,M1, . . . ,Mz) be a maximal sequence of strongly stable
matchings. We say that a sequence S is a heavy maximal sequence of strongly stable
matchings if Mi is heavy for each 0 ≤ i ≤ z.

It turns out that once a heavy maximal sequence of strongly stable matchings is computed,
we are able to efficiently find a heavy matching in each equivalence class.

I Theorem 17. Let S = (M0,M1, . . . ,Mz) be a heavy maximal sequence of strongly stable
matchings of I. Then for each closed subset of rotations X ⊆ D(I) the matching fS(X) is
heavy.

Before we prove Theorem 17 we need to introduce a few more definitions.
Let M and N be two strongly stable matchings such that N is a strict successor of

M . We denote by ρ = ρ([M ], [N ]) a rotation transforming [M ] into [N ] and by Vρ = {v :
∃(a, b)(v, a, b) ∈ ρ} we denote the set of all vertices that change their rank when ρ is applied.

Now we define two auxiliary graphs Kρ = (Vρ, Eρ) and Lρ = (Vρ, Fρ). The intuition
behind these two graphs is as follows. The graph Lρ contains all the edges of the original
graph that have both endpoints in Vρ and can potentially belong to matchings from [M ].
The graph Kρ fulfills a similar role for the class [N ]. The set Eρ is defined as Eρ =
{(a, b) ∈ E(I) : ∃(c, d)((a, c, rank(a, b)) ∈ ρ ∧ (b, d, rank(b, a)) ∈ ρ)}. Similarly we define
Fρ = {(a, b) ∈ E(I) : ∃(c, d)((a, rank(a, b), c) ∈ ρ ∧ (b, rank(b, a), d) ∈ ρ)}.

I Lemma 18. Let M , N be two strongly stable matchings such that N is a strict successor
of M . Assume that M is a heavy matching and ρ = ρ([M ], [N ]) is a rotation transforming
[M ] into [N ]. Additionally let X ∈ [N ].

Then X is a heavy matching if and only if the following hold:
1. Edges of the set X ∩ Eρ form a maximum weight perfect matching of Kρ.
2. w({(a, b) ∈M : a, b /∈ Vρ}) = w({(a, b) ∈ X : a, b /∈ Vρ}).

Note that given a heavy matching M we can obtain a heavy matching N ′ ∈ [N ]. In order
to do so we first compute a maximum weight perfect matching X in Kρ and then simply
take N ′ = M ∪X \ (M ∩ (Vρ × Vρ)). The above lemma implies that N ′ is heavy. We are
now ready to present the proof of Theorem 17.

Proof of Theorem 17. Let us assume by contradiction that there is a subset Y ∈ D(I) of
rotations such that fS(Y ) is not heavy. Let Y = {ρ1, ρ2, . . . , ρk}. We can assume without
the loss of generality that rotations of Y are ordered so that there are no i, j such that i < j

and ρi � ρj .
We first define a sequence N0, N1, . . . , Nk of strongly stable matchings. Let N0 = M0 and

Ni = Ni−1 ⊕ CS(ρi) for 0 < i ≤ k. From the initial assumptions we know that Nk = fS(Y ).
Moreover we can assume without the loss of generality that Nk is the first matching in the
sequence N0, N1, . . . , Nk which is not heavy. Let us denote ρ′ = ρ([Nk−1], [Nk]). From the
definition of S we know that there exists j such that ρ([Mj−1], [Mj ]) = ρ′.

From Lemma 18 we know that Mj ∩ Eρ′ is a maximum weight perfect matching in Kρ′ .
Additionally since Nk−1 is a heavy matching and Nk is not a heavy matching, we know that
at least one of conditions (1) and (2) of Lemma 18 does not hold for Nk−1 and Nk. We
are going to prove that (2) holds for Nk−1 and Nk, i.e., w({(a, b) ∈ Nk−1 : a, b /∈ Vρ}) =
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w({(a, b) ∈ Nk : a, b /∈ Vρ}). Recall that Nk−1 ⊕Nk = CS(ρ′) = Mj−1 ⊕Mj . Let C be any
cycle belonging to CS(ρ′) such that C ∩ (Vρ′ × Vρ′) = ∅ (Note Lemma 4 and the definition of
ρ′ imply that each cycle of CS(ρ′) is either contained in Vρ′ or disjoint with this set). Each
vertex of C is indifferent between edges of C since this cycle does not belong to ρ′. The
cycle C can be partitioned into two matchings C ∩Mj−1 and C ∩Mj . One can easily see
that we have w(C ∩Mj−1) = w(C ∩Mj) as otherwise either w(Mj−1 ⊕ C) > w(Mj−1) or
w(Mj ⊕ C) > w(Mj) would hold and this would contradict the assumption that Mj−1 and
Mj are both heavy matchings. This implies that w(Nk−1) = w(Nk−1 ⊕C) and the weight of
the matching does not change when cycles of CS(ρ′) which do not belong to the rotation are
applied, thus w({(a, b) ∈ Nk−1 : a, b /∈ Vρ}) = w({(a, b) ∈ Nk : a, b /∈ Vρ}) holds.

From Lemma 18 it follows that Nk ∩ Eρ′ is not a maximum weight perfect matching in
Kρ′ . Thus we have w(Mj ∩ Eρ′) > w(Nk ∩ Eρ′).

Let C be any cycle of CS(ρ′) belonging to the rotation ρ′. We will prove that C ∩Nk =
C ∩ Mj . To see this consider any man m belonging to C. Exactly two edges (m,w1),
(m,w2) of Nk−1 ⊕Nk are incident to m. Since m ∈ Vρ′ we can assume without the loss of
generality that w1 �m w2. From Nk−1 � Nk it follows that (m,w2) ∈ Nk. We can similarly
prove that (m,w2) ∈ Mj . This implies that C ∩Nk = C ∩Mj holds. Hence we also have
Mj ∩ Eρ′ = Nk ∩ Eρ′ - a contradiction with the fact that w(Mj ∩ Eρ′) > w(Nk ∩ Eρ′).

From the above discussion it follows that the lemma holds. J

Below we explain how a heavy maximum sequence of strongly stable matchings can be
exploited to solve the maximum weight strongly stable matching problem. It turns out that
given such a sequence, our problem can be reduced to computing a maximum weight closed
subset of a poset, similarly as in the case of no ties.

Let us consider the poset of rotations D(I,≺). We are going to assign a weight to each
element of D(I). Let S′ = (M ′0,M ′1, . . . ,M ′z) be a heavy maximal sequence of strongly stable
matchings. Assume that ρ′ ∈ D(I) is a rotation such that ρ′ = ρ([M ′i−1], [M ′i ]). Let us
denote wS′(ρ′) = w(M ′i)− w(M ′i−1). We first show that the weight of a rotation does not
depend on the choice of a maximal heavy sequence of strongly stable matchings.

I Lemma 19. Let S1, S2 be two heavy maximal sequences of strongly stable matchings and
let ρ ∈ D(I) be a rotation. Then wS1(ρ) = wS2(ρ).

From now on we are going to skip the subscript in the definition of w, i.e., we write
w(ρ) instead of wS′(ρ). We slightly abuse the notation here, but it should not cause any
confusion. From Theorem 10 each closed subset of rotations X ⊆ D(I) corresponds to a
certain equivalence class [M ] of ∼. It turns out that given weights of rotations belonging to
X we can determine the weight of a heavy strongly stable matching belonging to [M ].

I Lemma 20. Assume that M is a heavy matching and that M0 is a heavy man optimal
matching. Let XM ⊆ D(I) be a subset of rotations corresponding to [M ]. Then w(M) =
w(M0) +

∑
ρ∈XM

w(ρ).

The following theorem is a direct consequence of the above lemma.

I Theorem 21. Let M be a heavy matching and let XM ⊆ D(I) be a subset of rotations
corresponding to M . Then M is a maximum weight matching of I if and only if XM is a
maximum weight closed subset of D(I,≺) with respect to the weight function w.

A maximum weight closed subset of a poset is a classical problem. In [6] Gusfield and
Irving show a reduction to the minimum s-t cut in a graph with O(m) vertices and edges.
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Algorithm 1 For computing a heavy maximal sequence of strongly stable matchings.
Input: I - a solvable instance of smti

1: compute a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz)
2: compute a heavy matching M ′0 ∈ [M0]
3: for i = 1, 2, . . . , z do
4: let ρi = ρ([Mi−1], [Mi])
5: compute a maximum weight perfect matching Y in Kρi

6: let M ′i = M ′i−1 ∪ Y \ (M ′i−1 ∩ (Vρi
× Vρi

))
7: return (M ′0,M ′1, . . . ,M ′z)

This problem can be solved with a standard maximum flow computation, however in the
special case of posets obtained from instances of smti we can construct the minimum cut in
O(nm log (Wn)) time or in O(nm) time if W = O(min{n, m

log2 m
}).

To achieve these complexity bounds we use algorithms of Feder [2]. The author shows
that a maximum flow in an uncapacitated network with m edges and of explicit width
q can be found in O(qm log(K)) time. It can be shown that in our case we have q ≤ n

and log(K) ≤ log(Wn), thus the runtime is O(nm log (Wn)). Feder also shows that a
maximum flow of value K in an uncapacitated network with m edges can be found in
O(m

√
K +K log2(m)) time, implying an O(nm) algorithm if W = O(min{n, m

log2 m
}).

More details about algorithms of Feder, the reduction to the minimum cut problem and
missing proofs from this section are given in the full version of the paper.

It is important to note that none of the theorems in this section require any additional
assumptions about the weight function w.

5 Computing a Heavy Sequence

We first show a very simple O(mMWPM) algorithm for computing a heavy sequence where
MWPM is the time complexity of finding a maximum weight perfect matching. Then we
improve its time complexity to either O(nm logn) or O(nm +

√
nm log (Wn)) depending

on whether we use classical O(nm logn) algorithm [22] or O(
√
nm log (Wn)) algorithm by

Gabow and Tarjan [4] for finding a maximum weight perfect matching.
We first compute a maximal sequence of strongly stable matchings S = (M0,M1, . . . ,Mz).

Recall that from Lemma 15 given a strongly stable matching Mi we can find a heavy
matching M ′i ∈ [Mi] with a single maximum weight perfect matching computation. We
simply apply Lemma 15 to each of the matchings M0,M1, . . . ,Mz and obtain a heavy
maximal sequence of strongly stable matchingsM ′0,M ′1, . . . ,M ′z. Such an algorithm obviously
works in O(mMWPM) time.

Let us now discuss Algorithm 1. We first compute a maximal sequence of strongly stable
matchings S = (M0,M1, . . . ,Mz). Then we find a heavy matching M ′0 ∈ [M0] using Lemma
15. In the next step we construct graphs Kρi

where ρi = ρ([Mi], [Mi+1]) for each 0 ≤ i < z.
Then for each i we compute a maximum weight perfect matching of Kρi

. It can be easily
proven that each edge of G may appear only in one of the graphs Kρi

, thus the following
holds: |E(Kρ0)|+ |E(Kρ1)|+ . . .+ |E(Kρz−1)| = O(m) and overall it takes either O(nm logn)
or O(nm+

√
nm log (Wn)) time to compute all maximum weight matchings.

With the aid of Lemma 18 we can construct a heavy maximal sequence of strongly stable
matchings (M ′0,M ′1, . . . ,M ′z). In order to do this we simply compute a heavy matching M ′i
based on previously computed M ′i−1 and a maximum weight matching of Kρi

.
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