
Partitioning Vectors into Quadruples: Worst-Case
Analysis of a Matching-Based Algorithm

Annette M. C. Ficker
Faculty of Economics and Business, KU Leuven, Leuven, Belgium
Annette.Ficker@3ds.com

Thomas Erlebach1

Department of Informatics, University of Leicester, Leicester, United Kingdom
t.erlebach@leicester.ac.uk

https://orcid.org/0000-0002-4470-5868

Matúš Mihalák
Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht,
The Netherlands
matus.mihalak@maastrichtuniversity.nl

https://orcid.org/0000-0002-1898-607X

Frits C. R. Spieksma
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands
f.c.r.spieksma@tue.nl

https://orcid.org/0000-0002-2547-3782

Abstract

Consider a problem where 4k given vectors need to be partitioned into k clusters of four vectors
each. A cluster of four vectors is called a quad, and the cost of a quad is the sum of the component-
wise maxima of the four vectors in the quad. The problem is to partition the given 4k vectors into
k quads with minimum total cost. We analyze a straightforward matching-based algorithm and
prove that this algorithm is a 3

2 -approximation algorithm for this problem. We further analyze
the performance of this algorithm on a hierarchy of special cases of the problem and prove that,
in one particular case, the algorithm is a 5

4 -approximation algorithm. Our analysis is tight in all
cases except one.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms

Keywords and phrases approximation algorithm, matching, clustering problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.45

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1807.
01962.

1 Supported by a study leave granted by University of Leicester.

© Annette M.C. Ficker, Thomas Erlebach, Matúš Mihalák, and Frits C.R. Spieksma;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 45; pp. 45:1–45:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Annette.Ficker@3ds.com
mailto:t.erlebach@leicester.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:matus.mihalak@maastrichtuniversity.nl
https://orcid.org/0000-0002-1898-607X
mailto:f.c.r.spieksma@tue.nl
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.4230/LIPIcs.ISAAC.2018.45
https://arxiv.org/abs/1807.01962
https://arxiv.org/abs/1807.01962
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Partitioning Vectors into Quadruples

1 Introduction

Partitioning Vectors into Quadruples (PQ) is the problem of partitioning 4k given nonnegative
vectors v1, . . . , v4k, each consisting of n components, into k clusters, each containing exactly
four vectors. We refer to such a cluster of four vectors as a quadruple or a quad for short.
The cost of a quad Q = {vi1 , vi2 , vi3 , vi4} is the sum of the component-wise maxima of the
four vectors in the quad. The goal of the problem is to find a partition of the 4k vectors into
k quads such that the total cost of all quads is minimum.

We will analyze the following matching-based algorithm, called algorithm A, that finds a
solution to problem PQ by proceeding in two phases. In the first phase, algorithm A builds a
complete, edge-weighted graph G = (V,E) that has a node in V for each vector in the instance
(hence |V | = 4k). The weight of an edge equals the sum of the component-wise maxima of
the two vectors whose corresponding nodes span the edge. Now, algorithm A computes a
minimum-cost perfect matching M in the complete graph G, yielding 2k vector pairs. Let
p1, . . . , p2k be the 2k matched vector pairs corresponding to the computed matching M . In
the second phase, algorithm A builds a complete, edge-weighted graph G′ = (V ′, E′) that
has a node in V ′ for each vector pair pi found in the first phase (i = 1, . . . , 2k; |V ′| = 2k).
The weight of an edge equals the sum of the component-wise maxima of the two vector pairs
whose corresponding nodes span the edge. Now, algorithm A computes a minimum-cost
perfect matching M ′ in the complete graph G′. Each of the k edges of M ′ matches two
vector pairs, which naturally induces a quad. The k quads induced by the edges of M ′
constitute a solution to the problem. Clearly, A is a polynomial-time algorithm. A rigorous
description can be found in Section 2. It is not hard to see that algorithm A may fail to
find an optimum solution for an instance of the problem, i.e., A is not exact, and we are
interested in analyzing how far off algorithm A’s output can be from an optimum solution.

In this paper we show that A is a 3
2 -approximation algorithm for problem PQ, and that

this bound is tight. We also show that algorithm A has better approximation guarantees
for various special cases of problem PQ. In particular, consider an instance of PQ where
each vector has exactly two ones, while all other components are zero. In that case, each
vector can be seen as an edge in a graph where there is a node for each component. For the
case where this graph is a simple, connected graph, we prove that A is a 5

4 -approximation
algorithm. We give a precise overview of our results in Section 2.3.

The paper is organized as follows. The remainder of this section introduces some termi-
nology and discusses related work that motivates our research. Section 2 gives preliminaries
and states our results. In Section 3, we give the proof of the upper bound on the worst-case
ratio of algorithm A for the special case of problem PQ mentioned above; we also outline the
proofs for all other cases. Section 4 contains the lower bound result for the special case. We
conclude in Section 5. Detailed proofs of all our bounds on the worst-case ratio of algorithm
A for problem PQ and other generalizations of the special case can be found in [6].

1.1 Terminology and related literature
Worst-case analysis is a well-established tool to analyze the quality of solutions found
by heuristics. We refer to books by Vazirani [13] and Williamson and Shmoys [14] for a
thorough introduction to the field. We use the following, standard terminology that applies
to minimization problems. In the next definition, A(I) stands for the value of the solution to
instance I found by algorithm A, while OPT (I) stands for the value of an optimum solution
to instance I.

A.M.C. Ficker, T. Erlebach, M. Mihalák, and F. C. R. Spieksma 45:3

I Definition 1. Algorithm A is an α-approximation algorithm for a minimization problem
P if for every instance I of problem P: (i) algorithm A runs in polynomial time, and (ii)
A(I) ≤ α ·OPT (I). We refer to α as an upper bound on the worst-case ratio of algorithm A.

Different problems in various fields are related to problem PQ, and share some of its
characteristics. In addition, algorithm A can often be adjusted to work in a particular setting.
We now review related literature and provide a number of such examples.

Onn and Schulman [10] consider a problem where a given set of vectors in n-dimensional
space needs to be partitioned into a given number of clusters. The number of vectors in a
cluster (its size) is not specified, and in addition, they assume that the objective function,
which is to be maximized, is convex in the sum of the vectors in the same cluster. Their
framework contains many different problems with diverse applications, and they show, for
their setting, strongly-polynomial time, exact algorithms. This is in contrast to our problem
which is NP-hard (cf. Section 2.1).

Another problem, distinct from, yet related to, our problem, comes from computational
biology, and is described in Figuero et al. [7]. Here, a component of a vector is a 0 or a 1
or an “N”. In this setting neither the size of a cluster, nor the number of clusters is fixed;
the goal is to find a partition of the set of vectors into a minimum number of clusters while
satisfying the condition that a pair of vectors that is in the same cluster can only differ at a
component where at least one of them has the value N. They prove hardness of this problem,
and analyze the approximation behavior of heuristics for this problem.

Hochbaum and Levin [8] describe a problem in the design of optical networks that is
related to our special case where each vector is a {0, 1}-vector containing two ones. In essence,
their problem is to cover the edges of a given bipartite graph by a minimum number of
4-cycles. They observe that this problem is a special case of unweighted 4-set cover; they
give a (13

10 + ε)-approximation algorithm (using local search), and analyze the performance
of a greedy algorithm for a more general version of the problem. Our problem differs from
theirs in the sense that we deal with a partitioning problem, where there is a weight for
each set; in addition, our problem does not necessarily have a bipartite structure, nor do our
quads need to correspond to 4-cycles.

Our problem is also intimately related to a problem occurring in wafer-to-wafer yield
optimization (see, e.g., Reda et al. [11] for a description). Central in this application is the
production of so-called waferstacks, which can be seen as a set of superimposed wafers. In
our context, a wafer can be represented by a vector. A wafer consists of many dies, each of
which can be in two states: either functioning, i.e., good (which corresponds to a component
in the vector with value ‘0’), or malfunctioning, i.e., bad (which corresponds to a component
in the vector with value ’1’). The quality of a waferstack is measured by simply counting the
number of components that have only 0’s in the wafers contained in the waferstack. The
goal is to partition the set of wafers into waferstacks (clusters) such that total quality is
as high as possible. In this application, however, there are different types of wafers, and
a waferstack needs to consist of one wafer of each type. This would correspond to an a
priori given partition of the vectors. In addition, a typical waferstack consists in practice of
many, i.e., more than 4, wafers. Dokka et al. [4] analyze the worst-case behavior of different
algorithms that have as a common feature solving assignment problems repeatedly. The
case where there are three types of wafers, and the problem is to find waferstacks that are
triples containing one wafer of each type, is investigated in Dokka et al. [3]; for a particular
objective function, they describe a 4

3 -approximation algorithm.
A restricted, yet very relevant special case of our problem is one where the edges of a

given graph need to be partitioned into subsets each containing four edges (see Section 2 for a
precise description). Indeed, from a graph-theoretical perspective, there is quite some interest

ISAAC 2018

45:4 Partitioning Vectors into Quadruples

and literature in partitioning the edge-set of a graph, i.e., to find an edge-decomposition. In
fact, edge-decompositions where each cluster has prescribed size have already been studied
in e.g. Jünger et al. [9]. Thomassen [12] studies the existence of edge-decompositions into
paths of length 4, and Barat and Gerbner [1] even study edge-decompositions where each
cluster is isomorphic to a tree consisting of 4 edges.

2 Preliminaries

2.1 About problem PQ: special cases and complexity
We first observe that, for the analysis of algorithm A, we can restrict ourselves to instances of
problem PQ where the 4k vectors are {0, 1}-vectors. Notice that we call a vector nonnegative
when each of its entries is nonnegative.

I Lemma 2. Each instance of problem PQ with arbitrary (rational) nonnegative vectors can
be reduced to an instance of problem PQ with {0, 1}-vectors.

The argument in the proof of Lemma 2 (see [6]) implies that any worst-case ratio of
algorithm A shown to hold for instances consisting of {0, 1}-vectors holds in fact for arbitrary
rational nonnegative vectors. Clearly, this does not mean that algorithm A is restricted to
work on instances consisting of binary vectors; it works directly on the original input vectors.

Thus, from hereon we restrict ourselves, without loss of generality, to the case of binary
vectors. There are various special cases of PQ that are of independent interest. We will
describe the particular special case in brackets following ‘PQ’; we distinguish the following
special cases.

Problem PQ(#1 ∈ {1, 2}). The case where each vector contains either one or two 1’s; all
other components have value 0. It will turn out that, at least in terms of the worst-case
behavior of algorithm A, this special case displays the same behavior as the general
problem PQ.
Problem PQ(#1 = 2). The case where each binary vector contains exactly two 1’s.
Instances of this type can be represented by a multi-graph F with n nodes, each node
corresponding to a component of a vector. Each vector is then represented by an edge
spanning the two nodes that correspond to components with value 1. Of course, now a
quad can be seen as a set of four edges, and its cost equals the number of nodes in the
subgraph induced by these four edges.
Problem PQ(#1 = 2, distinct). The case where the graph F is a simple graph. Equiva-
lently, this means that each vector contains exactly two 1’s and the vectors are pairwise
distinct.
Problem PQ(#1 = 2, distinct, connected). We distinguish a further special case by
demanding that the graph F is also connected.

Clearly, the special cases are ordered, in the sense that each next one is a special case of
its predecessor.

Although our interest is on the worst-case behavior of algorithm A, it is relevant to
establish the computational complexity of problem PQ. It turns out (see [6] for the proof)
that even its special case PQ(#1 = 2, distinct, connected) is NP-hard. This fact shows that
no polynomial-time algorithm for problem PQ can be exact, unless P=NP.

I Theorem 3. PQ(#1 = 2, distinct, connected) is NP-hard.

A.M.C. Ficker, T. Erlebach, M. Mihalák, and F. C. R. Spieksma 45:5

2.2 About algorithm A: notation and properties
Recall that, in our analysis, we may assume that all vectors are {0, 1}-vectors. Let vi ∨ vj

denote the vector that is the component-wise maximum of the two vectors vi and vj , i.e.:

vi ∨ vj = (max(vi,1, vj,1),max(vi,2, vj,2), . . . ,max(vi,n, vj,n)).

Here, vi,` denotes the `-th component of vector vi (` = 1, . . . , n). We use |vi| to denote
the number of ones in vector vi (1 ≤ i ≤ 4k), i.e., |vi| =

∑n
`=1 vi,`. The cost of a quad

Q = {v1, v2, v3, v4} is then cost(Q) = |v1 ∨ v2 ∨ v3 ∨ v4|. For a pair p = {v1, v2} of vectors,
we set cost(p) = |v1 ∨ v2|.

For two vectors vi and vj , let sav(vi, vj) (the “savings” made by combining vi and vj)
denote the number of common ones in vi and vj , i.e.:

sav(vi, vj) =
n∑

`=1
min(vi,`, vj,`).

If p = {v1, v2} and p′ = {v3, v4} are pairs of vectors, we also write sav(p, p′) for sav(v1 ∨
v2, v3 ∨ v4).

The following observation concerning two {0, 1}-vectors u and v is immediate.

I Observation 4. |u|+ |v| = sav(u, v) + |u ∨ v|.

Let us revisit the description of Algorithm A. In the first phase, it computes a minimum-
cost perfect matching M in the complete graph G on the given 4k vectors, where the weight
of the edge between vectors vi and vj is set to |vi ∨ vj |. Let p1, . . . , p2k be the 2k matched
vector pairs corresponding to the computed matching M , and let cost(M) denote the cost of
the matching M . For 1 ≤ i ≤ 2k, let v1

i and v2
i be the two vectors in the vector pair pi, and

let v′i = v1
i ∨ v2

i .
In the second phase, Algorithm A computes a minimum-cost perfect matching M ′ in the

complete graph G′ on the 2k vector pairs, where the weight of the edge between pairs pi and
pj is set to |v′i ∨ v′j |. The quads corresponding to M ′ are output as a solution. Let cost(M ′)
be the cost of matching M ′.

I Observation 5. A(I) = cost(M ′) and cost(M ′) ≤ cost(M).

I Lemma 6. In the first phase of algorithm A, we can equivalently set the weight of the edge
between vi and vj to be −sav(vi, vj). Similarly, in the second phase of algorithm A, we can
set the weight of the edge between pi and pj to be −sav(v′i, v′j).

Let weight(M ′) denote the total savings of the perfect matching M ′, i.e., weight(M ′) =∑
(v′

i
,v′

j
)∈M ′ sav(v′i, v′j). Then, we have:

cost(M ′) = cost(M)−
∑

(v′
i
,v′

j
)∈M ′

sav(v′i, v′j) = cost(M)− weight(M ′). (1)

Observation 5 and Equation (1) imply:

I Corollary 7. A(I) = cost(M)− weight(M ′).

In view of this corollary, it follows that if we can show that cost(M) ≤ B and weight(M ′) ≥
S for some bounds B and S, we can conclude that A(I) ≤ B − S.

Two vectors u and v are identical when u = v, and a pair of identical vectors is called
an identical pair. In the following we show that among the set of minimum-cost perfect
matchings, there is one that contains a maximum number of identical pairs.

ISAAC 2018

45:6 Partitioning Vectors into Quadruples

Table 1 Overview of bounds on the worst-case ratio of algorithm A. Proofs of the bounds marked
with (*) are omitted due to space restrictions and can be found in [6].

Problem name Lower Bound Upper Bound
PQ 3

2
3
2 (*)

PQ(#1 ∈ {1, 2}) 3
2 (*) 3

2

PQ(#1 = 2) 4
3 (*) 4

3 (*)
PQ(#1 = 2, distinct) 5

4
13
10 (*)

PQ(#1 = 2, distinct, connected) 5
4 (Observation 16) 5

4 (Lemma 14)

I Lemma 8. There is a minimum-cost perfect matching in G, as well as in G′, that contains
a maximum number of identical pairs.

Thus, in the implementation of our algorithm A, we can first greedily match pairs of
identical vectors as long as they exist, and then use any standard minimum-cost perfect
matching algorithm to compute a perfect matching of the remaining vectors.

2.3 Our results
In this paper, we show the following bounds on the worst-case ratio of algorithm A (see
Table 1 for a summary).

I Theorem 9. Algorithm A is a 3
2 -approximation algorithm for problem PQ, and this bound

is tight.

I Theorem 10. Algorithm A is a 3
2 -approximation algorithm for problem PQ(#1 ∈ {1, 2}),

and this bound is tight.

I Theorem 11. Algorithm A is a 4
3 -approximation algorithm for problem PQ(#1 = 2), and

this bound is tight.

I Theorem 12. Algorithm A is a 13
10 -approximation algorithm for problem PQ(#1 =

2, distinct), and its worst-case ratio is at least 5
4 .

I Theorem 13. Algorithm A is a 5
4 -approximation algorithm for problem PQ(#1 = 2,

distinct, connected), and this bound is tight.

The proof of Theorem 13 is given in the next sections: the proof implying the upper
bound (Lemma 14) is in Section 3.1, and the instance leading to the lower bound result
(Observation 16) is in Section 4.1. In Section 3.2 we provide a high-level description of the
proofs leading to the other upper bound results. Full proofs of all upper and lower bounds
can be found in [6].

As an aside, we also give instances that show that the worst-case ratio of a natural
greedy algorithm is worse than the worst-case ratio of algorithm A, both for problem
PQ(#1 = 2, distinct, connected) (Section 4.2) and for problem PQ (see [6]).

3 Upper bound proofs

In this section, we prove that 5
4 is an upper bound for the worst-case ratio of algorithm A for

Problem PQ(#1 = 2, distinct, connected). The proofs for the upper bound 3
2 for the worst-

case ratio of Problem PQ, the upper bound 4
3 for the worst-case ratio of Problem PQ(#1 = 2),

and the upper bound 13
10 for the worst-case ratio of Problem PQ(#1 = 2, distinct) can be

found in [6]. An outline of our approach to derive these results is given in Section 3.2.

A.M.C. Ficker, T. Erlebach, M. Mihalák, and F. C. R. Spieksma 45:7

3.1 Approximation analysis for PQ(#1 = 2, distinct, connected)
I Lemma 14. Algorithm A is a 5

4 -approximation algorithm for PQ(#1 = 2, distinct,
connected).

Proof. Recall that an instance of PQ(#1 = 2, distinct, connected) can be viewed as a simple,
connected graph F with 4k edges, and that the cost of a quad is the number of vertices
spanned by the edges in the quad. Note that the cost of every optimal quad is at least 4 since
4 edges in a simple graph touch at least 4 different vertices. Hence, OPT ≥ 4k. Furthermore,
if we can show that there are z quads in the optimal solution that have cost at least 5, we
get that OPT ≥ 4(k − z) + 5z = 4k + z.

I Observation 15. cost(M) = 6k.

Proof. The line graph of a connected graph with an even number of edges admits a perfect
matching (Jünger et al. [9], Dong et al. [5]). Thus, the minimum-cost perfect matching M
pairs adjacent edges of the graph. Hence, every pair in M has cost 3, and thus the cost of
M is 2k · 3 = 6k. J

Let p1, . . . , p2k be the pairs corresponding to M . Consider the auxiliary graph H with
vertex set V ′ = {p1, . . . , p2k} in which an edge is added between pi and pj if pi and pj

have at least one common vertex (implying that matching pi to pj in the matching M ′ that
A computes in the second phase would create a saving of at least one). Note that H is
connected as F is connected. Let µ be the size of a maximum matching in H, 1 ≤ µ ≤ k.
Note that the maximum matching of H can be extended to a perfect matching of V ′ that
makes savings at least µ. Therefore, we have

A(I) ≤ 6k − µ.

If H contains a perfect matching, we have µ = k and hence A(I) ≤ 5k, implying that
A(I)/OPT (I) ≤ 5k/(4k) = 5

4 . It remains to consider the case µ < k.
If a maximum matching in H has size µ < k, the number of unmatched vertices is 2k−2µ.

We will show that the optimal solution then contains at least k−µ quads with cost at least 5,
and hence we have OPT (I) ≥ 4k + (k − µ) = 5k − µ. Therefore,

A(I)
OPT (I) ≤

6k − µ
5k − µ ≤

5
4 ,

where the last inequality follows because (6k − µ)/(5k − µ) is maximized if µ takes its
maximum possible value, µ = k.

It remains to show that the optimal solution contains at least k − µ quads with cost at
least 5. Recall that a maximum matching in H leaves 2k − 2µ vertices unmatched. By the
Tutte-Berge formula [2], the number of unmatched vertices of a maximum matching in H is
equal to

max
X⊆V ′

(odd(H −X)− |X|),

where odd(H−X) is the number of connected components of H−X that have an odd number
of vertices (H−X is the graph that results when the nodes in X, and their incident edges, are
removed from H). Hence, there exists a set X ⊆ V ′ such that odd(H −X)− |X| = 2k − 2µ.
Let d = odd(H −X), and let O1, O2, . . . , Od denote the d odd components of H −X. We
have

2k − 2µ = d− |X|.

ISAAC 2018

45:8 Partitioning Vectors into Quadruples

Figure 1 Quads with cost(Q) = 4.

For a subgraph S of H, let EF (S) denote the set of edges of F that are contained in the
edge pairs that form the vertex set of S (recall that the vertices of H are pairs of edges from
F). Note that |EF (Oi)| mod 4 = 2 for 1 ≤ i ≤ d as Oi contains an odd number of edge pairs.
Therefore, each EF (Oi) contains at least two edges that are contained in optimal quads that
do not only contain edges from EF (Oi). If such a quad contains three edges from EF (Oi),
note that there must be at least one other optimal quad that contains at most three edges
from EF (Oi) as (|EF (Oi)| − 3) mod 4 = 3.

For each optimal quad that contains one or two edges from EF (Oi), define these one or
two edges to be special edges. For each optimal quad that contains three edges from EF (Oi),
select one of these three edges arbitrarily and define it to be a special edge. There are at
least two special edges in each EF (Oi), 1 ≤ i ≤ d, and hence at least 2d special edges in
total. More precisely, we refer to these special edges as the edge-set SE, and partition it into
two subsets: those special edges occurring in a quad with cost 4 (the set SE4), and those
special edges occurring in a quad with cost at least 5 (the set SE5). Clearly:

2d ≤ |SE4|+ |SE5|. (2)

Consider a quad with cost 4 from the optimum solution. It consists of four edges of F .
Since F is a connected simple graph there are only two possible subgraphs induced by Q, as
depicted in Figure 1. These four edges can be in the sets EF (Oi) for some 1 ≤ i ≤ d, the
set EF (X), and the sets EF (C) for even components C of H −X. We now define types of
quads of cost 4 depending on how many edges are in which set.

Note that an edge from EF (Oi) cannot be incident to the same vertex as an edge from
EF (Oj) for j 6= i because otherwise H would contain an edge between Oi and Oj . Similarly,
an edge from EF (Oi) cannot be incident to the same vertex as an edge from EF (C) where
C is an even component of H −X. The only edges that can share endpoints with edges in
EF (Oi) are those in EF (X).

We tabulate the different types of quads with cost 4 in Table 2. Thus, a quad with cost 4
with a special edge must be of type 1, 2, 3, 4 or 5. For each of these types, the number of
edges from EF (X) is at least the number of special edges in the quad. Thus,

|EF (X)| ≥ |SE4|. (3)

Further, since |EF (X)| = 2|X|, it follows from (3) and (2) that |SE5| ≥ 2d− 2|X|. Thus,
the number of quads of cost at least 5 is at least 2d−2|X|

4 = 1
2 (d− |X|) = k − µ. J

3.2 Outline of approximation analysis for other variants of PQ
In this section we give a high-level description of the crucial arguments we need to prove
the three upper bound results for problems PQ, PQ(#1 = 2), and PQ(#1 = 2, distinct). As
mentioned before, the full proofs are omitted due to space restrictions and can be found
in [6].

To analyze algorithm A for PQ, we proceed along the following lines. By Corollary 7, we
have A(I) = cost(M)− weight(M ′). We fix an arbitrary optimal solution and define from

A.M.C. Ficker, T. Erlebach, M. Mihalák, and F. C. R. Spieksma 45:9

Table 2 Overview of different types of quads with cost 4, containing at least 1 edge from EF (Oi).
The entry “1,1” for quad type 3 means that there is one edge from EF (Oi) and one edge from
EF (Oi′) for i 6= i′.

Type of Number of edges Cost Number of
quad in EF (Oi) in EF (X) in EF (C) special edges
1 3 1 4 1
2 2 2 4 2
3 1, 1 2 4 2
4 1 2 1 4 1
5 1 3 4 1

it a perfect matching M̂ in G and an amount of savings, written in the form S1 + 1
2S2 for

reasons explained below, that algorithm A can definitely achieve in the second phase. As
cost(M) ≤ cost(M̂) and weight(M ′) ≥ S1 + 1

2S2, we have A(I) ≤ cost(M̂)− (S1 + 1
2S2).

The existence of the savings S1 + 1
2S2 is shown by constructing a subgraph H of G′ that

is bipartite, has maximum degree 2, and in which each edge connects two vertices of the
same degree. H consists of even-length cycles and isolated edges. Let S2 be the total savings
of the edges on cycles and S1 the total savings of isolated edges in H. It follows that H
contains a matching with total savings at least S1 + 1

2S2, and thus G′ contains a perfect
matching with at least those savings.

The matching M̂ and the graph H are determined by considering each quad Q of the
optimal solution separately. For each quad Q = {v1, v2, v3, v4} we define two vector pairs of
M̂ (by partitioning Q into two vector pairs in one of the three possible ways) and add to
H either one edge (that becomes an isolated edge), or two edges (that will eventually be
part of a cycle). For example, if the algorithm has matched p = {v1, v2}, p1 = {v3, v

′
3} and

p2 = {v4, v
′
4} in M , where v′3 and v′4 are vectors not in Q, the edges added to H are (p, p1)

and (p, p2). As another example, if the algorithm has matched pi = {vi, v
′
i} for 1 ≤ i ≤ 4, we

can show that we can add two disjoint edges of the form (pi, pj) for i 6= j to H in such a way
that H remains bipartite, and that there are two different ways of selecting these two edges.

In this way, each quad Q contributes an amount φQ to cost(M̂)− (S1 + 1
2S2) that consists

of the weight of the two edges it adds to M̂ minus the savings of the edge it adds to H (if it
adds only one isolated edge), or minus the savings of the two edges that it adds to H divided
by two (otherwise). By selecting the edges added to M̂ and H carefully among the valid
possibilities, we can show that H has the desired properties and φQ ≤ 3

2 cost(Q) holds for
each quad Q of the optimal solution. Since cost(M̂) − (S1 + 1

2S2) =
∑

Q φQ, this implies
A(I) ≤ 3

2 OPT (I), showing that A is a 3
2 -approximation algorithm for problem PQ.

Now consider problem PQ(#1 = 2). Recall that the 4k input vectors can be viewed as
edges in a multi-graph. Denote that multi-graph by F . To analyze algorithm A for PQ(#1 =
2), we follow the same approach as for PQ, but obtain the better bound φQ ≤ 4

3 cost(Q)
for each optimal quad Q by making a case distinction regarding the value of cost(Q) and
considering for each value of cost(Q) all possible subgraphs of F that the edges of Q can
induce. For example, if cost(Q) = 3, one of the cases is that the subgraph induced by Q is
a 3-cycle with one duplicate edge. Assume that the four edges are e1 = (1, 2), e2 = (1, 2),
e3 = (1, 3) and e4 = (2, 3). By Lemma 8, we can assume that algorithm A has matched e1
with e2 in the first phase. We select p1 = {e1, e2} and p2 = {e3, e4} to be part of matching
M̂ , with total cost 2 + 3 = 5. Consider the case that p2 was not matched by A in the

ISAAC 2018

45:10 Partitioning Vectors into Quadruples

1 2

3 4 5

6 7

Figure 2 An instance of PQ(#1 = 2, distinct, connected).

first phase. (This is the more difficult case.) Assume that A has matched p3 = {e3, x} and
p4 = {e4, y}, where x and y are edges not in Q. We add (p1, p3) and (p1, p4) to H. Each
of these edges has savings at least 1, and thus they contribute 2 to S2, or 1 to 1

2S2. We
have φQ ≤ 5− 1 = 4 = 4

3 cost(Q). As φQ ≤ 4
3 cost(Q) can be shown to hold also for all other

cases of quads Q in the optimal solution, algorithm A is a 4
3 -approximation algorithm for

PQ(#1 = 2).
For problem PQ(#1 = 2, distinct), the 4k input vectors can be viewed as the edges

of a simple graph. We follow the same approach as in the previous paragraph, but since
a simple graph with four edges spans at least 4 nodes, we only need to consider cases
where cost(Q) ≥ 4. This allows us to show that φQ ≤ 13

10 cost(Q) in all cases, implying that
algorithm A is a 13

10 -approximation algorithm for this problem.

4 Bad instances

In Section 4.1 we provide an instance that, together with the result in the previous section,
yields the tight bound claimed for problem PQ(#1 = 2, distinct, connected) in Theorem 13.
We illustrate in Section 4.2 that a natural greedy algorithm (that can be seen as an alternative
for algorithm A) has a worst-case ratio worse than the worst-case ratio of algorithm A. The
instances that provide lower bound results for problem PQ and the other special cases, as
announced in Table 1, can be found in [6].

4.1 An instance of PQ(#1 = 2, distinct, connected)
Consider the instance I consisting of the following 8 vectors v1, . . . , v8.

1
1
0
0
0
0
0


,



1
0
1
0
0
0
0


,



0
1
0
1
0
0
0


,



0
0
1
1
0
0
0


,



0
0
0
1
1
0
0


,



0
0
0
1
0
1
0


,



0
0
0
0
1
0
1


,



0
0
0
0
0
1
1


.

Since each vector contains two 1’s, the vectors are pairwise distinct, and the induced graph
is connected, this is an instance of PQ(#1 = 2}, distinct, connected). The instance can be
represented by the graph shown in Figure 2.

A.M.C. Ficker, T. Erlebach, M. Mihalák, and F. C. R. Spieksma 45:11

1 2 3 4

5

6 7 8 9

Figure 3 An instance of PQ(#1 = 2, distinct, connected).

The optimal solution for this instance has cost 8, with the two quads

{v1, v2, v3, v4} = {(1, 2), (1, 3), (2, 4), (3, 4)},

{v5, v6, v7, v8} = {(4, 5), (4, 6), (5, 7), (6, 7)}.

Algorithm A may, in the first phase, construct a matching with cost 12 consisting of the
following pairs:

{v1, v2} = {(1, 2), (1, 3)}, {v3, v5} = {(2, 4), (4, 5)},
{v4, v6} = {(3, 4), (4, 6)}, {v7, v8} = {(5, 7), (6, 7)}.

Any two pairs share at most 1 node. Hence, the total savings that can be made in the second
matching are at most 2, so by Corollary 7 we have A(I) ≥ 10. Hence, the worst-case ratio of
A is at least 10/8 = 5/4.

I Observation 16. For the instance depicted in Figure 2, cost(A) = 5
4OPT .

Theorem 13 now follows from Lemma 14 and Observation 16.

4.2 Bad instances for a natural greedy algorithm
In this section, we show that the worst-case ratio of a natural greedy algorithm is worse than
the worst-case ratio of algorithm A.

An informal description of the greedy algorithm for problem PQ (and its special cases) is
as follows: repeatedly select, among all possible quads, a quad with lowest cost, and remove
the vectors in the selected quad from the instance; stop when no more vectors remain.

Below we present an instance of problem PQ(#1 = 2, distinct, connected) showing that
the worst-case performance of this greedy algorithm is worse than the worst-case performance
of algorithm A. In [6] we present an instance of problem PQ with the same property.

An instance of PQ(#1 = 2, distinct, connected)

Consider the instance I of PQ(#1 = 2,distinct, connected) consisting of 8 vectors represented
in a graph shown in Figure 3 (recall that a vector in PQ(#1 = 2, distinct,connected)
corresponds to an edge in a simple graph).

An optimal solution for this instance has cost 10, with the two quads {(1, 2), (2, 5), (3, 5),
(3, 4)} and {(6, 7), (5, 7), (5, 8), (8, 9)}, each having cost 5. Since the instance features no
quad with cost 4, the greedy algorithm may first select the following quad with cost 5:
{(2, 5), (3, 5), (5, 7), (5, 8)}. Next, what remains is a quad of cost 8: {(1, 2), (3, 4), (6, 7), (8, 9)}.

Hence, the worst-case ratio of the greedy algorithm is at least 13/10, which is larger than
the 5/4 approximation guarantee for algorithm A.

ISAAC 2018

45:12 Partitioning Vectors into Quadruples

5 Conclusion

We have studied the worst-case behavior of a natural algorithm for partitioning a given set
of vectors into quadruples and shown the precise worst-case behavior of this algorithm for all
cases except PQ(#1 = 2, distinct), where a small gap remains. It is a natural question to
study an extension where we form clusters consisting of 2s vectors for some given integer
s ≥ 2. Indeed, if we form groups of size 2s by running s rounds of matching, the worst-case
ratio is easily seen to be bounded by 2s−1. To explain this, let M be the minimum-cost
matching of the first round. Then A(I) ≤ cost(M) and OPT (I) ≥ cost(M)/2s−1 as the cost
of the optimum (viewed as being constructed in s rounds) is at least cost(M) after the first
round and could then halve in each further round. Moreover, since we have shown that the
cost of the algorithm after two rounds is at most 3

2 times the optimal cost after two rounds,
we get a ratio of 3

2 × 2s−2 = 3× 2s−3. We leave the question of finding the worst-case ratio
for arbitrary s as an open problem.

References
1 J. Barát and D. Gerbner. Edge-Decomposition of Graphs into Copies of a Tree with Four

Edges. The Electronic Journal of Combinatorics, 21(1):1–55, 2014.
2 C. Berge. Sur le couplage maximum d’un graphe. Comptes Rendus de l’Académie des

Sciences, 247:258–259, 1958.
3 T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F.C.R. Spieksma. Approximation

algorithms for the wafer to wafer integration problem. In Proceedings of the 10th Interna-
tional Workshop on Approximation and Online Algorithms (WAOA 2012), volume 7846 of
LNCS, pages 286–297. Springer, 2013.

4 T. Dokka, Y. Crama, and F.C.R. Spieksma. Multi-dimensional vector assignment problems.
Discrete Optimization, 14:111–125, 2014.

5 F. Dong, W. Yan, and F. Zhang. On the number of perfect matchings of line graphs.
Discrete Applied Mathematics, 161(6):794–801, 2013.

6 Annette M. C. Ficker, Thomas Erlebach, Matús Mihalák, and Frits C. R. Spieksma. Par-
titioning Vectors into Quadruples: Worst-Case Analysis of a Matching-Based Algorithm.
CoRR, abs/1807.01962, 2018. arXiv:1807.01962.

7 A. Figueroa, A. Goldstein, T. Jiang, M. Kurowski, A. Lingas, and M. Persson. Approximate
clustering of fingerprint vectors with missing values. In Proceedings of the 2005 Australasian
Symposium on Theory of Computing (CATS 2005), volume 41 of CRPIT, pages 57–60.
Australian Computer Society, 2005.

8 D.S. Hochbaum and A. Levin. Covering the edges of bipartite graphs using K2,2 graphs.
Theoretical Computer Science, 411(1):1–9, 2010.

9 M. Jünger, G. Reinelt, and W.R. Pulleyblank. On partitioning the edges of graphs into
connected subgraphs. Journal of Graph Theory, 9(4):539–549, 1985.

10 S. Onn and L.J. Schulman. The vector partition problem for convex objective functions.
Mathematics of Operations Research, 26(3):583–590, 2001.

11 S. Reda, G. Smith, and L. Smith. Maximizing the functional yield of wafer-to-wafer 3-D in-
tegration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(9):1357–
1362, 2009.

12 C. Thomassen. Edge-decompositions of highly connected graphs into paths. In Abhandlun-
gen aus dem Mathematischen Seminar der Universität Hamburg, volume 78, pages 17–26.
Springer, 2008.

13 V.V. Vazirani. Approximation Algorithms. Springer-Verlag, Inc., New York, USA, 2001.
14 D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms. Cambridge

University Press, New York, USA, 1st edition, 2011.

http://arxiv.org/abs/1807.01962

	Introduction
	Terminology and related literature

	Preliminaries
	About problem PQ: special cases and complexity
	About algorithm A: notation and properties
	Our results

	Upper bound proofs
	Approximation analysis for PQ(1=2,distinct,connected)
	Outline of approximation analysis for other variants of PQ

	Bad instances
	An instance of PQ(1=2,distinct,connected)
	Bad instances for a natural greedy algorithm

	Conclusion

