
Deterministic Treasure Hunt in the Plane with
Angular Hints

Sébastien Bouchard
Sorbonne Université, CNRS, INRIA, LIP6, F-75005 Paris, France
sebastien.bouchard@lip6.fr

Yoann Dieudonné
Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
yoann.dieudonne@u-picardie.fr

Andrzej Pelc1

Département d’informatique, Université du Québec en Outaouais, Gatineau, Canada
pelc@uqo.ca

Franck Petit2

Sorbonne Université, CNRS, INRIA, LIP6, F-75005 Paris, France
franck.petit@lip6.fr

Abstract
A mobile agent equipped with a compass and a measure of length has to find an inert treasure in
the Euclidean plane. Both the agent and the treasure are modeled as points. In the beginning,
the agent is at a distance at most D > 0 from the treasure, but knows neither the distance nor any
bound on it. Finding the treasure means getting at distance at most 1 from it. The agent makes
a series of moves. Each of them consists in moving straight in a chosen direction at a chosen
distance. In the beginning and after each move the agent gets a hint consisting of a positive
angle smaller than 2π whose vertex is at the current position of the agent and within which the
treasure is contained. We investigate the problem of how these hints permit the agent to lower
the cost of finding the treasure, using a deterministic algorithm, where the cost is the worst-case
total length of the agent’s trajectory. It is well known that without any hint the optimal (worst
case) cost is Θ(D2). We show that if all angles given as hints are at most π, then the cost can
be lowered to O(D), which is optimal. If all angles are at most β, where β < 2π is a constant
unknown to the agent, then the cost is at most O(D2−ε), for some ε > 0. For both these positive
results we present deterministic algorithms achieving the above costs. Finally, if angles given as
hints can be arbitrary, smaller than 2π, then we show that cost Θ(D2) cannot be beaten.
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48:2 Deterministic Treasure Hunt in the Plane with Angular Hints

1 Introduction

Motivation. A tourist visiting an unknown town wants to find her way to the train station
or a skier lost on a slope wants to get back to the hotel. Luckily, there are many people
that can help. However, often they are not sure of the exact direction: when asked about
it, they make a vague gesture with the arm swinging around the direction to the target,
accompanying the hint with the words “somewhere there”. In fact, they show an angle
containing the target. Can such vague hints help the lost traveller to find the way to the
target? The aim of the present paper is to answer this question.

The model and problem formulation. A mobile agent equipped with a compass and a
measure of length has to find an inert treasure in the Euclidean plane. Both the agent and
the treasure are modeled as points. In the beginning, the agent is at a distance at most
D > 0 from the treasure, but knows neither the distance nor any bound on it. Finding the
treasure means getting at distance at most 1 from it. In applications, from such a distance
the treasure can be seen. The agent makes a series of moves. Each of them consists in
moving straight in a chosen direction at a chosen distance. In the beginning and after each
move the agent gets a hint consisting of a positive angle smaller than 2π whose vertex is at
the current position of the agent and within which the treasure is contained. We investigate
the problem of how these hints permit the agent to lower the cost of finding the treasure,
using a deterministic algorithm, where the cost is the worst-case total length of the agent’s
trajectory. It is well known that the optimal cost of treasure hunt without hints is Θ(D2).
(The algorithm of cost O(D2) is to trace a spiral with jump 1 starting at the initial position
of the agent, and the lower bound Ω(D2) follows from Proposition 9 which establishes this
lower bound even assuming arbitrarily large angles smaller than 2π given as hints.)

Our results. We show that if all angles given as hints are at most π, then the cost of
treasure hunt can be lowered to O(D), which is optimal. Our real challenge here is in the
fact that hints can be angles of size exactly π, in which case the design of a trajectory always
leading to the treasure, while being cost-efficient in terms of traveled distance, is far from
obvious.

If all angles are at most β, where β < 2π is a constant unknown to the agent, then we
prove that the cost is at most O(D2−ε), for some ε > 0. Finally, we show that arbitrary
angles smaller than 2π given as hints cannot be of significant help: using such hints the cost
Θ(D2) cannot be beaten.

For both our positive results we present deterministic algorithms achieving the above
costs. Both algorithms work in phases “assuming” that the treasure is contained in increasing
squares centered at the initial position of the agent. The common principle behind both
algorithms is to move the agent to strategically chosen points in the current square, depending
on previously obtained hints, and sometimes perform exhaustive search of small rectangles
from these points, in order to guarantee that the treasure is not there. This is done in such
a way that, in a given phase, obtained hints together with small rectangles exhaustively
searched, eliminate a sufficient area of the square assumed in the phase to eventually permit
finding the treasure.

In both algorithms, the points to which the agent travels and where it gets hints are
chosen in a natural way, although very differently in each of the algorithms. The main
difficulty is to prove that the distance travelled by the agent is within the promised cost. In
the case of the first algorithm, it is possible to cheaply exclude large areas not containing the



S. Bouchard, Y. Dieudonné, A. Pelc, and F. Petit 48:3

treasure, and thus find the treasure asymptotically optimally. For the second algorithm, the
agent eliminates smaller areas at each time, due to less precise hints, and thus finding the
treasure costs more.

Due to lack of space, the details of one of the algorithms and proofs of several results are
omitted and will appear in the journal version of the paper.

Related work. The problem of treasure hunt, i.e., searching for an inert target by one or
more mobile agents was investigated under many different scenarios. The environment where
the treasure is hidden may be a graph or a plane, and the search may be deterministic or
randomized. An early paper [4] showed that the best competitive ratio for deterministic
treasure hunt on a line is 9. In [8] the authors generalized this problem, considering a
model where, in addition to travel length, the cost includes a payment for every turn of the
agent. The book [2] surveys both the search for a fixed target and the related rendezvous
problem, where the target and the finder are both mobile and their role is symmetric: they
both cooperate to meet. This book is concerned mostly with randomized search strategies.
Randomized treasure hunt strategies for star search, where the target is on one of m rays, are
considered in [13]. In [17, 19] the authors study relations between the problems of treasure
hunt and rendezvous in graphs. The authors of [3] study the task of finding a fixed point
on the line and in the grid, and initiate the study of the task of searching for an unknown
line in the plane. This research is continued, e.g., in [12, 15]. In [18] the authors concentrate
on game-theoretic aspects of the situation where multiple selfish pursuers compete to find a
target, e.g., in a ring. The main result of [14] is an optimal algorithm to sweep a plane in
order to locate an unknown fixed target, where locating means to get the agent originating
at point O to a point P such that the target is in the segment OP . In [10] the authors
consider the generalization of the search problem in the plane to the case of several searchers.
Collective treasure hunt in the grid by several agents with bounded memory is investigated
in [9, 16]. In [5], treasure hunt with randomly faulty hints is considered in tree networks. By
contrast, the survey [7] and the book [6] consider pursuit-evasion games, mostly on graphs,
where pursuers try to catch a fugitive target trying to escape.

2 Preliminaries

Since for D ≤ 1 treasure hunt is solved immediately, in the sequel we assume D > 1. Since
the agent has a compass, it can establish an orthogonal coordinate system with point O
with coordinates (0, 0) at its starting position, the x-axis going East-West and the y-axis
going North-South. Lines parallel to the x-axis will be called horizontal, and lines parallel to
the y-axis will be called vertical. When the agent at a current point a decides to go to a
previously computed point b (using a straight line), we describe this move simply as “Go
to b”. A hint given to the agent currently located at point a is formally described as an
ordered pair (P1, P2) of half-lines originating at a such that the angle clockwise from P1 to
P2 (including P1 and P2) contains the treasure.

The line containing points A and B is denoted by (AB). A segment with extremities A
and B is denoted by [AB] and its length is denoted |AB|. Throughout the paper, a polygon
is defined as a closed polygon (i.e., together with the boundary). For a polygon S, we will
denote by B(S) (resp. I(S)) the boundary of S (resp. the interior of S, i.e., the set S \B(S)).
A rectangle is defined as a non-degenerate rectangle, i.e., with all sides of strictly positive
length. A rectangle with vertices A,B,C,D (in clockwise order) is denoted simply by ABCD.
A rectangle is straight if one of its sides is vertical.

ISAAC 2018



48:4 Deterministic Treasure Hunt in the Plane with Angular Hints

Algorithm 1 Procedure RectangleScan(R).
1: if k is odd then
2: for i = 0 to k − 1 step 2 do
3: Go to ai; Go to bi;
4: Go to bi+1; Go to ai+1
5: end for
6: Go to a
7: else
8: for i = 0 to k − 2 step 2 do
9: Go to ai; Go to bi;
10: Go to bi+1; Go to ai+1
11: end for
12: Go to ak; Go to bk
13: Go to a
14: end if

In our algorithms we use the following procedure RectangleScan(R) whose aim is to
traverse a closed rectangle R (composed of the boundary and interior) with known coordinates,
so that the agent initially situated at some point of R gets at distance at most 1 from every
point of it and returns to the starting point. We describe the procedure for a straight
rectangle whose vertical side is not shorter than the horizontal side. The modification of
the procedure for arbitrarily positioned rectangles is straightforward. Let the vertices of the
rectangle R be A, B, C and D, where A is the North-West vertex and the others are listed
clockwise. Let a be the point at which the agent starts the procedure.

The idea of the procedure is to go to vertex A, then make a snake-like movement in
which consecutive vertical segments are separated by a distance 1, and then go back to point
a. The agent ignores all hints gotten during the execution of the procedure. Suppose that
the horizontal side of R has length m and the vertical side has length n, with n ≥ m. Let
k = bmc. Let a0, a1, . . . , ak be points on the North horizontal side of the rectangle, such
that a0 = A and the distance between consecutive points is 1. Let b0, b1, . . . , bk be points
on the South horizontal side of the rectangle, such that b0 = D and the distance between
consecutive points is 1.

The pseudocode of procedure RectangleScan(R) is given in Algorithm 1.

I Proposition 1. For every point p of the rectangle R, the agent is at distance at most
1 from p at some time of the execution of Procedure RectangleScan(R). The cost of the
procedure is at most 5n ·max(m, 2), where n ≥ m are the lengths of the sides of the rectangle.

3 Angles at most π

In this section we consider the case when all angles given as hints are at most π. Without
loss of generality we can assume that they are all equal to π, completing any smaller angle to
π in an arbitrary way: this makes the situation even harder for the agent, as hints become
less precise. For such hints we show Algorithm TreasureHunt1 that finds the treasure at
cost O(D). This is of course optimal, as the treasure can be at any point at distance at most
D from the starting point of the agent.

For angles of size π, every hint is in fact a half-plane whose boundary line L contains the
current location of the agent. For simplicity, we will code such a hint as (L, right) or (L, left),
whenever the line L is not horizontal, depending on whether the indicated half-plane is to
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the right (i.e., East) or to the left (i.e., West) of L. For any non-horizontal line L this is
non-ambiguous. Likewise, when L is horizontal, we will code a hint as (L, up) or (L, down),
depending on whether the indicated half-plane is up (i.e., North) from L or down (i.e., South)
from L.

In view of the work on φ-self-approaching curves (cf. [1]) we first note that there is a big
difference of difficulty between obtaining our result in the case when angles given as hints are
strictly smaller than π and when they are at most π, as we assume. A φ-self-approaching
curve is a planar oriented curve such that, for each point B on the curve, the rest of the curve
lies inside a wedge of angle φ with apex in B. In [1], the authors prove the following property
of these curves: for every φ < π there exists a constant c(φ) such that the length of any
φ-self-approaching curve is at most c(φ) times the distance D between its endpoints. Hence,
for angles φ strictly smaller than π, our result could possibly be derived from the existing
literature: roughly speaking, the agent should follow a trajectory corresponding to any
φ-self-approaching curve to find the treasure at a cost linear in D. Even then, transforming
the continuous scenario of self-approaching curves to our discrete scenario presents some
difficulties. However, the crucial problem is this: the result of [1] holds only when φ < π

(the authors also emphasize that for each φ ≥ π, the property is false), and thus the above
derivation is no longer possible for our purpose when φ = π. Actually, this is the real difficulty
of our problem: handling angles equal to π, i.e., half-planes.

We further observe that a rather straightforward treasure hunt algorithm of cost
O(D logD), for hints being angles of size π, can be obtained using an immediate corol-
lary of a theorem proven in [11] by Grünbaum: each line passing through the centroid of a
convex polygon cuts the polygon into two convex polygons with areas differing by a factor of
at most 5

4 . Suppose for simplicity that D is known. Starting from the square of side length
2D, centered at the initial position of the agent, this permits to reduce the search area from
P to at most 5P

9 in a single move. Hence, after O(logD) moves, the search area is small
enough to be exhaustively searched by procedure RectangleScan at cost O(D). However,
the cost of each move during the reduction is not under control and can be only bounded
by a constant multiple of D, thus giving the total cost bound O(D logD). By contrast,
our algorithm controls both the remaining search area and the cost incurred in each move,
yielding the optimal cost O(D).

The high-level idea of our Algorithm TreasureHunt1 is the following. The agent acts in
phases j = 1, 2, 3, . . . where in each phase j the agent “supposes” that the treasure is in a
straight square Rj centered at the initial position of the agent, and of side length 2j . When
executing a phase j, the agent successively moves to distinct points with the aim of using
the hints at these points to narrow the search area that initially corresponds to Rj . In our
algorithm, this narrowing is made in such a way that the remaining search area is always
a straight rectangle. Often this straight rectangle is a strict superset of the intersection of
all hints that the agent was given previously. This would seem to be a waste, as we are
searching some areas that have been previously excluded. However, this loss is compensated
by the ease of searching description and subsequent analysis of the algorithm, due to the fact
that, at each stage, the search area is very regular.

During a phase, the agent proceeds to successive reductions of the search area by moving
to distinct locations, until it obtains a rectangular search area that is small enough to be
searched directly at low cost using procedure RectangleScan. In our algorithm, such a final
execution of RectangleScan in a phase is triggered as soon as the rectangle has a side smaller
than 4. If the treasure is not found by the end of this execution of procedure RectangleScan,
the agent learns that the treasure cannot be in the supposed straight square Rj and starts
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(b) A bad hint (L1, right).

Figure 1 In Figure (a) the agent received a good hint (L1, right) at the point p of a rectangular
search area ABCD. In Figure (b) it received a bad hint (L1, right) at the point p and hence it
moved to point p′ and got a hint (L2, left). In both figures the excluded half-planes are shaded.

the next phase from scratch by forgetting all previously received hints. This forgetting again
simplifies subsequent analysis. The algorithm terminates at the latest by the end of phase
j0 = dlog2 De+ 1, in which the supposed straight square Rj0 is large enough to contain the
treasure. Hence, if the cost of a phase j is linear in 2j , then the cost of the overall solution is
linear in the distance D.

In order to give the reader deeper insights in the reasons why our solution is valid and
has linear cost, we need to give more precise explanations on how the search area is reduced
during a given phase j ≥ 2 (when j = 1, the agent makes no reduction and directly scans
the small search area using procedure RectangleScan). Suppose that in phase j ≥ 2 the
agent is at the center p of a search area corresponding to a straight rectangle R, every side of
which has length between 4 and 2j (note that this is the case at the beginning of the phase),
and denote by A,B,C and D the vertices of R starting from the top left corner and going
clockwise. In order to reduce rectangle R, the agent uses the hint at point p. The obtained
hint denoted by (L1, x1) can be of two types: either a good hint or a bad hint. A good hint
is a hint whose line L1 divides one of the sides of R into two segments such that the length y
of the smaller one is at least 1. A bad hint is a hint that is not good.

If the received hint (L1, x1) is good, then the agent narrows the search area to a rectangle
R′ ⊂ R having the following three properties:
1. R \R′ does not contain the treasure.
2. The difference between the perimeters of R and R′ is 2y ≥ 2.
3. The distance from p to the center of R′ is exactly y

2 .

and then moves to the center of R′.
An illustration of such a reduction is depicted in Figure 1(a). The reduced search area

R′ is the rectangle ABde.
If the agent receives a bad hint, say (L1, right), at the center of a rectangular search area

R, we cannot apply the same method as the one used for a good hint: this is the reason for
the distinction between good and bad hints. If we applied the same method as before, we
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could obtain a rectangular search area R′ such that the difference between the perimeters of
R and R′ is at least 2y. However, in the context of a bad hint, the difference 2y may be very
small (even null), and hence there is no significant reduction of the search area. In order to
tackle this problem, when getting a bad hint at the center p of R, the agent moves to another
point p′ which is situated in the half-plane (L1, right) at distance 2 from p, perpendicularly
to L1. This point p′ is chosen in such a way that, regardless of what is the second hint, we
can ensure that two important properties described below are satisfied.

The first property is that by combining the two hints, the agent can decrease the search
area to a rectangle R′ ⊂ R whose perimeter is smaller by 2 compared to the perimeter of R, as
it is the case for a good hint, and such that R\R′ does not contain the treasure. This decrease
follows either directly from the pair of hints, or indirectly after having scanned some relatively
small rectangles using procedure RectangleScan. In the example depicted in Fig. 1 (b),
after getting the second hint (L2, left), the agent executes procedure RectangleScan(ss′d′d)
followed by RectangleScan(gg′h′h) and moves to the center of the new search area R′ that
is the rectangle Agpm. Note that the part of R′ not excluded by the two hints and by
the procedure RectangleScan executed in rectangles ss′d′d and gg′h′h is only the small
quadrilateral bounded by line L2 and the segments [AB], [s′d′] and [gh]. However, in order
to preserve the homogeneity of the process, we consider the entire new search area R′ which
is a straight rectangle whose perimeter is smaller by at least 2, compared to that from R.
This follows from the fact that no side of R has length smaller than 4. The agent finally
moves to the center of R′.

The second property is that all of this (i.e., the move from p to p′, the possible scans
of small rectangles and finally the move to the center of R′) is done at a cost linear in the
difference of perimeters of R and R′. The two properties together ensure that, even with
bad hints, the agent manages to reduce the search area in a significant way and at a small
cost. So, regardless of whether hints are good or not, we can show that the cost of phase j
is in O(2j) and the treasure is found during this phase if the initial square is large enough.
The difficulty of the solution is in showing that the moves prescribed by our algorithm in the
case of bad hints guarantee the two above properties, and thus ensure the correctness of the
algorithm and the cost linear in D.

I Theorem 2. Consider an agent A and a treasure located at distance at most D from the
initial position of A. By executing Algorithm TreasureHunt1, agent A finds the treasure
after having traveled a distance O(D).

4 Angles bounded by β < 2π

In this section we consider the case when all hints are angles upper-bounded by some constant
β < 2π, unknown to the agent. The main result of this section is Algorithm TreasureHunt2
whose cost is at most O(D2−ε), for some ε > 0. For a hint (P1, P2) we denote by (P1, P2)
the complement of (P1, P2).

4.1 High level idea
In Algorithm TreasureHunt2, similarly as in the previous algorithm, the agent acts in phases
j = 1, 2, 3, . . ., where in each phase j the agent “supposes” that the treasure is in the straight
square centered at its initial position and of side length 2j . The intended goal is to search
each supposed square at relatively low cost, and to ensure the discovery of the treasure by
the time the agent finishes the first phase for which the initial supposed square contains the
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48:8 Deterministic Treasure Hunt in the Plane with Angular Hints

treasure. However, the similarity with the previous solution ends there: indeed, the hints
that may now be less precise do not allow us to use the same strategy within a given phase.
Hence we adopt a different approach that we outline below and that uses the following notion
of tiling. Given a square S with side of length x > 0, Tiling(i) of S, for any non-negative
integer i, is the partition of square S into 4i squares with side of length x

2i . Each of these
squares, called tiles, is closed, i.e., contains its border, and hence neighboring tiles overlap in
the common border.

Let us consider a simpler situation in which the angle of every hint (P1, P2) is always
equal to the bound β: the general case, when the angles may vary while being at most β,
adds a level of technical complexity that is unnecessary to understand the intuition. In the
considered situation, the angle of each excluded zone (P1, P2) is always the same as well. The
following property holds in this case: there exists an integer iβ such that for every square S
and every hint (P1, P2) given at the center of S, at least one tile of Tiling(iβ) of S belongs
to the excluded zone (P1, P2).

In phase j, the agent performs k steps: we will indicate later how the value of k should
be chosen. At the beginning of the phase, the entire square S is white. In the first step, the
agent gets a hint (P1, P2) at the center of S. By the above property, we know that (P1, P2)
contains at least one tile of Tiling(iβ) of S, and we have the guarantee that such a tile
cannot contain the treasure. All points of all tiles included in (P1, P2) are painted black in
the first step. This operation does not require any move, as painting is performed in the
memory of the agent. As a result, at the end of the first step, each tile of Tiling(iβ) of S is
either black or white, in the following precise sense: a black tile is a tile all of whose points
are black, and a white tile is a tile all of whose interior points are white.

In the second step, the agent repeats the painting procedure at a finer level. More
precisely, the agent moves to the center of each white tile t of Tiling(iβ) of S. When it gets
a hint at the center of a white tile t, there is at least one tile of Tiling(iβ) of t that can be
excluded. As in the first step, all points of these excluded tiles are painted black. Note that a
tile of Tiling(iβ) of t is actually a tile of Tiling(2iβ) of S. Moreover, each tile of Tiling(iβ)
of S is made of exactly 4iβ tiles of Tiling(2iβ) of S. Hence, as depicted in Figure 2, the
property we obtain at the end of the second step is as follows: each tile of Tiling(2iβ) of S
is either black or white.

In the next steps, the agent applies a similar process at increasingly finer levels of tiling.
More precisely, in step 2 < s ≤ k, the agent moves to the center of each white tile of
Tiling((s − 1)iβ) of S and gets a hint that allows it to paint black at least one tile of
Tiling(s · iβ) of S. At the end of step s, each tile of Tiling(s · iβ) of S is either black or
white. We can show that at each step s the agent paints black at least 1

4iβ
th of the area of S

that is white at the beginning of step s.
After step k, each tile of Tiling(k · iβ) of S is either black or white. These steps permit

the agent to exclude some area without having to search it directly, while keeping some
regularity of the shape of the black area. The agent paints black a smaller area than excluded
by the hints but a more regular one. This regularity enables in turn the next process in
the area remaining white. Indeed, the agent subsequently executes a brute-force searching
that consists in moving to each white tile of Tiling(k · iβ) of S in order to scan it using the
procedure RectangleScan. If, after having scanned all the remaining white tiles, it has not
found the treasure, the agent repaints white all the square S and enters the next phase. Thus
we have the guarantee that the agent finds the treasure by the end of phase dlog2 De+ 1, i.e.,
a phase in which the initial supposed square is large enough to contain the treasure. The
question is: how much do we have to pay for all of this? In fact, the cost depends on the
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(a) At the end of a first step
for a hint (P1, P2).

(b) At the end of a second step.

Figure 2 White and black tiles at the end of the first and the second step of a phase, for square
S = ABCD and iβ = 2.

value that is assigned to k in each phase j. The value of k must be large enough so that the
distance travelled by the agent during the brute-force searching is relatively small. At the
same time, this value must be small enough so that the the distance travelled during the k
steps is not too large. A good trade-off can be reached when k = dlog4iβ

√
2je. Indeed, as

highlighted in the proof of correctness, it is due to this carefully chosen value of k that we
can beat the cost Θ(D2) necessary without hints, and get a complexity of O(D2−ε), where ε
is a positive real depending on iβ , and hence depending on the angle β.

4.2 Algorithm and analysis
In this subsection we describe our algorithm in detail, prove its correctness and analyze
its complexity. We can prove there exists a function index : (0, 2π) −→ N+ that has the
following properties, for any angle 0 < α < 2π.

1. For every square S and for every hint (P1, P2) of size 2π − α obtained at the center of S,
there exists a tile of Tiling(index(α)) of S included in (P1, P2).

2. For every angle α′ < α, we have index(α) ≤ index(α′).

In the sequel, the integer index(α) is called the index of α. Algorithm 2 gives a pseudo-
code of the main algorithm of this section. It uses the function Mosaic described in Algorithm
3 that is the key technical tool permitting the agent to reduce its search area. The agent
interrupts the execution of Algorithm 2 as soon as it gets at distance 1 from the treasure, at
which point it can “see” it and thus treasure hunt stops.

In the following, a square is called black if all its points are black. A square is called
white if all points of its interior are white. (In a white square, some points of its border may
be black).

I Lemma 3. For any positive integers i and k, consider an agent executing function
Mosaic(i,k) from its initial position O. Let S be the straight square centered at O with side
of length 2i. For every positive integer j ≤ dlog4k

√
2ie, at the end of the j-th execution of the

first loop (lines 5 to 20) in Mosaic(i,k), each tile of Tiling(jk) of S is either black or white.
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Algorithm 2 TreasureHunt2.
1: IndexNew := 1
2: i := 1
3: loop
4: repeat
5: IndexOld := IndexNew

6: IndexNew := Mosaic(i, IndexOld)
7: until IndexNew = IndexOld

8: i := i+ 1
9: end loop

I Lemma 4. For every positive integers i and k, a call to function Mosaic(i,k) has cost at

most 2i
3+log4k (4k−1)

2 +2k+8.

Let ψ be the index of 2π − β. The next proposition follows from the aforementioned
properties of the function index.

I Proposition 5. Let (P1, P2) be any hint. The index of (P1, P2) is at most ψ.

Using Lemmas 3, 4 and Proposition 5 we prove the final result of this section.

I Theorem 6. Consider an agent A and a treasure located at distance at most D from the
initial position of A. By executing Algorithm TreasureHunt2, agent A finds the treasure
after having traveled a distance in O(D2−ε), for some ε > 0.

Proof. We will use the following two claims.

I Claim 7. Let i ≥ 1 be an integer. The number of executions of the repeat loop in the i-th
execution of the external loop in Algorithm 2 is bounded by ψ.

I Claim 8. The distance traveled by the agent before variable i becomes equal to dlog2 De+ 2
in the execution of Algorithm 2 is O(D2−ε), where ε = 1

2 (1− log4ψ (4ψ − 1)) > 0.

Proof of the claim. In view of the fact that the returned value of every call to function
Mosaic in the execution of Algorithm 2 is at most ψ, it follows that in each call to function
Mosaic(∗, k) the parameter k is always at most ψ. Hence, in view of Claim 7 and Lemma 4,
as long as variable i does not reach the value dlog2 De+ 2, the agent traveled a distance at
most

ψ ·
dlog2 De+1∑

i=1
2i

3+log4ψ (4ψ−1)
2 +2ψ+8 (1)

≤ ψ2(dlog2 De+1)
3+log4ψ (4ψ−1)

2 +2ψ+9 (2)

≤ ψ22ψ+12+log4ψ (4ψ−1)2(log2 D)
3+log4ψ (4ψ−1)

2 (3)

= ψ22ψ+12+log4ψ (4ψ−1)D2− 1
2 (1−log4ψ (4ψ−1)) (4)

By (4), the total distance traveled by the agent executing Algorithm 2 is O(D2−ε) where
ε = 1

2 (1− log4ψ(4ψ − 1)). Since ψ is a positive integer, we have 0 < log4ψ(4ψ − 1) < 1 and
hence ε > 0. This ends the proof of the claim. J
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Algorithm 3 Function Mosaic(i,k).
1: O:= the initial position of the agent
2: S:= the straight square centered at O with sides of length 2i
3: Paint white all points of S
4: IndexMax:=k
5: for j = 1 to dlog4k

√
2ie do

6: for all tiles t of Tiling((j − 1)k) of S do
7: if t is white then
8: Go to the center of t
9: Let (P1, P2) be the obtained hint
10: k′:= index of (P1, P2)
11: if k′ > IndexMax then
12: IndexMax:=k′
13: end if
14: if IndexMax = k then
15: for all tiles t′ of Tiling(k) of t such that t′ ⊂ (P1, P2) do
16: Paint black all points of t′
17: end for
18: end if
19: end if
20: end for
21: end for
22: if IndexMax = k then
23: for all tiles t of Tiling(k(dlog4k

√
2ie)) of S do

24: if t is white then
25: Go to the center of t
26: Execute RectangleScan(t)
27: end if
28: end for
29: end if
30: Go to O
31: return IndexMax

Assume that the theorem is false. As long as variable i does not reach dlog2 De + 2,
the agent cannot find the treasure, as this would contradict Claim 8. Thus, in view of
Claim 7, before the time τ when variable i reaches dlog2 De+ 2 the treasure is not found.
By Algorithm 2, this implies that during the last call to function Mosaic before time τ ,
the function returns a value that is equal to its second input parameter. This implies that
during this call, the agent has executed lines 23 to 28 of Algorithm 3: more precisely, there is
some integer x such that from each white tile t of Tiling(x) of the straight square S that is
centered at the initial position of the agent and that has sides of length 2dlog2 De+1, the agent
has executed function RectangleScan(t). Hence, at the end of the execution of lines 23
to 28, the agent has seen all points of each white tile of Tiling(x) of S. Moreover, in view
of Lemma 3, we know that the tiles that are not white, in Tiling(x) of S, are necessarily
black. Given a black tile σ of Tiling(x), each point of σ is black, which, in view of lines 15
to 17 of Algorithm 3, implies that σ cannot contain the treasure. Since square S necessarily
contains the treasure, it follows that the agent must find the treasure by the end of the last
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execution of function Mosaic before time τ . As a consequence, the agent stops the execution
of Algorithm 2 before assigning dlog2 De+ 2 to variable i and thus, we get a contradiction
with the definition of time τ , which proves the theorem. J

5 Arbitrary angles

We finally observe that if hints can be arbitrary angles smaller than 2π then the treasure
hunt cost Θ(D2) cannot be improved in the worst case.

I Proposition 9. If hints can be arbitrary angles smaller than 2π then the optimal cost of
treasure hunt for a treasure at distance at most D from the starting point of the agent is
Ω(D2).

6 Conclusion

For hints that are angles at most π we gave a treasure hunt algorithm with optimal cost
linear in D. For larger angles we showed a separation between the case where angles are
bounded away from 2π, when we designed an algorithm with cost strictly subquadratic in D,
and the case where angles have arbitrary values smaller than 2π, when we showed a quadratic
lower bound on the cost. The optimal cost of treasure hunt with large angles bounded away
from 2π remains open. In particular, the following questions seem intriguing. Is the optimal
cost linear in D in this case, or is it possible to prove a super-linear lower bound on it? Does
the order of magnitude of this optimal cost depend on the bound π < β < 2π on the angles
given as hints?
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