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—— Abstract
In this paper, we consider the quickest pair-visibility problem in polygonal domains. Given two
points in a polygonal domain with h holes of total complexity n, we want to minimize the
maximum distance that the two points travel in order to see each other in the polygonal domain.
We present an O(nlog? n+h? log* h)-time algorithm for this problem. We show that this running
time is almost optimal unless the 3SUM problem can be solved in O(n%~¢) time for some ¢ > 0.
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1 Introduction

Consider two mobile robots under the line-of-sight communication model [8, 15]. In this model,
the two robots are required to be visible to each other in order to establish communication.
In the case that they are not visible to each other, we can move one of them to see the other.
Motivated by this model, the quickest visibility problem was introduced. In this problem,
we are given a starting point s and a target point ¢ amidst polygonal obstacles in the plane,
and the objective is to find a shortest collision-free path for s to move along to see t. This
problem can be solved in O(nlogn) time, where n is the total complexity of the polygonal
obstacles, by applying the continuous Dijkstra paradigm [10] as mentioned in [2].

Arkin et al. [2] studied the query variant of this problem. More precisely, given h polygonal
obstacles (holes) of total complexity n and a target point, they presented a data structure
of size O(n22°‘(") logn) so that the length of a shortest path for a query starting point to
move along to see the target point can be computed in O(K log® n) time, where K is the size
of the visibility polygon from the target point and «(n) is the inverse Ackermann function.
Recently, it is improved by Wang [14]. His data structure has size of O(nlogh + h?) and
supports O(hlog hlogn) query time.

In this paper, we study the quickest pair-visibility problem in polygonal domains. In
this problem, both starting and target points move to see each other. Precisely, given h
polygonal obstacles of total complexity n and two points disjoint from the obstacles, we want
to compute the minimum distance that the two points travel in order to see each other. Here,
there are two variants of the problem, one for minimizing the maximum of the two travel
distances and one for minimizing the sum of the two travel distances.

Wynters and Mitchell studied this problem [15] for both variants. For the min-max
variant, they gave an O(n3 logn)-time algorithm using O(n?) space. For the min-sum variant,
they gave an O(nm)-time algorithm using O(m) space, where m is the number of edges in
the visibility graph of the polygonal obstacles. Note that m is ©(n?) in the worst case. Very
recently, Ahn et al. [1] considered a simpler version of the quickest pair-visibility problem
in which two points are given in a simple polygon with no holes, and presented linear-time
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Figure 1 The quickest paths for s and ¢ to see each other are ss’ and tt'. Here, s’ and ¢’ are on a
non-vertical line containing three input points.

algorithms for both the min-max and the min-sum variants of the problem. They also
considered a query version of the problem for the min-max variant and presented a data
structure supporting O(log® n) query time. Both the construction time and the space of the
data structure are linear in the input size.

Our results. In this paper, we study the min-max variant of the quickest pair-visibility
problem in a polygonal domain with h holes of total complexity n. We present an algorithm
for this problem which takes O(nlog”n 4 h?log*h) time using O(nlogn) space. This
substantially improves the algorithm by Wynters and Mitchell, which takes O(n®logn) time
using O(n?) space. Moreover, the running time of our algorithm is almost optimal unless the
3SUM problem can be solved in strongly subquadratic time. More specifically, the following
lemma holds.

» Lemma 1. Any algorithm for the min-max variant of the quickest pair-visibility problem
in a polygonal domain with h holes of total complexity n takes Q(n + h?>~¢) time for any
e > 0 unless the 3SUM problem can be solved in O(N?~¢), where N is the size of input for
the 3sUM problem.

Proof. We prove the lemma by introducing a reduction from a geometric version of the 3suM
problem. Given a set of n points with integer coordinates on three vertical lines z = 0,x = 1
and = = 2, the goal of the geometric version of the 3suM problem is to determine whether
there exists a non-vertical line containing three of the points. This problem is a 3suM-hard
problem in the sense that there is an O(n)-time reduction from the 3suM problem to the
geometric version of the 3suM problem [7].

Given an instance of the geometric version of the 3SUM problem, we construct a polygonal
domain as follows. Let S; be the set of input points contained in the vertical line ¢; : © = i for
i =0,1,2. See Figure 1. Then ¥¢; \ S; consists of O(n) connected components (line segments
or rays) in the plane. We consider each connected component as a hole of the polygonal
domain. Let g be the line containing the topmost point of Sy and the bottommost point
of Ss. Similarly, let ¢’ be the line containing the topmost point of S5 and the bottommost
point of Sy. We put s and t lying to the left of ¢y and to the right of /5, respectively,
so that max{dg(s, g),dr(s,q9),dr(t,g9),dr(t,q")} < min{dg(s,¥),dr(t,{2)}, where dg(p, )
denotes the minimum Euclidean distance between a point p and a point in a line . Given g
and ¢’, such two points can be found in constant time.

Now consider the minimum of the maximum distance for s and ¢ to travel in order to
see each other. It is less than the minimum of d(s,#y) and d(¢,¢3) if and only if there is
a non-vertical line containing three points of Sy U S1 U So. Therefore, if we can solve the
quickest pair-visibility problem in O(n + h?~¢) for some ¢ > 0, we can solve the geometric
version of the 3sUM problem in O(N?~¢) time, which proves the lemma. |
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2 Preliminaries

Consider h disjoint simple polygons in the plane of total complexity n. Each polygon is
considered as an open set. We let P be the set of the points in the plane not contained in
any of the h polygons. Here we call P a polygonal domain and each polygon a hole of P. We
say that two points a and b in P are wisible to each other if the line segment ab connecting a
and b is contained in P. For a set A C R?, we use A and int(A) to denote the boundary
and interior of A, respectively. We say a curve - is convez if the Euclidean convex hull of ~
contains 7 on its boundary.

2.1 Geodesic Distance and Geodesic Disks

For two points a and b in P, there might be more than one shortest path connecting a and b
in P. We use d(a,b) to denote the length of a shortest path between a and b contained in
‘P, which we call the geodesic distance between a and b. The shortest path map of a point
x, denoted by spM(z), is the decomposition of P into cells such that for all points p within
a cell the shortest paths between x and p have the same combinatorial structure. It has

complexity of O(n), and it can be constructed in O(nlogn) time using O(nlogn) space [10].

Given a point = € P and a value r > 0, the geodesic disk of radius r centered at =, denoted
by D,(r), is defined as the set of all points in P whose geodesic distances from z are at most
r. While D,(r) is connected, its boundary is not necessarily connected. The boundary of
D.(r) consists of line segments and circular arcs. We call the endpoints of each maximal line
segment and circular arc vertices of D, (r). Consider the boundary of D,(r) excluding the
boundaries of all holes of P and the reflex vertices of D,(r). Each connected component is
the union of circular arcs of D,(r). We call each connected component a geodesic spiral of
D.(r). Given sPM(x), we can construct D,(r) for a fixed r > 0 in O(n) time by considering
all cells of sPM(z) one by one.

2.2 Extended Corridor Structure

Our algorithm uses the extended corridor structure of a domain [3, 4, 11]. A hole in the
domain we will consider in this paper is either a simple polygon (a hole of P) or a splinegon

which is a part of D4(r) and Dy(r) for two input points s and ¢ in P and a fixed value r > 0.

Each hole is considered as an open set. A splinegon is defined as a set obtained from a simple
polygon P by replacing each edge e of P with a curved edge ¢’ joining the endpoints of e
such that the region bounded by e and e’ is convex [6]. Thus a simple polygon itself is also a
splinegon. A splinegon is said to be simple if an edge intersects another edge only at their
common endpoint. A domain having splinegons as its holes is called a splinegon domain.

Chen and Wang [3] studied a decomposition of a splinegon domain Q which is called
the extended corridor structure. They first considered a bounded degree decomposition of
Q, which is a subdivision of Q into cells each with at most four sides and with at most
three neighboring cells. They presented an O(n + h log!™e h)-time algorithm for computing
a bounded degree decomposition of Q into O(n) cells for any € > 0, where h is the number
of the splinegons in the domain and n is the total complexity of the splinegons. Such a
subdivision is achieved by adding O(n) nonintersecting diagonals. See Figure 2(a).

In our case, the boundary of a hole might overlap with the boundary of another hole
while the holes are pairwise interior-disjoint. The algorithm by Chen and Wang still works
for this case. In this case, an edge of the common boundary of two holes is considered as a
(degenerate) cell. In this way, Q coincides with the union of the closures of the cells of the
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Figure 2 (a) A bounded degree decomposition. The gray regions are junction regions with
non-empty interiors. (b) An hourglass and four bays. (c) Two funnels, two canals and two bays.

bounded degree decomposition. The dual graph of the bounded degree decomposition is a
planar graph such that the degree of each node is at most three. The cell corresponding to a
node of degree 3 in the dual graph is called a junction region. It is known that the number
of the junction regions in Q is O(h) [3, 11].

Imagine that we remove the closures of all junction regions from Q, which partitions Q
into a number of connected regions. Each connected region is called a corridor. If a corridor
has an empty interior, it lies on the common boundary of two holes. A corridor C' with
non-empty interior is a simple splinegon and has two boundary edges, say ab and cd, each
incident to a junction region. We call them the gates of C. The boundary of C' other than
the gates consists of two chains connecting the gates such that each chain is a part of the
boundary of a hole incident to C. See Figure 2(b-c).

Since a corridor is a simple splinegon, the shortest path connecting two points in C' is
unique. Let ¢ (z,y) denote the shortest path connecting two points z and y in C. For the
gates ab and cd such that a, b, ¢, d appear on the boundary of C in the order, let Ho be the
region bounded by ab, ¢d and w¢(a,d) and 7o (b, ¢). If mo(a, d) and we(b, ¢) are disjoint, He
is called an hourglass of C. See Figure 2(b). Otherwise, the interior of He consists of two
connected components, each of which is called a funnel of C. See Figure 2(c). For both
cases, we call a connected component R of C'\ He a bay if it is incident to exactly one edge
of o (a,d) Ume(b, c). Otherwise, we call it a canal. We call an edge of 7¢(a,d) Une (b, c)
incident to R (a bay or a canal) a gate of R. Also, we call m¢(a,d) and w¢(b, ¢) the corridor
paths.

The union of the closures of the junction regions, hourglasses and funnels is called the
ocean of Q. It consists of O(h) convex chains with a total of O(n) vertices. Notice that
the ocean is not necessarily connected. In this way, the interior of Q is subdivided into the
ocean, bays and canals. We call this subdivision the extended corridor structure of Q. Given
a bounded degree decomposition of Q, one can compute the extended corridor structure in
O(n) time [3]. This structure has been used as a tool for various types of visibility problems
due to the following property.

» Lemma 2 ([4, The Opaque Property]). For any canal, suppose a line segment pq is in Q
such that neither p nor q is in the canal. Then pq does not contain any point of the canal
that is not on its two gates.

Since the part of a corridor path incident to a canal is convex, we have the following
lemma.

» Lemma 3. For a canal, consider a line segment pqg C Q intersecting a gate of the canal.
Then pq intersects the part of a corridor path incident to the canal only at points on its gates.
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2.3 Sketch of the Algorithm

In this paper, we consider the min-max variant of the quickest pair-visibility problem. Given
a polygonal domain P with h holes of complexity n and two points s and ¢ in P, the objective
is to compute two paths in P, one for s and one for ¢, to travel in order to see each other
such that the maximum of the path lengths is minimized. Let r* be the optimal solution,
that is, the minimum of max{d(s, s’),d(t,t')} among all pairs (s’,t') such that ss’ and tt'
are contained in P. We first consider the decision problem that decides, given a real value
r > 0, if there are two points s’ and ¢’ such that d(s,s") <r, d(¢,t') <r, and s’ and t’ are
visible to each other. Then to obtain r*, we apply the parametric search technique by using
the decision algorithm as a subprocedure.

For the decision problem, we assume that we have sPM(s) and spPM(t). Notice that they
are independent of an input distance r. Also, we further assume that r is less than d(s,t)/2,
that is, Ds(r) and D¢(r) are disjoint. Note that there is a point at distance d(s,t)/2 from
each of s and ¢ if r > d(s,t)/2. In this case, s and t can see each other by moving to this
point. Therefore the answer is positive for any r > d(s,t)/2.

3 Decision Problem

For a fixed r > 0, the decision problem asks if there are two points s’ and ¢’ in P such that
d(s,s") <r,d(t,t') <r, and s’ and ¢’ are visible to each other. If so, we say r is feasible.
Such a segment s't" always intersects geodesic spirals of D (r) and Dy(r). Thus there always
exists a segment s't’ C P intersecting D4(r) only at s’ and intersecting D¢ (r) only at ¢’ if r is
feasible. We call such a segment for a feasible value r a witness segment for r. Notice that
one endpoint of a witness segment lies on a geodesic spiral of Dy, and the other endpoint lies
on a geodesic spiral of D;. In this section, we present an O(n + h? log2 h)-time algorithm
for deciding if a given value r is feasible. Since r is fixed, we simply let D; = Dg(r) and
D: = D¢(r). Recall that Dy and D; are disjoint by the assumption that r < d(s,t)/2.

3.1 Finding O(h) Geodesic Spirals from Each Geodesic Disk

We want to construct the extended corridor structure of P \ (int(Ds) U int(D;)), but D, and
D; are not necessarily splinegons because their boundaries are not necessarily connected.
Moreover, it is possible that they have ©(n) geodesic spirals even if h = 1. To decide if r
is feasible efficiently, we choose a subset D, (and D;) of D, (and D;) which is a splinegon
containing O(h) geodesic spirals of Dy (and D) on its boundary, and consider the extended
corridor structure of P\ (int(Dy) U int(D;)).

Consider P \ Dy, which consists of O(n) connected subregions. Since Dy and D, are
disjoint, D; is contained in exactly one of such subregions. Moreover, no witness segment
intersects subregions of P \ Dy other than the one containing D;. See Figure 3. Therefore, it
suffices to consider the subregion containing D; only. We can find the subregion containing
D; in O(n) time as follows. Using SPM(s), we compute a shortest path connecting s and ¢,
and find the point in the path whose distance from s is . This point is contained in the
boundary of the subregion. Starting from this point, we walk along the boundary of the
subregion until we reach this point again in time linear in its complexity, which is O(n).

Consider the common boundary of Dy and the subregion of P\ D, containing D,. It is
contained in a connected component, say 7, of the boundary of Dg;. Moreover, it consists
of geodesic spirals of Dy appearing on 7 consecutively. Let a and b be the most clockwise
and counterclockwise points on such geodesic spirals. Let D, denote the region bounded by
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Figure 3 Every witness segment has its endpoints on Ds and D¢. Moreover, it does not intersect
any other points of Ds; and D;.

a shortest path between s and a, a shortest path between s and b, and the part of n lying
between a and b and containing the geodesic spirals on the common boundary. See Figure 3.
We choose an arbitrary shortest path between s and a (or b) if it is not unique. Here, D,
might contain a hole of P. In this case, we ignore such holes. In the following, we assume
that no hole of P intersects the interior of D,. We define D; in the same way by changing the
roles of s and t. Then a witness segment intersects D only at a point on D, and intersects
D, only at a point on D;. Also, we have the following lemma.

» Lemma 4. D, and D, contain O(h) geodesic spirals of Ds and Dy, respectively, on their
boundaries.

Proof. We prove the lemma for D, only. The case of D; can be proved analogously.

An endpoint of a geodesic spiral of Dy is a point on the boundary of a hole of P or a
reflex vertex of Dy. We claim that for each hole H of P, at most two geodesic spirals of D,
have their endpoints on the boundary of H. We also claim that there are O(h) reflex vertices
of D, lying on the boundary of D,. These two claims imply the lemma.

For the first claim, consider a hole H of P. Assume to the contrary that there are three
geodesic spirals, say 71,72 and 3, having their endpoints on the boundary of H. Recall that
the geodesic spirals of D, are incident to the same connected component of P \ Ds, say R.
Therefore, the boundary of H appears on the boundary of R at least twice. Notice that H
is a simple polygon, which is connected. This means that Dy is disconnected, which is a
contradiction.

For the second claim, let v be a reflex vertex of D, lying on the boundary of D,. Let
B1 and SBo be the circular arcs of Dy incident to v. Consider a shortest path 7; connecting
the center of 3; and s for i = 1, 2. If there are more than one shortest path, we choose the
one so that the region bounded by 71, 72, and the two line segments connecting v and the
centers of (3; is minimized. Such a region contains a hole of P by construction. Moreover,
such regions for all reflex vertices of D, lying on the boundary of D, are pairwise interior
disjoint by the choice of 7;. Since each such region contains a hole of P, there are at most h
reflex vertices of D, lying on the boundary of D,. Therefore, the lemma holds. <

3.2 Extended Corridor Structure of the Splinegon Domain

We construct the extended corridor structure of Q@ = P\ (int(D,)Uint(D;)) in O(n+hlog' € h)
time for any € > 0 [3]. Notice that we consider the interiors of Dy and D; as holes of Q. The
boundary of the ocean of Q consists of O(h) convex curves each of which consists of a part
of a single hole of Q or a part of a corridor path.

Recall that an (straight or circular) arc of the ocean is a part of the boundary of the
holes of Q or a gate of a bay or a canal. Consider the arcs of the ocean which are gates
of the bays and canals defined by D, and D;. By construction, the boundary of each such
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bay or canal consists of its gates and geodesic spirals of D, or D; only. Therefore, there are
O(h) such arcs of the ocean by Lemma 4 and the fact that a geodesic spiral contains a reflex
vertex of Dy or D; only at its endpoints. Imagine that we remove the gates of the bays and
canals defined by Dy and D, from the boundary of the ocean. The remaining part of the
boundary still consists of O(h) convex curves. Let T' be the set of such convex curves and
the gates of the bays and canals defined by D, and D;. Note that the union of all curves and
gates in T is the boundary of the ocean. A curve of T is defined by D, (or Dy) if it lies on
the boundary of D, (or D;) or it is a gate of a bay or a canal defined by D, (or D).

The following lemmas are keys of our decision algorithm. Due to them, it suffices to
consider the curves of I" only.

» Lemma 5. If a witness segment does not intersect the closure of the ocean, it is contained
in the interior of a corridor defined by Dy and D;. Moreover, if such a corridor exists, r is
feasible.

Proof. If a witness segment ¢ does not intersect the closure of the ocean, it is contained in
a corridor, say C. By construction, the boundary of C' consists of parts of the boundaries
of two holes and two gates. Since the endpoints of ¢ are on geodesic spirals of D, and D,
the holes defining C' are D, and D;. Now assume that a corridor defined by D, and D
exists. Then a gate of the corridor connects a point of a geodesic spiral of D, and a point
of a geodesic spiral of D;. In other words, such a gate is a witness segment, and thus r is
feasible. |

» Lemma 6. If a witness segment £ intersects the closure of the ocean, the intersection
between ¢ and the ocean is a line segment whose endpoints are on curves of I' defined by Dy

and D;.

Proof. Let ¢’ be the intersection between ¢ and the ocean. By construction, a connected
component of £\ ¢ is contained in a bay or a canal by the opaque property. Thus ¢\ ¢
consists of at most two connected components, and ¢’ is a line segment. Let p be an endpoint
of ¢'. If p is an endpoint of ¢, it lies on a convex curve of I' contained on a geodesic spiral of
D, or Dy, and the lemma holds. Thus we assume that p is not an endpoint of £. Then the
connected component of £\ ¢ incident to p is contained in a bay or a canal defined by D, or
D;. This means that p lies on a gate of the bay or canal, and therefore, it lies on the curve
of T' defined by Dy or D,. |

» Lemma 7. If r is feasible and no corridor is defined by Dy and Dy, there is a witness
segment ¢ such that the intersection between ¢ and the ocean is tangent to a curve of I' or
connects an endpoint of a curve of I' defined by Dy and an endpoint of a curve of I' defined

by Dt.

Proof. Let ¢ be the intersection between ¢ and the ocean. Its endpoints are contained in
curves 75 and 7; of I" defined by D, and Dy, respectively, by Lemma 6. We move one endpoint
of ¢ in clockwise direction along the curve s of T' containing it until (1) ¢ (excluding its
endpoints) contains a vertex of the ocean, (2) ¢ intersects 75 (or 4;) at a point other than
the endpoints of ¢/, or (3) the endpoint reaches an endpoint of ;. For Case (1), ¢ is tangent
to a curve of I',; and thus we are done. For Case (2), ¢’ is tangent to s (or ), and thus we
are done. For Case (3), we move the other endpoint of ¢ in the same way. Then the lemma
holds. |

We call the intersection between a witness segment satisfying Lemma 7 and the ocean an
ocean-restricted witness segment.
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Figure 4 Any ray tangent to -y lying between ZT and Z;‘ intersects 7 twice and any ray tangent
to v lying between 75 and ,Y;r intersects v’ once.

3.3 Finding a Witness Segment: Rotating Lines around Convex Curves

We assume that no corridor is defined by D, and D;. Otherwise, we return the positive
answer immediately by Lemma 5. Our goal in this subsection is to find an ocean-restricted
witness segment if 7 is feasible. By definition (and by Lemma 7), an ocean-restricted witness
segment is tangent to a convex curve of I' or contains an endpoint of a curve of I'. We check
for each convex curve 7 of I' if there is an ocean-restricted witness segment tangent to ~. In
a similar way, we check for each endpoint of the curves of I' if it contains an ocean-restricted
witness segment.

Imagine that we rotate a line tangent to + along ~. More specifically, let {(eq,...,ex) be
the sequence of the (circular or straight) arcs of v in order. For an integer i, let v; and v;41
be the endpoints of e;. The process will be initialized with the line tangent to e; at vy. It
rotates along e; until it hits vo. Then it rotates around vy (while remaining tangent to v at
v9) until it is tangent to es. In general, the current line is rotated around v; in a way so that
it remains tangent to y at v; until it is tangent to e;, and then it rotates along e; until it hits
vi+1. The process is iterated with v;;; as the new rotation center. The process terminates
as soon as the line is tangent to v at viy1. If an ocean-restricted witness segment is tangent
to ~, we encounter the line containing it during the process.

In the following, for each line ¢ we encounter during the process, we let £* and ¢~ be the
connected components (rays) of £\ v such that T goes towards vj1 and £~ goes towards
v1. See Figure 4. An ocean-restricted witness segment is contained in /¢ if and only if the
first curve of T hit by £ is defined by one of D, and Dy, and the first curve of I' hit by ¢~ is
defined by the other geodesic disk. We show how to maintain the first curve of " hit by £
only. We can do this for £~ analogously.

More generally, we maintain the sequence S of the curves of I' hit by ¢* in order. Since
every curve of I' is convex, it appears on S at most twice. During the sweep, for each convex
curve 7' of T', there are at most four events where the number of appearances of v’ on S
changes. See Figure 4. Moreover, such events (rays) are on common tangents of v and +/
or lines tangent to y which pass through an endpoint of v/. We can compute the common
tangents of v and 4/ O(log h) time if the arcs of each convex curve are stored in a balanced
binary search tree [13]. Similarly, we can compute the lines tangent to v and passing through
a specific point in O(log h) time [13]. We can construct the balanced binary search trees of
the curves of I in time linear in their complexities after computing I'. Since no convex curve
of ' crosses another convex curve of I', the sequence S changes only at these events. Thus
there are O(h) events in total, and we can obtain and sort all events in O(hlogh) time. We
can handle each event in O(log®n) time as follows.
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When we encounter a new event 7, the convex curve 4/ defining /T disappears from
S or appears on S. For the case that it disappears from S, we update S accordingly in
O(logn) time. For the other case, we apply binary search on the elements of S to find the
position of the new appearance of v on S. In each iteration of the binary search, we want to
compute the order of the points (at most four points) in £ N+’ and £+ N~" along ¢ for
some curve 4" appearing on the current sequence S. We can compute the points in O(logn)
time by a straightforward binary search on the arcs of 4’ (and v"’), and then sort them in
O(1) time. This gives the position of the new appearance of ' with respect to 7. After
O(logn) iterations, we can find the position of the new appearance of 4’ on S. Then we
update S accordingly. In this way, we can handle each event in O(log? n) time.

After rotating a line along v, we can check if an ocean-restricted witness segment is
contained in a line we encountered so far. Since we have O(h) curves of T, the total time for
checking if an ocean-restricted witness segment is tangent to a curve of " is O(h? log? h).

Also, we check for each endpoint of the curves of I' if it contains an ocean-restricted
witness segment. We can do this in a similar way: rotate a line around this endpoint.
Therefore, we have the following lemma.

» Lemma 8. Given a value r > 0, we can check if there are two points s’ and t' such that
d(s,s") <7, d(t,t') <r, and s’ and t' are visible to each other in O(n + h%log®h) time
assuming that SPM(s) and SPM(t) are given.

4  Optimization Problem

Let (s*,t*) be a pair of points in P that minimizes the maximum of d(s, s*) and d(¢,¢*) such
that s* and ¢* are visible to each other. Let r* be the maximum of d(s, s*) and d(t,t*). In
this section, we compute (s*,¢*) and r* by applying parametric search technique [12].

Basically, we apply the decision algorithm with input r* without explicitly computing
r*. In the decision algorithm, we maintain a number of structures including geodesic disks,
the splinegon domain Q and the sequence I which depend on an input distance r. In this
section, we consider such structures as functions of r. For example, we use I'(r) to denote
the sequence I' for an input distance r. While the algorithm described in this section is
executed, we maintain an interval [ry, 7o) containing r* so that the combinatorial structures
of structures we have computed so far remain the same for every r € [ry,r3). Then we will
see that 1 becomes r* for the interval we have at the end.

4.1 Combinatorial Structures of D, and D,

The first step of the decision algorithm is to compute D4(r), D;(r), D4(r) and Dy(r). Here,
we compute their combinatorial structures for r = r* instead of computing them explicitly.

We first compute the combinatorial structures of D4(r*) and D¢(r*). Notice that the
endpoints of the circular arcs of Ds(r*) and Dy(r*) lie on edges of sPM(s) and spm(t),
respectively. Also, the boundary of D4(r*) is not necessarily connected. For a radius r > 0,
the combinatorial structure of Ds(r) is defined as a set of the sequences of edges of SPM(s)
such that each sequence consists of the edges of SPM(s) intersecting a connected component
of the boundary of D4(r) in the clockwise order along the component.

For each vertex of sPM(s), we compute the geodesic distance between the vertex and
s. Also for each edge of P, we compute the smallest geodesic distance between a point
on the edge and s. We can compute them in O(n) time by considering all cells of sPM(s)
one by one. Then we sort all distances in increasing order in O(nlogn) time. We find
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the smallest interval [ri,79) containing r* for two distances r; and ro we obtained by
applying binary search on all such distances with the decision algorithm. Since the decision
algorithm takes O(n + h?log? h) time assuming that we have sPM(s) and sPM(t), we can find
[r1,79) in O(nlogn + h?log® hlogn) = O(nlogn + h?log® k) time in total. For any radius
r € [r1,72), the combinatorial structure of D(r) remains the same. We also compute the
combinatorial structure of D;(r), and update [ry, r2) containing r* so that for any r € [r1,73),
the combinatorial structure of D¢(r) (and D4(r)) remains the same.

Also, we define the combinatorial structure of D,(r) to be the sequence of the edges
of sPM(s) intersecting the boundary of D4(r) in clockwise order. For any r € [ry,r9), the
combinatorial structure of D4(r) remains the same by the definition of D4(r). The same
holds for Dy(r).

By construction, an endpoint of a circular arc of Ds(r) is represented as an algebraic
function of constant complexity for a value r € [r1,r2). We obtain the splinegon domain
Q(r) defined by int(Ds(r)), int(Ds(r)) and the holes of P for r € [ry,o). Here, a vertex of
Q is represented as an algebraic function with respect to 7.

4.2 Combinatorial Structure of the Extended Corridor Structure

To construct the extended corridor structure of a splinegon domain, the algorithm by Chen
and Wang [3] computes a bounded degree decomposition of the splinegon domain. Then
based on this, they compute the extended corridor structure. In the following, we split each
arc of Q(r) into at most four pieces so that it is monotone with respect to the x-axis and
y-axis. In other words, we add at most three vertices to each arc. Here each of the new
vertices is also represented as an algebraic function with respect to r.

Bounded degree decomposition. The algorithm by Chen and Wang [3] first decomposes
the domain with respect to the horizontal extensions obtained from each hole vertex of P
going in both directions until they hit the boundary of the domain. Then each cell has at
most four sides, but it might have more than three neighboring cells. In such a case, the
algorithm splits each such cell further with respect to vertical extensions from vertices of
the cell. Then it splits each of the resulting cells further with respect to its diagonal if it
still has more than three neighboring cells. In our case, we want to represent the vertices
of the bounded degree decomposition of Q(r) as algebraic functions with respect to r for
r € [r],rh) for some interval [r},75) C [r1,r2) containing r*.

Suppose that the order of the vertices of Q(r) with respect to the y-axis is the same for
any r € [r},r}) for some interval [r],75) C [r1,72) containing r*. Moreover, the order of
the vertices of Q(r) with respect to the z-axis is the same for any r € [r],r5). Then the
combinatorial structure of the bounded degree decomposition of Q(r) remains the same for
any r € [rq,75). In other words, a vertex of the bounded degree decomposition of Q(r) is
represented as an algebraic function of r for r € [r},r}). Thus in the following, we show how
to sort the vertices of Q(r) with respect to the z-axis.

To do this, we use Cole’s sorting algorithm which sorts m elements in O(logm) iterations
each consisting of O(m) comparisons [5]. Here, the comparisons in each iteration is inde-
pendent to one another. In our case, we are to sort all vertices of Q(r) with respect to the
x-axis. Here, m = O(n). For each iteration, we complete O(n) comparisons of vertices of
Q(r) as follows. Suppose that we are to compare two vertices vy (r) and vy (r) represented
by algebraic functions of r € [ry,r3). The result of the comparison changes only at O(1)
times as r changes from 71 to ro. We obtain O(1) such values in O(1) time. We do this
for all of the O(n) comparisons, and then we have O(n) values. Then we apply binary
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search on the values so that we find an interval [r],7}) C [r1,73) containing r* and the
result of each comparison remains the same for any r € [r},75). We can find the interval
in O(T, logn) = O(nlogn + h?log® h) time, where T}, is the running time for the decision
algorithm. We update the interval [rq1,72) that we maintain to [r],r5). After completing
O(logn) iterations, we obtain the interval [ri,r2) containing r* such that the sorted list of
the vertices of Q(r) remains the same for every r € [r1,r2). Thus we can sort all vertices
with respect to the z-axis (and the y-axis) in O(nlog®n + h?log* h) time in total, and we
can obtain the combinatorial structure of the bounded degree decomposition of Q(r*) in the
same time.

Extended corridor structure. The next step for computing the extended corridor structure
is to compute the shortest paths for each corridor. We can make this procedure parallelized
using the algorithm [9]. More precisely, this algorithm computes the shortest path between
two points in O(log N) iterations each consisting of O(N) comparisons. As we did for the
bounded degree decomposition, we can reduce the interval [r1,72) containing r* so that
the combinatorial structure of the extended corridor structure remains the same for any
r € [r1,r2). Since this can be done in O(logn) iterations each consisting of O(n) steps
for all corridors of Q(r*), we can compute the combinatorial structure of the extended
corridor structure in O(n log® n+ h2log* h) time as we did for computing the bounded degree
decomposition.

» Lemma 9. We can obtain the combinatorial structure of the extended corridor structure
of Q(r*) in O(nlog?n + h?log* h) time.

Since we have the combinatorial structure of Q(r*), we can obtain I'(r*) in the same time.
Again, an endpoint of each convex curve of I'(r) is represented as an algebraic function of r.

4.3 Finding a Witness Segment

The last step of the decision algorithm is to rotate a line along each curve of I'(r*). We have
O(h?) events in total each of which is either a common tangent between two curves of I'(7*)
or the line tangent to a curve of I'(r*) and passing through an endpoint of another curve
of I'(r*). A common tangent between two curves of I'(r) is defined by a pair of arcs from
two curves. More precisely, it is a common tangent of two arcs of the two curves or a line
passing through endpoints of the two curves. Instead of computing the common tangents,
we compute the pairs defining them. Since we can compute a common tangent between two
convex curves in O(logn) time and we have O(h?) pairs of convex curves, we can compute
all events in O(logn) iterations each consisting of O(h?) steps. As we did before, we can
complete each iteration in O(T}, log(h?) +h?) = O(nlogn+ h?log® h) time, where T}, denotes
the running time of the decision algorithm. Therefore, we can obtain [ri,r9) such that
the set of the pairs of arcs defining the events remains the same for every r € [r1,r2) in
O(nlog2 n + h?log* h) time. Similarly, we can do this for the events of the other type.

This means that for any r € [r1,r2), the first curve of I'(r) hit by T remains the same for
any line £ tangent to a curve of I'(r). Therefore, the answer of the decision problem remains
the same for any r € [ry,r2). Since 7* is contained in [ry,r3), the answer is positive for every
r € [r1,r2). By definition, we have 7* = r1. Thus we have the following theorem.

» Theorem 10. Given a polygonal domain P with h holes of total complezity n, we can
compute two points s and t' minimizing max{d(s, s'),d(t,t')} such that s' and t' are visible
to each other in O(nlog®n + h?log* h) time.
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