
The Use of a Pruned Modular Decomposition for
Maximum Matching Algorithms on Some Graph
Classes
Guillaume Ducoffe
ICI – National Institute for Research and Development in Informatics, Bucharest, Romania
The Research Institute of the University of Bucharest ICUB, Bucharest, Romania
guillaume.ducoffe@ici.ro

Alexandru Popa
University of Bucharest, Bucharest, Romania
ICI – National Institute for Research and Development in Informatics, Bucharest, Romania
alexandru.popa@fmi.unibuc.ro

Abstract
We address the following general question: given a graph class C on which we can solve Maximum
Matching in (quasi) linear time, does the same hold true for the class of graphs that can be
modularly decomposed into C? As a way to answer this question for distance-hereditary graphs
and some other superclasses of cographs, we study the combined effect of modular decomposition
with a pruning process over the quotient subgraphs. We remove sequentially from all such
subgraphs their so-called one-vertex extensions (i.e., pendant, anti-pendant, twin, universal and
isolated vertices). Doing so, we obtain a “pruned modular decomposition”, that can be computed
in quasi linear time. Our main result is that if all the pruned quotient subgraphs have bounded
order then a maximum matching can be computed in linear time. The latter result strictly
extends a recent framework in (Coudert et al., SODA’18). Our work is the first to explain why
the existence of some nice ordering over the modules of a graph, instead of just over its vertices,
can help to speed up the computation of maximum matchings on some graph classes.
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1 Introduction

Can we compute a maximum matching in a graph in linear-time? – i.e., computing a
maximum set of pairwise disjoint edges in a graph. – Despite considerable years of research
and the design of elegant combinatorial and linear programming techniques, the best-known
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6:2 Pruned modular decomposition and Maximum Matching

algorithms for this fundamental problem have stayed blocked to an O(m
√
n)-time complexity

on n-vertex m-edge graphs [22]. Nevertheless, we can use some well-structured graph classes
in order to overcome this superlinear barrier for particular cases of graphs. Our work
combines two successful approaches for this problem, namely, the use of a vertex-ordering
characterization for certain graph classes [5, 10, 21], and a recent technique based on the
decomposition of a graph by its modules [9]. We detail these two approaches in what follows,
before summarizing our contributions.

1.1 Related work

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [2,
15]. However, although we can compute a set of augmenting paths in linear-time [16], this
is a tedious task that involves the technical notion of blossoms and this may need to be
repeated Ω(

√
n) times before a maximum matching can be computed [19]. A well-known

greedy approach consists in, given some total ordering (v1, v2, . . . , vn) over the vertices in
the graph, to consider the exposed vertices vi by increasing order, then to try to match them
with some exposed neighbour vj that appears later in the ordering [12]. The vertex vj can
be chosen either arbitrarily or according to some specific rules depending on the graph class
we consider. Our initial goal was to extend similar reduction rules to module-orderings.

Modular decomposition. A module in a graph G = (V,E) is any vertex-subset X such
that every vertex of V \ X is either adjacent to every of X or nonadjacent to every of
X. The modular decomposition of G is a recursive decomposition of G according to its
modules [18]. We postpone its formal definition until Section 2. For now, we only want to
stress that the vertices in the “quotient subgraphs” that are outputted by this decomposition
represent modules of G (e.g., see Fig. 1 for an insightful illustration). Our main motivation for
considering modular decomposition in this note is its recent use in the field of parameterized
complexity for polynomial problems. More precisely, let us call modular-width of a graph G
the minimum k ≥ 2 such that every quotient subgraph in the modular decomposition of G
is either “degenerate” (i.e., complete or edgeless) or of order at most k. With Coudert, we
proved in [9] that many “hard” graph problems in P – for which no linear-time algorithm is
likely to exist – can be solved in kO(1)(n+m)-time on graphs with modular-width at most k.
In particular, we proposed an O(k4n+m)-time algorithm for Maximum Matching.

One appealing aspect of our approach in [9] was that, for most problems studied, we
obtained a linear-time reduction from the input graph G to some (smaller) quotient subgraph
G′ in its modular decomposition. – We say that the problem is preserved by quotient. –
This paved the way to the design of efficient algorithms for these problems on graph classes
with unbounded modular-width, assuming their quotient subgraphs are simple enough w.r.t.
the problem at hands. We illustrated this possibility through the case of (q, q − 3)-graphs
(i.e., graphs where no set of at most q vertices, q ≥ 7, can induce more than q − 3 paths of
length four). However, this approach completely fell down for Maximum Matching. Indeed,
our Maximum Matching algorithm in [9] works on supergraphs of the quotient graphs
that need to be repeatedly updated every time a new augmenting path is computed. Such
approach did not help much in exploiting the structure of quotient graphs. We managed
to do so for (q, q − 3)-graphs only through the help of a deeper structural theorem on the
nontrivial modules in this class of graphs. Nevertheless, to take a shameful example, it was
not even known before this work whether Maximum Matching could be solved faster than
with the state-of-the art algorithms on graphs that can be modularly decomposed into paths!
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1.2 Our contributions

We propose pruning rules on the modules in a graph (some of them new and some others
revisited) that can be used in order to compute Maximum Matching in linear-time on
several new graph classes. More precisely, given a module M in a graph G = (V,E),
recall that M is corresponding to some vertex vM in a quotient graph G′ of the modular
decomposition of G. Assuming vM is a so-called one-vertex extension in G′ (i.e., it is pendant,
anti-pendant, universal, isolated or it has a twin), we show that a maximum matching for G
can be computed from a maximum matching of G[M ] and a maximum matching of G \M
efficiently (see Section 4). Our rules are purely structural, in the sense that they only rely on
the structural properties of vM in G′ and not on any additional assumption on the nontrivial
modules. Some of these rules (e.g., for isolated or universal modules) were first introduced
in [9] – although with slightly different correctness proofs. Our main technical contributions
in this work are the pruning rules for, respectively, pendant and anti-pendant modules (see
Sections 4.2 and 4.3). The latter two cases are surprisingly the most intricate. In particular,
they require amongst other techniques: the computation of specified augmenting paths of
length up to 7, the addition of some “virtual edges” in other modules, and a careful swapping
between some matched and unmatched edges.

Then, we are left with pruning every quotient subgraph in the modular decomposition
by sequentially removing the one-vertex extensions. We prove that the resulting “pruned
quotient subgraphs” are unique (independent from the removal orderings) and that they can
be computed in quasi linear-time using a trie data-structure (Section 3). Furthermore, as
a case-study we prove that several superclasses of cographs are totally decomposable w.r.t.
this new “pruned modular decomposition”. These classes are further discussed in Section 5.
Note that for some of them, such as distance-hereditary graphs, we so obtain the first known
linear-time algorithm for Maximum Matching – thereby extending previous partial results
obtained for bipartite and chordal distance-hereditary graphs [10]. Our approach actually
has similarities with a general greedy scheme applied to distance-hereditary graphs [7]. With
slightly more work, we can extend our approach to every graph that can be modularly
decomposed into cycles. The case of graphs of bounded modular treewidth [23] is left as an
interesting open question.

Definitions and our first results are presented in Section 2. We introduce the pruned
modular decomposition in Section 3, where we show that it can be computed in quasi
linear-time. Then, the core of the paper is Section 4 where the pruning rules are presented
along with their correctness proofs. In particular, we state our main result in Section 4.4.
Applications of our approach to some graph classes are discussed in Section 5. Finally, we
conclude in Section 6 with some open questions. Due to lack of space, several proofs are
omitted. Full proofs can be found in our technical report [14].

2 Preliminaries

For the standard graph terminology, see [3]. We only consider graphs that are finite, simple
and unweighted. For any graph G = (V,E) let n = |V | and m = |E|. Given a vertex
v ∈ V , we denote its (open) neighbourhood by NG(v) = {u ∈ V | {u, v} ∈ E} and its closed
neighbourhood by NG[v] = NG(v) ∪ {v}. Similarly, we define the neighbourhood of any
vertex-subset S ⊆ V as NG(S) =

(⋃
v∈S NG(v)

)
\ S. In what follows, we introduce our main

algorithmic tool for the paper as well as the graph problems we study.

ISAAC 2018
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Figure 1 A graph and its modular decomposition.

Modular decomposition

A module in a graph G = (V,E) is any subset M ⊆ V (G) such that for any u, v ∈ M we
have NG(v) \M = NG(u) \M . There are trivial examples of modules such as ∅, V, and {v}
for every v ∈ V . Let P = {M1,M2, . . . ,Mp} be a partition of the vertex-set V . If for every
1 ≤ i ≤ p, Mi is a module of G, then we call P a modular partition of G. By abuse of
notation, we will sometimes identify a module Mi with the induced subgraph Hi = G[Mi],
i.e., we will write P = {H1, H2, . . . Hp}. The quotient subgraph G/P has vertex-set P, and
there is an edge between every two modules Mi,Mj ∈ P such that Mi×Mj ⊆ E. Conversely,
let G′ = (V ′, E′) be a graph and let P = {H1, H2, . . . Hp}. be a collection of subgraphs.
The substitution graph G′(P) is obtained from G′ by replacing every vertex vi ∈ V ′ with a
module inducing Hi. In particular, for G′ =def G/P we have that G′(P) = G.

We say that G is prime if its only modules are trivial (i.e., ∅, V, and the singletons {v}).
We call a module M strong if it does not overlap any other module, i.e., for any module
M ′ of G, either one of M or M ′ is contained in the other or M and M ′ do not intersect.
LetM(G) be the family of all inclusion wise maximal strong modules of G that are proper
subsets of V . The family M(G) is a modular partition of G [18], and so, we can define
G′ = G/M(G). The following structure theorem is due to Gallai.

I Theorem 1 ([17]). For an arbitrary graph G exactly one of the following conditions is
satisfied.
1. G is disconnected;
2. its complement G is disconnected;
3. or its quotient graph G′ = G/M(G) is prime for modular decomposition.

We now formally define the modular decomposition of G – introduced earlier in Section 1.
We output the quotient graph G′ = G/M(G) and, for any strong module M ∈M(G) that is
nontrivial (possibly none if G = G′), we also output the modular decomposition of G[M ]. By
Theorem 1 the subgraphs from the modular decomposition are either edgeless, complete, or
prime for modular decomposition. See Fig. 1 for an example. The modular decomposition of
a given graph G = (V,E) can be computed in linear-time [25]. There are many graph classes
that can be characterized using the modular decomposition.In particular, G is a cograph
if and only if every quotient subgraph in its modular decomposition is either complete or
disconnected [8].

Maximum Matching

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The
maximum cardinality of a matching in a given graph G = (V,E) is denoted by µ(G).
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I Problem 2 (Maximum Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

We remind the reader that Maximum Matching can be solved in O(m
√
n)-time on

general graphs [22] – although we do not use this result directly in our paper. Furthermore,
let G = (V,E) be a graph and let F ⊆ E be a matching of G. We call a vertex matched if it
is incident to an edge of F , and exposed otherwise. Then, we define an F -augmenting path
as a path where the two ends are exposed, and the edges belong alternatively to F and not
to F . It is well-known and easy to check that, given an F -augmenting path P , the matching
E(P )∆F (obtained by symmetric difference on the edges) has larger cardinality than F .

I Lemma 3 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is
no F -augmenting path.

In this paper, we will consider an intermediate matching problem, first introduced in [9].

I Problem 4 (Module Matching).
Input: A graph G′ = (V ′, E′) with the following additional information;

a collection of subgraphs P = {H1, H2, . . . ,Hp};
a collection F = {F1, F2, . . . , Fp},
with Fi being a maximum matching of Hi for every i.

Output: A matching of G = G′(P) with maximum cardinality.

A natural choice for Module Matching would be to take P = M(G). However, we
will allow P to take different values for our reduction rules.

Additional notations. Let 〈G′,P,F〉 be any instance of Module Matching. The order of
G′, equivalently the cardinality of P , is denoted by p. For every 1 ≤ i ≤ p letMi = V (Hi) and
let ni = |Mi| be the order of Hi. We denote δi = |E(Mi,Mi)| the size of the cut E(Mi,Mi)
with all the edges between Mi and NG(Mi). In particular, we have δi =

∑
vj∈NG′ (vi) ninj .

Let us define ∆m(G′) =
∑p

i=1 δi. We will omit the dependency in G′ if it is clear from the
context. Finally, let ∆µ = µ(G)−

∑p
i=1 µ(Hi).

Our framework is based on the following lemma (inspired from [9]).

I Lemma 5. Let G = (V,E) be a graph. Suppose that for every H ′ in the modular
decomposition of G we can solve Module Matching on any instance 〈H ′,P,F〉 in time
T (p,∆m,∆µ), where T is a subadditive function1. Then, we can solve Maximum Matching
on G in time O(T (O(n),m, n)).

An important observation for our subsequent analysis is that, given any module M of a
graph G, the internal structure of G[M ] has no more relevance after we computed a maximum
matching FM for this subgraph. More precisely, we will use the following lemma:

I Lemma 6 ([9]). Let M be a module of G = (V,E), let G[M ] = (M,EM ) and let FM ⊆ EM

be a maximum matching of G[M ]. Then, every maximum matching of G′M = (V, (E \EM ) ∪
FM ) is a maximum matching of G.

By Lemma 6 we can modify our algorithmic framework as follows. For every instance
〈G′,P,F〉 for Module Matching, we can assume that Hi = (Mi, Fi) for every 1 ≤ i ≤ p.

1 We stress that every polynomial function is subadditive.

ISAAC 2018
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Data structures. Finally, let 〈G′,P,F〉 be any instance for Module Matching. A ca-
nonical ordering of Hi (w.r.t. Fi) is a total ordering over V (Hi) such that the exposed
vertices appear first, and every two vertices that are matched together are consecutive. In
what follows, we will assume that we have access to a canonical ordering for every i. Such
orderings can be computed in time O(

∑
i |Mi|+ |Fi|) by scanning all the modules and the

matchings in F , that is an O(∆m) provided G′ has no isolated vertex.
Furthermore, let F be a (not necessarily maximum) matching for the subdivision G =

G′(P). We will make the standard assumption that, for every v ∈ V (G), we can decide in
constant-time whether v is matched by F , and if so, we can also access in constant-time to
the vertex matched with v.

3 A pruned modular decomposition

In this section, we introduce a pruning process over the quotient subgraphs, that we use in
order to refine the modular decomposition.

I Definition 7. Let G = (V,E) be a graph. We call v ∈ V a one-vertex extension if it falls
in one of the following cases:

NG[v] = V (universal) or NG(v) = ∅ (isolated);
NG[v] = V \ u (anti-pendant) or NG(v) = {u} (pendant), for some u ∈ V \ v;
NG[v] = NG[u] (true twin) or NG(v) = NG(u) (false twin), for some u ∈ V \ v.

A pruned subgraph of G is obtained from G by sequentially removing one-vertex extensions
(in the current subgraph) until it can no more be done. This terminology was introduced
in [20], where they only considered the removals of twin and pendant vertices. Also, the
clique-width of graphs that are totally decomposed by the above pruning process (i.e., with
their pruned subgraph being a singleton) was studied in [24] 2. Our contribution in this part
is twofold. First, we show that the gotten subgraph is “almost” independent of the removal
ordering, i.e., there is a unique pruned subgraph of G (up to isomorphism). The latter can
be derived from the following (easy) lemma:

I Lemma 8. Let G = (V,E) be a graph and let v, v′ ∈ V be one-vertex extensions of G. If
v, v′ are not pairwise twins then v′ is a one-vertex extension of G \ v.

I Corollary 9. Every graph G = (V,E) has a unique pruned subgraph up to isomorphism.

For many graph classes a pruning sequence can be computed in linear-time. We observe
that the same can be done for any graph (up to a logarithmic factor).

I Proposition 10. For every graph G = (V,E), we can compute a pruned subgraph in
O(n+m logn)-time.

Proof. By Corollary 9, we are left with greedily searching for, then eliminating, the one-vertex
extensions. We can compute the ordered degree sequence of G in O(n+m)-time. Furthermore,
after any vertex v is eliminated, we can update this sequence in O(|N(v)|)-time. Hence, up
to a total update time in O(n+m), at any step we can detect and remove in constant-time
any vertex that is either universal, isolated, pendant or anti-pendant. Finally, in [20] they
proposed a trie data-structure supporting the following two operations: suppression of a
vertex; and detection of true or false twins (if any). The total time for all the operations on
this data-structure is in O(n+m logn) [20]. J

2 Anti-twins are also defined as one-vertex extensions in [24]. Their integration to this framework remains
to be done.
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We will term “pruned modular decomposition” of a graph G the collection of the pruned
subgraphs for all the quotient subgraphs in the modular decomposition of G. Note that
there is a unique pruned modular decomposition of G (up to isomorphism) and that it can
be computed in O(n+m logn)-time by Proposition 10 (applied to every quotient subgraph
in the modular decomposition separately). Furthermore, we remark that most cases of
one-vertex extensions imply the existence of non trivial modules, and so, they cannot exist
in the prime quotient subgraphs of the modular decomposition. Nevertheless, such vertices
may appear after removal of pendant or anti-pendant vertices (e.g., in the bull graph).

4 Reduction rules

Let 〈G′,P,F〉 be any instance of Module Matching. Suppose that v1, the vertex corres-
ponding to M1 in G′, is a one-vertex extension. Under this assumption, we present reduction
rules to a smaller instance 〈G∗,P∗,F∗〉 where |P∗| < |P|. Each rule can be implemented to
run in O(∆m(G′)−∆m(G∗))-time. Due to lack of space, we skip the complexity analysis.

In Section 4.1 we recall the rules introduced in [9] for universal and isolated modules
(explicitly) and for false or true twin modules (implicitly). Our main technical contributions
are the reduction rules for pendant and anti-pendant modules (in Sections 4.2 and 4.3,
respectively), which are surprisingly the most intricate. Finally, we end this section stating
our main result (Theorem 29).

4.1 Simple cases
We introduce two local operations on a matching, first used in [26] for cographs. Let F ⊆ E
be a matching and let M ⊆ V be a module.

I Operation 11 (MATCH). While there are x ∈M, y ∈ N(M) exposed, add {x, y} to F .

I Operation 12 (SPLIT). While there are x, x′ ∈M, y, y′ ∈ N(M) such that x and x′ are
exposed, and {y, y′} ∈ F , replace {y, y′} in F by {x, y}, {x′, y′}.

Let G = H1 ⊕ H2 be the join of the two graphs H1, H2 and let F1, F2 be maximum
matchings for H1, H2, respectively. The “MATCH and SPLIT” technique consists in
applying Operations 11 then 12 to M = V (H1) and F = F1 ∪ F2, thereby obtaining a new
matching F ′, then to M = V (H2) and F = F ′. Based on this technique, we design the
following rules:

I Reduction rule 13 (see also [9]). Suppose v1 is isolated in G′. We set G∗ = G′ \ v1,
P∗ = P \ {H1}, and F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of
G∗(P∗) = G[V \M1]. We output F ∗ ∪ F1.

I Reduction rule 14 (see also [9]). Suppose v1 is universal in G′. We set G∗ = G \ v1,
P∗ = P \ {H1}, F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of the
subdivision G∗(P∗) = G[V \M1]. We apply the “MATCH and SPLIT” technique to M1, F1
with V \M1, F

∗.

I Reduction rule 15. Suppose v1, v2 are false twins in G′. We set G∗ = G′ \ v1, P∗ =
{H1 ∪ H2} ∪ (P \ {H1, H2}), F∗ = {F1 ∪ F2} ∪ (F \ {F1, F2}). We output a maximum
matching of G∗(P∗) = G.

I Reduction rule 16. Suppose v1, v2 are true twins in G′. Let F ∗2 be the matching of H1⊕H2
obtained from the “MATCH and SPLIT” technique applied to M1, F1 with M2, F2. We set
G∗ = G \ v1, P∗ = {H1 ⊕H2} ∪ (P \ {H1, H2}), F∗ = {F ∗2 } ∪ (F \ {F1, F2}). We output a
maximum matching of G∗(P∗) = G.

ISAAC 2018



6:8 Pruned modular decomposition and Maximum Matching

M

M

N(M )

1

1

2

x

x y z

u w

1

2 2 2

Figure 2 An augmenting path of length 5 with ends x1, x2. Matched edges are drawn in bold.

4.2 Anti-pendant
Suppose v1 is anti-pendant in G′. W.l.o.g., v2 is the unique vertex that is nonadjacent to
v1 in G′. By Lemma 6, we can also assume w.l.o.g. that E(Hi) = Fi for every i. In this
situation, we start applying Reduction rule 13, i.e., we set G∗ = G′ \ v1, P∗ = P \ {H1},
F∗ = F \ {F1}. Then, we obtain a maximum matching F ∗ of G \M1 (i.e., by applying our
reduction rules to this new instance). Finally, from F1 and F ∗, we compute a maximum
matching F of G, using an intricate procedure. We detail this procedure next.

First phase: pre-processing. Our correctness proofs in what follows will assume that some
additional properties hold on the matched vertices in F ∗. So, we start correcting the initial
matching F ∗ so that it is the case. For that, we introduce two “swapping” operations. Recall
that v2 is the unique vertex that is nonadjacent to v1 in G′.

I Operation 17 (REPAIR). While there exist x2, y2 ∈M2 such that {x2, y2} ∈ F2 and y2
is exposed in F ∗, we replace any edge {x2, w} ∈ F ∗ by {x2, y2}.

I Operation 18 (ATTRACT). While there exist x2 ∈ M2 exposed and {u,w} ∈ F ∗ such
that u ∈ NG(M2), w /∈M2, we replace {u,w} by {u, x2}.

Let F (0) = F1 ∪ F ∗. Summarizing, we get:

I Definition 19. A matching F of G is good if it satisfies the following two properties:
1. every vertex matched by F1 ∪ F2 is also matched by F ;
2. either every vertex in M2 is matched, or there is no matched edge in NG(M2)×NG(M1).

I Fact 20. F (0) is a good matching of G.

Main phase: a modified Match and Split. We now apply the following three operations
sequentially:
1. Match(M1, F

(0)) (Operation 11). Doing so, we obtain a larger good matching F (1).
2. Split(M1, F

(1)) (Operation 12). Doing so, we obtain a larger good matching F (2).
3. the operation Unbreak, defined in what follows (see also Fig. 2 for an illustration):

I Operation 21 (Unbreak). While there exist x1 ∈ M1 and x2 ∈ M1 ∪M2 exposed,
and there also exist {y2, z2} ∈ F2 \ F (2), we replace any two edges {y2, u}, {z2, w} ∈ F (2)

by the three edges {x2, u}, {y2, z2} and {w, x1}.
We stress that the two edges {y2, u}, {z2, w} ∈ F (2) always exist since F (2) is a good
matching of G. Furthermore doing so, we obtain a larger matching F (3).

The resulting matching F (3) is not necessarily maximum. However, this matching satisfies
the following crucial property:

I Lemma 22. No vertex of M1 can be an end in an F (3)-augmenting path.
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Figure 3 An augmenting path of length 7 with ends x2, c. Matched edges are drawn in bold.

Finalization phase: breaking some edges in F1. Intuitively, the matching F (3) may not
be maximum because we sometimes need to borrow some edges of F1 in augmenting paths.
So, we complete our procedure by performing the following two operations: Let U1 contain
all the exposed vertices in N(M1). Consider the subgraph G[M1 ∪ U1] = G[M1] ⊕ G[U1].
The set U1 is a module of this subgraph. We apply Split(U1, F

(3)) in G[M1 ∪ U1]. Doing
so, we obtain a larger good matching F (4). Then, we apply LocalAug, defined next (see
also Fig. 3 for an illustration):

I Operation 23 (LocalAug). While there exist x2 ∈ M2 and c ∈ N(M1) exposed, and
there also exist {x1, y1} ∈ F1 ∩ F (4) and {y2, z2} ∈ F2 \ F (4), we do the following:

we remove {x1, y1} and any edge {a, y2}, {b, z2} from F (4);
we add {x2, a}, {y2, z2}, {b, x1} and {y1, c} in F (4).

We stress that the two edges {y2, a}, {z2, b} ∈ F (4) always exist since F (4) is a good matching
of G. Furthermore doing so, we obtain a larger matching F (5).

I Lemma 24. F (5) is a maximum-cardinality matching of G.

4.3 Pendant
Suppose v1 is pendant in G′. W.l.o.g., v2 is the unique vertex that is adjacent to v1 in G′.
This last case is arguably more complex than the others since it requires both a pre-processing
and a post-processing treatment on the matching.

First phase: greedy matching. We apply the “Match and Split” technique toM1. Doing
so, we obtain a set F1,2 of matched edges between M1 and M2. We remove V (F1,2), the set
of vertices incident to an edge of F1,2, from G. Then, there are three cases. If M2 ⊆ V (F1,2)
then M1 \ V (F1,2) is isolated. We apply Reduction rule 13. If M1 ⊆ V (F1,2) then M1 is
already eliminated. The interesting case is when both M1 \ V (F1,2) and M2 \ V (F1,2) are
nonempty. In particular, suppose there remains an exposed vertex x1 ∈M1 \ V (F1,2). Since
M2 \ V (F1,2) 6= ∅, there exists {x2, y2} ∈ F2 such that x2, y2 /∈ V (F1,2). We remove x1 from
M1, x2 from M2, {x2, y2} from F2 and then we add {x1, x2} in F1,2. Our first result in this
section is that there always exists an optimal solution that contains F1,2. This justifies a
posteriori the removal of V (F1,2) from G.

I Lemma 25. There is a maximum matching of G that contains all edges in F1,2.

We stress that during this phase, all the operations except maybe the last one increase the
cardinality of the matching. Furthermore, the only possible operation that does not increase
the cardinality of the matching is the replacement of an edge in F2 by an edge in F1,2. Doing
so, either we fall in one of the two pathological cases M1 ⊆ V (F1,2) or M2 ⊆ V (F1,2) (easy to
solve), or then we obtain through the replacement operation the following stronger property:

I Property 26. All vertices in M1 are matched by F1.
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We will assume Property 26 to be true for the remaining of this section.

Second phase: virtual split edges. We complete the previous phase by performing a Split
between M2,M1 (Operation 12). That is, while there exist two exposed vertices x2, y2 ∈M2
and a matched edge {x1, y1} ∈ F1 we replace {x1, y1} by {x1, x2}, {y1, y2} in the current
matching. However, we encode the Split operation using virtual edges in H2. Formally, we
add a virtual edge {x2, y2} in H2 that is labeled by the corresponding edge {x1, y1} ∈ F1. Let
H∗2 and F ∗2 be obtained from H2 and F2 by adding all the virtual edges. We set G∗ = G′ \ v1,
P∗ = {H∗2} ∪ (P \ {H1, H2}) and F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

Intuitively, virtual edges are used in order to shorten the augmenting paths crossing M1.

Third phase: post-processing. Let F ∗ be a maximum-cardinality matching of the sub-
division G∗(P∗) (i.e., obtained by applying our reduction rules to the new instance). We
construct a matching F for G as follows. We add in F all the non virtual edges in F ∗. For
every virtual edge {x2, y2}, let {x1, y1} ∈ F1 be its label. If {x2, y2} ∈ F ∗ then we add
{x1, y2}, {x2, y1} in F , otherwise we add {x1, y1} in F . In the first case, we say that we
confirm the Split operation, whereas in the second case we say that we cancel it. Finally,
we complete F with all the edges of F1 that do not label any virtual edge (i.e., unused during
the second phase).

I Lemma 27. F is a maximum-cardinality matching of G.

The above result is proved by contrapositive. More precisely, we prove intricate properties
on the intersection of shortest augmenting paths with pendant modules. Using these
properties and the virtual edges, we could transform any shortest F -augmenting path into
an F ∗-augmenting path, a contradiction.

4.4 Main result

Our framework consists in applying any reduction rule presented in this section until it can
no more be done. Then, we rely on the following result:

I Theorem 28 ([9]). We can solve Module Matching for 〈G′,P,F〉 in O(∆µ · p4)-time.

We are now ready to state our main result in this paper (the proof of which directly
follows from all the previous results in this section).

I Theorem 29. Let G = (V,E) be a graph. Suppose that, for every prime subgraph H ′ in
the modular decomposition of G, its pruned subgraph has order at most k. Then, we can
solve Maximum Matching for G in O(k4 · n+m logn)-time.

5 Applications

We conclude this paper presenting applications and refinements of our main result to some
graph classes. Recall that cographs are exactly the graphs that are totally decomposable
by modular decomposition [8]. We start showing that several distinct generalizations of
cographs in the literature are totally decomposable by the pruned modular decomposition.
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Distance-hereditary graphs. A graph G = (V,E) is distance-hereditary if it can be reduced
to a singleton by pruning sequentially the pendant vertices and twin vertices [1]. Conversely,
G is co-distance hereditary if it is the complement of a distance-hereditary graph, i.e., it can
be reduced to a singleton by pruning sequentially the anti-pendant vertices and twin vertices.
In both cases, the corresponding pruning sequence can be computed in linear-time [11, 13].
Therefore, we can derive the following result from our framework:

I Proposition 30. We can solve Maximum Matching in linear-time on graphs that can
be modularly decomposed into distance-hereditary graphs and co-distance hereditary graphs.

Trees are a special subclass of distance-hereditary graphs. We say that a graph has
modular treewidth at most k if every prime quotient subgraph in its modular decomposition
has treewidth at most k. In particular, graphs with modular treewidth at most one are
exactly the graphs that can be modularly decomposed into trees3. We stress the following
consequence of Proposition 30:

I Corollary 31. We can solve Maximum Matching in linear-time on graphs with modular-
treewidth at most one.

The case of graphs with modular treewidth k ≥ 2 is left as an intriguing open question.

Tree-perfect graphs. Two graphs G1, G2 are P4-isomorphic if there exists a bijection from
G1 to G2 such that a 4-tuple induces a P4 in G1 if and only if its image in G2 also induces a
P4 [6]. The notion of P4-isomorphism plays an important role in the study of perfect graphs.
A graph is tree-perfect if it is P4-isomorphic to a tree [4]. We prove the following result:

I Proposition 32. Tree-perfect graphs are totally decomposable by the pruned modular
decomposition. In particular, we can solve Maximum Matching in linear-time on tree-
perfect graphs.

Our proof is based on a deep structural characterization of tree-perfect graphs [4].

The case of unicycles. We end up this section with a refinement of our framework for the
special case of unicyclic quotient graphs (a.k.a., graphs with exactly one cycle).

I Proposition 33. We can solve Maximum Matching in linear-time on the graphs that
can be modularly decomposed into unicycles.

For that, we reduce the case of unicycles to the case of cycles (removing pendant modules).
Then, we test for all possible numbers of matched edges between two adjacent modules.
Doing so, we reduce the case of cycles to the case of paths.

6 Open problems

The pruned modular decomposition happens to be an interesting add up in the study of
Maximum Matching algorithms. An exhaustive study of its other algorithmic applications
remains to be done. Moreover, another interesting question is to characterize the graphs that
are totally decomposable by this new decomposition. We note that our pruning process can

3 Our definition is more restricted than the one in [23] since they only impose the quotient subgraph G′

to have bounded treewidth.
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be seen as a repeated update of the modular decomposition of a graph after some specified
modules (pendant, anti-pendant) are removed. However, we can only detect a restricted
family of these new modules (i.e., universal, isolated, twins). A fully dynamic modular
decomposition algorithm could be helpful in order to further refine our framework.
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