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—— Abstract

We investigate the problem of Min-cost Perfect Matching with Delays (MPMD) in which requests
are pairwise matched in an online fashion with the objective to minimize the sum of space cost
and time cost. Though linear-MPMD (i.e., time cost is linear in delay) has been thoroughly
studied in the literature, it does not well model impatient requests that are common in practice.
Thus, we propose convex-MPMD where time cost functions are convex, capturing the situation
where time cost increases faster and faster. Since the existing algorithms for linear-MPMD are
not competitive any more, we devise a new deterministic algorithm for convex-MPMD problems.
For a large class of convex time cost functions, our algorithm achieves a competitive ratio of O(k)
on any k-point uniform metric space. Moreover, our deterministic algorithm is asymptotically
optimal, which uncover a substantial difference between convex-MPMD and linear-MPMD which
allows a deterministic algorithm with constant competitive ratio on any uniform metric space.
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1 Introduction

Online matching has been studied frantically in the last years. Emek et al. [10] started the
renaissance by introducing delays and optimizing the trade-off between timeliness and quality
of the matching. This new paradigm leads to the problem of Min-cost Perfect Matching with
Delays (MPMD for short), where requests arrive in an online fashion and need to be matched
with one another up to delays. Any solution experiences two kinds of costs or penalty. One
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is for quality: Matching two requests of different types incurs cost as such do not match
well, while requests of the same type should be matched for free. The other is for timeliness:
Delay in matching a request causes a cost that is an increasing function, called the time cost
function, of the waiting time. The overall objective is to minimize the sum of the two kinds
of costs.

Tractable in theory and fascinating in practice, the MPMD problem has attracted more
and more attention and inspired an increasing volume of literature [10, 11, 4, 3, 2]. However,
these existing work in this line only studied linear time cost function, meaning that penalty
grows at a constant rate no matter how long the delay is. This sharply contrasts to much of
our real-life experience. Just imagine a dinner guest: waiting a short time is no problem — but
eventually, every additional minute becomes more annoying than ever. The discontentment
is experiencing convex growth, an omnipresent concept in biology, physics, engineering, or
economics.

Actually, such convex growth of discontentment appears in various real-life scenarios of
online matching. For instance, online game platforms often have to match pairs of players
before starting a game (consider chess as an example). Players at the same, or at least
similar, level of skills should be paired up so as to make a balanced game possible. Then
it would be better to delay matching a player in case of no ideal candidate of opponents.
Usually it is acceptable that a player waits for a short time, but a long delay may be more
and more frustrating and even make players reluctant to join the platform again. Another
example appears in organ transplantation: An organ transplantation recipient may be able
to wait a bit, but waiting an extended time will heavily affect its health. One may think that
organ transplantation would be better modeled by bipartite matching rather than regular
matching as considered in this paper; however, organ-recipients and -donors usually come in
incompatible pairs that will be matched with other pairs, e.g., two-way kidney exchange®.
More real-life examples include ride sharing (match two customers), joint lease (match two
roommates), just mention a few.

On this ground, we study the convex-MPMD problem, i.e., the MPMD problem with
convex time cost functions. To the best of our knowledge, this is the first work on online
matching with non-linear time cost.

Convexity of the time cost poses special challenges to the MPMD problem. An important
technique in solving linear-MPMD, namely, MPMD with linear time cost function, is to
minimize the total costs while sacrifice some requests by possibly delaying them for a long
period (see, e.g., the algorithms in [4, 11, 2]). Because the time cost increases at a constant
rate, it is the total waiting time, rather than waiting time of individual requests, that is of
interest. Hence, keeping a request waiting is not too harmful. The case of convex time costs
is completely different, since we cannot afford anymore to delay old unmatched requests, as
their time costs grow faster and faster. Instead, early requests must be matched early. For
this reason, existing algorithms for the linear-MPMD problem do not work any more for
convex-MPMD, as confirmed by examples in Section 4.

In this paper, we devise a novel algorithm A for the convex-MPMD problem which is
deterministic and solves the problem optimally. More importantly, our results disclose a
separation: the convex-MPMD problem, even when the cost function is just a little different
from linear, is strictly harder than its linear counterpart. Specifically, our main results are as
follows, where f-MPMD stands for the MPMD problem with time cost function f:

! https://www.hopkinsmedicine.org/transplant/programs/kidney/incompatible/paired_kidney_
exchange.html
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» Theorem 1. For any f(t) = t* with constant a > 1, the competitive ratio of A for
f-MPMD on k-point uniform metric space is O(k).

One may wonder whether the result in Theorem 1 can be further improved because of
the known result:

» Theorem 2 ([4, 2]). There exists a deterministic online algorithm that solves linear-MPMD
on uniform metrics and reaches an O(1) competitive ratio.

However, we can show that for a large family of functions f : RT — R™*, the f~-MPMD
problem has no deterministic algorithms of competitive ratio o(k).

» Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, continuous
and satisfies f(0) = f'(0) = 0. Then any deterministic algorithm for f-MPMD on k-point
uniform metric space has competitive ratio Q2 (k).

Numerous natural convex functions over the domain of nonnegative real numbers satisfy
the conditions of Theorem 3. Examples include monomial f(t) = t* with « > 1, f(t) =
et —at —1 with o > 1, and so on. This, together with Theorem 1, establishes the optimality
of our deterministic algorithm. Note that family of functions satisfying the conditions of
Theorem 3 is closed under multiplication and linear combination where the coefficients are
positive. Hence, Theorem 3 is of general significance.

2 Related Work

Matching has became one of the most extensively studied problems in graph theory and
computer science since the seminal work of Edmonds [9, 8]. Karp et al. [15] studied the
matching problem in the context of online computation which inspired a number of different
versions of online matching, e.g., [13, 16, 18, 19, 6, 12, 1, 7, 17, 20, 21]. In these online
matching problems, underlying graphs are assumed bipartite and requests of one side are
given in advance.

A matching problem where all requests arrive in an online manner was introduced by
[10]. This paper also introduced the idea that requests are allowed to be matched with delays
that need to be paid as well, so the problem is called Min-cost Perfect Matching with Delays
(MPMD). They presented a randomized algorithm with competitive ratio O(log® k + log A)
where k is the size of the underlying metric space known before the execution and A is
the aspect ratio. Later, Azar et al. [4] proposed an almost-deterministic algorithm with
competitive ratio O(log k). Ashlagi et al. [2] analyzed Emek et al’s algorithm in a simplified
way, and improved its competitive ratio to O(log k). They also extended these algorithms
to bipartite matching with delays (MBPMD). The best known lower bound for MPMD is
Q(log k/loglog k) and MBPMD Q(+/logk/loglogk) [2]. In contrast to our work, all these
papers assume that the time cost of a request is linear in its waiting time.

In contrast to this previous work, we focus on the uniform metric, i.e., the distance

between any two points is the same. While this is only a special case, it is an important one.

In the existing linear-MPMD algorithms, a common step is to first embed a general metric to
a probabilistic hierarchical separated tree (HST), which is actually an offline approach, and
then design an online algorithm on the HST metric. The online algorithms on HST metrics
are essentially based on algorithms on uniform metrics (or aspect-ratio-bounded metrics
which can also be handled by our results) because every level of an HST can be considered
as a uniform metric. Uniform metrics are known to be tricky, e.g., Emek et al. [11] study
linear-MPMD with only two points. Uniform metrics also play an important role in the field
of online computation [14]. For example, the k-server problem restricted to uniform metrics
is the well-known paging problem.
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The idea of delaying decisions has been around for a long time in the form of rent-or-buy
problems (most prominently: ski rental), but [10] showed how to use delays in the context
of combinatorial problems such as matching. In the classical ski rental problem [14], one
can also consider the variation that the renting cost rate (to simplify our discussion, let’s
consider the continuous case) may change over time. If the purchase price is a constant, the
renting cost rate function does not change the competitive ratio since a good deterministic
online algorithm is always to buy it when the renting fee is equal to the purchase price.

Azar et al. [5] considered online service with delay, which generalizes the k-server problem.
As mentioned in their paper, delay penalty functions are not restricted to be linear and
even different requests can have different penalty functions. However, different delay penalty
functions there do not make the service with delay problem much different, and there is
a universal way to deal with these different penalty functions, unlike the online matching
problems we consider now.

3 Preliminaries

In this section, we formulate the problem and introduce notations.

3.1 Problem Statement

Let RT stands for the set of nonnegative real numbers.

A metric space S = (V, i) is a set V', whose members are called points, equipped with a
distance function p : V? — R* which satisfies the following conditions
Positive definite: p(z,y) > 0 for any z,y € V, and “=" holds if and only if x = y;
Symmetric: p(z,y) = p(y,x) for any x,y € V;
Subadditive or triangle inequality : u(x,y) + u(y, z) > p(x, 2) for any z,y,z € V.

Given a function f : Rt — R™, the problem f-MPMD is defined as follows, and f is
called the time cost function.

For any finite metric space S = (V, i), an online input instance over S is a set R of
requests, with any p € R characterized by its location £(p) € V and arrival time (p) € RT.
Each request p is revealed exactly at time ¢(p). Assume that |R| is an even number. The
goal is to construct a perfect matching, i.e. a partition into pairs, of the requests in real time
without preemption.

Suppose an algorithm A matches p, p’ € R at time T'. It pays the space cost u(4(p), ¢(p"))
and the time cost f(T —t(p)) + f(T —t(p")). The space cost of A on input R, denoted by
cost® (R), is the total space cost caused by all the matched pairs, and the time cost cost’y(R)
is defined likewise. The objective of the f-MPMD is to find an online algorithm A4 such that
cost a4 (R) = cost® (R) + cost’y (R) is minimized for all R.

As usual, the online algorithm A is evaluated through competitive analysis. Let A* be
an optimum offline algorithm?. For any finite metric space S, if there are a,b € R such
that cost 4(R) < cost 4= (R)a + b for any online input instance R over S, then A is said to be
a-competitive on §. The minimum such a is called the competitive ratio of 4 on S. Note
that both a and b can depend on S.

This paper will focus on monomial time cost functions f(t) = t* « > 1 and uniform
metric spaces. A metric space (V, ) is called d-uniform if p(u,v) =6 for any u,v € V.

2 An offline algorithm knows the whole input instance at the beginning and outputs any pair p, p’ € R at
time max{t(p), (o)}
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Figure 1 The input instance of Example 4. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy I, while (b) is an offline solution.

3.2 Notations and Terminologies

Any pair of requests p,p’ in the perfect matching is called a match between p and p’
and denoted by (p,p’) or (p/, p) interchangeably. A match (p, p') is said to be external
if £(p) # £(p'), and internal otherwise. For any request p, let T(p) be the time when p
is matched; p is said to be pending at any time t € (¢t(p), T(p)) and active at any time
t € [t(p), T(p)]. At any moment ¢, a point v € V' is called aligned if the number of pending
requests at v under A and that under A* have the same parity, and misaligned otherwise.
The derivative of any differentiable function f : R™ — R™T is denoted by f'.

4  Algorithm and Analysis
4.1 Basic ldeas

A natural idea to solve f-MPMD on uniform metrics is to prioritize internal matches and to
create an external match only if both requests have waited long enough (say, as long as 0).
However, for any monomial time cost function f(t) = t%, a > 1, the strategy (called Strategy
I) is not competitive, as illustrated in Example 4.

» Example 4. For any positive integer n and small real number € > 0, construct an online
instance as follows. A request pg; arrives at u at time 4 - 6 for any 0 < 4 < n, while a request
po2;_1 arrives at u at time i - 0 — e for any 1 < ¢ < n. Point v gets a request p’ at time 0.
By Strategy I, as in Figure 1(a), each po; is matched with pg;4q for any 0 < i < n, and p’
and po, are matched, causing cost at least n - f(0 —€) + f(nf) + §. Consider the offline
solution consisting of (o', po) and (pa;_1, p2;) for 1 < i < n, , as in Figure 1(b), which has cost
d+n-f(e). When n approaches infinity and € approaches 0, n- f(0—¢€)+ f(n8)+06 > §+n- f(e),
meaning that Strategy I is not competitive.

A plausible way to improve Strategy I is to accumulate the time costs of all the co-located
requests which arrive after the last external match involving the point, and to enable an
external match if both points have accumulated enough costs (say, as large as §). Though
applicable to the scenario in Example 4, this improvement (called Strategy II) remains not
competitive for any time cost function f(t) =¢t“, « > 1, as shown in the next example.

» Example 5. Again, consider two points u, v of distance §. Arbitrarily fix an even integer

n > 0 and a small real number € > 0. Arbitrarily choose 7 € Rt such that § —e < % f(7) < 6.

Suppose that a request p’ arrives at v at time 0, while a request p; arrives at u at time i7 for
any 0 < ¢ < n. Hence there are totally n + 2 requests. As illustrated in Figure 2(a), applying
Strategy II results in the matches (p/, p,) and (p;, p;+1) for any even number 0 < i < n,
causing cost at least § f(7) + f(n7) + 6. On the other hand, consider the offline solution
(', po) and {p;, pi+1) for any odd number 0 < ¢ < n, as shown in Figure 2(b). It has cost
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Figure 2 The input instance of Example 5. A blue dot stands for a request, and a thick line or
curve for a match. (a) is the matching produced by Strategy II, while (b) is an offline solution.
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Figure 3 The input instance of Example 6. A blue dot stands for a request, an area surrounded
by dash lines stands for a part of the instance, and a thick line or curve for a match. (a) is the
matching produced by Strategy III, while (b) is an offline solution.

5 f(7) + 6. Thus the cost of A* is at most % f(7) +J. When n approaches infinity and e
approaches 0, we have 4 f(7) + f(n7) + 9 > 5 f(7) + 4, implying that Strategy II is not
competitive.

Since the trouble may be rooted at the double-counter-enabling mechanism which enables
an external match when two counters both reach some threshold, we further improve the
strategy by enabling an external match if one of the two points has high accumulated cost
(say, as high as €). This improvement (called Strategy III) defeats both Examples 4 and 5,
but the following example shows that it remains not competitive for any monomial time cost
function f(t) =t* a > 1.

» Example 6. Choose 7 € RT and odd integer n > 0 such that f(n7) = 6. Arbitrarily
choose real number Ty > f~1(#). Consider a uniform metric space S = ({u,v,w},d). Let
m > 0 be an arbitrary integer. Construct an online input instance R which is the union of
m + 1 parts Ry, - , Ry, as illustrated in Figure 3.

The part Ry has 5n + 3 requests. Specifically, u receives a request pg _; at time 0, pg o at
time Ty, and pj; at time Ty + (n + )7 for any 1 < i < 2n. v receives a request pg ; at time
Ty + it for any 1 <7 < 2n. w receives a request py _; at time 0 and a request pg,,,,; at time
To+irforany 1 <i<n. Let Ty =Top+ (2n+ 1)7,T; =T,;_1 + 3n7 for any 2 < j < m.

For any 1 < j < m, the part R; has 6n requests as follows: pi, arrives at u at time
Tj+ (2n +i—1)7, p}, arrives at v at time T + (n +1i — 1)7, and p}; arrives at w at time
T; + (i — 1)7, for every 1 <i < 2n.
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Actually, we can very slightly perturb the arrival time of some requests so that Strategy II1
results in exactly the following external matches: (p§ _1, 05 _1), (6,05 P0.n)» (P} ns P on) for
1 S] < m, <p;;€2n7p;')+1,n> and <p;},2n’ p’éu+1,n> for 1 < 1< m, and <pum,2n’pvm,2n>’ as illustrated
in Figure 3(a). The cost of Strategy III is at least 3m(d +6). On the other hand, consider the
offline solution SOL which has no external matches, as indicated in Figure 3(b). It has cost
at most 2f(To +7) + % f(r). When 7 approaches zero and m approaches infinity, we

have 3m(8 + 6) > 2f (T + 7) + ¢22E52=1 £(7), implying that Strategy III is not competitive.

Let’s look closer at the example. Consider an arbitrary (except the first) external match
(p,p’) of Strategy III. It is of misaligned-aligned pattern in the sense that ¢(p) and £(p’)
have opposite alignment status when the match occurs. Suppose £(p) is misaligned. Then
it has accumulated high cost, mainly due to the long delay of p. On the contrary, SOL
has accumulated little cost at £(p), because SOL has no pending request there while p is
pending. Hence, a match of misaligned-aligned pattern can significantly enlarge the gap
between online/offline costs. To be worse, such a match does not change the number of
aligned/misaligned points, making it possible that this pattern appears again and again,
enlarging the gap infinitely. As a result, we establish a set which consists of points that are
likely to be misaligned, and prioritize matching those requests that are located outside the
set. The algorithm is described in detail as follows.

4.2 Algorithm Description

Our algorithm maintains a subset ¥ C V and a counter z, € RT, which is initially set to 0,
for every point v € V. The algorithm proceeds round by round, and ¥ is reset to be the

empty set () at the beginning of each round. The first round begins when the algorithm starts.

Let k = |V|. Whenever 2k external matches are output, the present round ends immediately
and the next one begins. At any time ¢, the following operations are performed exhaustively,
i.e., until there is no possible matching according to the following rules.
1. Every z, increases at rate f'(t — to) if there is an active request p at v with t(p) = .
2. Match any pair of active requests p and p’ if £(p) = £(p').
3. For any pair of active requests p, p’ with u £ £(p) # v £ £(p’), match them and reset
2y = 2y = 0 if there is x € {u, v} satisfying
a. z, > 24, or
b. § <z, <26 and {u,v} ¥ = 0.
Arbitrarily choose such an = € {u, v}, and we say that x initiates this match. Reset ¥ to
be (U\ {u,v}) U{z} if either u ¢ ¥ or v ¢ V.

Priority rule: in applying Operation 3, the requests located outside ¥ are prioritized.

4.3 Competitive Analysis

Throughout this subsection, arbitrarily fix a time cost function f(¢) = t* with a > 1, a
uniform metric space S = (V,§) of k points, and an arbitrary online input instance R over
S. For ease of presentation, we assume that the arrival times of the requests are pairwise
different. This assumption does not lose generality since the arrival times can be arbitrarily
perturbed and timing in practice is up to errors. Let A stand for our algorithm and A* for
an optimum offline algorithm solving f-MPMD. We start competitive analysis by introducing
notation.

62:7
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4.3.1 Notations

For any request p € R and subset I C R™ of time, the time cost of A* incurred by p during
I is defined to be

Chime(p I, A7) = / £t — tp))dt,
), T* (P!

where T*(p) is the time when p gets matched by A*. For any v € V, define

Ctime(v»IaA*) = Z Ctime(pa Ia A*)

PERL(p)=v

Let Cspace(v, I, A*) be % times the number of requests at v that are externally matched by
A* during I.

Define T' = {t € RT : at time ¢, A has a pending request p with Zy(p) > 20}, We will
analyze time cost of A* inside and outside I" separately.

Our algorithm A runs round by round. Specifically, the round starting at time ¢y, and
ending at time ¢; is referred to as the time period (to,¢1]. Let II be the set of rounds of A.

For any 7 € II, define round_ costiime(m, A*) = >, cy Ctime(v, 7\ T, A*) which stands
for the time cost of A* during 7w \ T', and round_ costpace(m, A*) = >, vy Copace(v, T, A*)
which is the space cost of A* during 7.

For any v € V, we divide time into phases based on A’s behavior as follows. The first
phase begins at time ¢ = 0. Whenever an external match involving v occurs, the current
phase of v ends and the next phase of v begins. Specifically, the phase of v starting at
time to and ending at time t; is referred to as the period (¢o,t;] spent by v. For any
v €V, let ®, be the set of phases of v, and ® = |J,.y, ®». For any ¢ € &, define
the value of ¢, denoted by o(¢), to be the value of z, at the end of ¢. For an external
match m of A initiated by v, the phase of v ending with m is called the phase of m,
denoted by ¢y,. For any round = € II, let ®, be the set of phases ending in w. For any
round 7 € II, define phase_costyime(m, A*) = > oy Z¢E¢ﬂmfbu Ctime(v, ¢ \ T, A*), and

phase_costspace(m, A*) = 3 ey D gea, Ne. Cspace(v, ¢, A%).

We say that a phase of v is good, if the alignment status of v does not change during the
phase. Furthermore, a round 7 is good if all the phases in ®, are good. A phase or a round
is said to be bad if it is not good.

A phase is called complete if it ends with an external match of A, while a round is
complete if A outputs 2k external matches during it. Obviously, any round other than the
final one is complete.

4.3.2 Competitive Ratio of Our Algorithm

Basically, we show that in every round, the incremental cost of A and that of A* do not
differ too much. This is reduced to two tasks. First, if all the counters are always small (say,
no more than 44), the incremental cost of A in every round is O(kd), so it suffices to show
that the cost of A* increases by Q(d). This is the main task of this subsection and presented
in Lemma 8. Second, to deal with the case that some counter z, is large, we have to show
that the accumulated cost of A* in the phase increases nearly proportionately with z,, as
claimed in Lemma 9.

The following is a key lemma, stating that in every good complete round of A, the cost
of the optimum offline algorithm A* is not small.
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» Lemma 7. In every good complete round w, we have either round_costyme(m, A*) >
F(fF71268) — f71(8)), or round_costspace(m, A*) > 0, or phase_costiime(m, A*) > 4.

Up to now, we have focused on good rounds. The next lemma indicates that the cost of
A* in bad rounds can be ignored in some sense.

» Lemma 8. The number of bad rounds of A is at most twice the number of external matches

of A*.
For any phase ¢ € ®, define its truncated value to be
0 if o(¢) <20
o'(¢) = . 1 o
f(ft(o(@)) — f1(20)) otherwise
We will use truncated phase values to give a lower bound of the time cost of A*.
> Lemma 9. costy.(R) > > phase_costiime(m, A*) + 3 4cq 0'(4).
The following technical lemmas will be needed.

» Lemma 10. For any c1, -+ ,¢n > co >c¢ >0 and a > 1, we have

>imi(ej—o) co—c

S (yE - Vo (Y- Yo

» Lemma 11. If A has only one round on the instance R, cost 4(R)/cost 4« (R) = O(k).

Now we are ready to prove the main result.

» Theorem 1. For any f(t) = t* with constant o > 1, the competitive ratio of A for
f-MPMD on k-point uniform metric space is O(k).

Proof. Suppose that A has m rounds on the online input instance R, namely |II| = m. By
Lemma 11, we assume that m > 1.

In every round, there are at most 2k external matches and each of them ends two complete
phases. So, there are altogether at most 4km complete phases. Considering that there are
totally at most k incomplete phases, |®| < (4m+1)k < 5mk. Let &' = {¢p € & : o(¢p) > 40}. It
holds that cost 4(R) = cost’y (R) +costiy (R) < 2kmd+3" g 0(¢) < 22kmd+ 3 ;g (0 () —
40) < 22kmé + 3 e g0 (0(d) — 26).

On the other hand, as to the cost of .A*, we have cost 4« (R) = cost. (R) + cost’y. (R) >
costy« (R) + -y phase_costiime(m, A*) + 3 45 0'(¢) by Lemma 9. Trivially we also have
costa-(R) > 3 cplround_costyime(m, A*) + round_costspace(m, A*)]. Let II' be the set
of good complete rounds and m’ = |II'|. Let m” be the number of bad rounds. An easy

m'’

observation is that m’ +m” > m — 1. By Lemma 8, A* has at least "~ external matches:

2costa-(R) > costy. (R) + 3 oy phase_costiime(m, A*) + 345 0'(9)
+ > renlround_costyime(m, A*) + round__costspace(m, A*)]

> ’”7”6 + 2 pea 0 (B) + 2 rem [Phase_costyime(m, A*)
+round_ costiime(m, A*) + round__costgpace (T, A*)]

> M+ 4eq 0" (0) + F(FTH(20) = fH(0))m!

> mT_l(\a/i_ 1)a5+2¢e<p/ a'(®)

where the third equality is due to Lemma 7.

cost 4 (R) 22km5+z¢e¢/(0(¢)*26)
’ cost 4% (R) — %(%—1)“54-%2 o' ()’

Altogether which is O(k) by Lemma 10. <

ped’
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5 Lower Bound for Deterministic Algorithms

This section is devoted to showing that any deterministic algorithm for the convex-MPMD
problem on k-point uniform metric space must have competitive ratio Q(k), meaning that our
algorithm is optimum, up to a constant factor. Let’s begin with a convention of notation. Let
f :RT — RT be a nondecreasing, unbounded, continuous function satisfying f(0) = f/(0) = 0.
Let S = (V,9) be a uniform metric space with V' = {vg, v1,...vx}. Suppose that A is an
arbitrary deterministic online algorithm for the f-MPMD problem. Let T' € R* be such that
f(T) = ké. Arbitrarily choose a real number 7 > 0 such that n = %

We construct an instance R of online input to A and show that the competitive ratio of

is an even number.

A is at least Q(k). The instance R is determined in an online fashion: Roughly speaking,
based on the up-to-now behavior of A, we choose when and where to input next requests so
as to force A to have many external matches.

Specifically, R is determined in m rounds, where m is an arbitrary positive integer. The
first round begins at time 77 = 0. Some requests arrive in the manner as described in the
next four paragraphs. At arbitrary time Ty after these requests are all matched, finish the
first round and start the second round. Repeat this process until we have finished m rounds.
All the requests form the instance R.

Now we describe the requests that arrive during the rth round, namely in the interval
[T, Try1), for any 1 < r < m. Basically, at vy there is just one request, denoted by poo,
which arrives at time 77, while a request p;; arrives at every point v; at time 7). 4 j7, for any
integers 1 <+4¢ < k and j > 1. We will iteratively specify when requests should stop arriving
at the points other than vg.

Define Gy = (V, ) to be the graph on V with no edges. Let Cy = {vo}. Starting with
h = 1, iterate the following process until no more requests will arrive. At time T, + hT,
construct an undirected graph G, on V. It has an edge between any pair of vertices v; # v,/
if and only if by time T, + AT, A has matched one request at v; and another at v;; both
of which arrived during the period [T, T, + hT]. Let C}, be the set of the vertices in the
connected component of G}, containing vg. We proceed case by case:

Case 1: C,_; # Cj, = V. Then no more requests except p; pnt1 will arrive, where ¢ is

arbitrarily chosen such that v; € Cj, \ Cp—1. Denote this h by h,..

Case 2: Cj_1 = C}. Then no more requests except p; pny1 Will arrive, where ¢ is arbitrarily

chosen such that v; € V'\ C}. Denote this h by h,.

Case 3: otherwise. Then no more requests will arrive at any v; € C}, while requests continue
arriving at points in V' \ C},. Increase h by 1 and iterate.

Arbitrarily fix 1 < r < m in the rest of this section. Let R, be the set of requests that
arrive in the first r rounds, and N,. be the number of requests in R, \ R,_1, where Ry = .
Let R = R,,. It is easy to see four facts:

Fact 1: N, < k?n + 2.

Fact 2: R, \ R,_; has exactly one request at vy, and has an odd number of requests at the
point where the last request arrives, respectively.

Fact 3: R, \ R,_1 has an even number of requests at any other point.

Fact 4: No match occurs between requests of different rounds.

Some lemmas are needed for proving the main result.
2
» Lemma 12. cost-(R,) < (6 + E2f(7) + f(7))r.

» Lemma 13. cost4(R,) > kdr.
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» Theorem 3. Suppose that the time cost function f is nondecreasing, unbounded, continuous
and satisfies f(0) = f'(0) = 0. Then any deterministic algorithm for f-MPMD on k-point
uniform metric space has competitive ratio Q(k).

Proof. Suppose there are a = a(k,d) and b = b(k, ) such that for any m > 1, cost 4(R) <
a-cost 4« (R) +b. Fix k and §. Dividing both sides of inequality by m and letting m approach
2
infinity, by Lemmas 12 and 13, we get f(n7) < (6 + 5 f(7) + f(7))a, which means that
a> f(n7) _ B+
T OB F(Af(r) SRR f(r) ()]
Let 7 approach zero. One has lim,_,o f(7) = 0, and

fer) 1 fmr) ot 1) T o
B ) — A T ) A T iy toe sinee £1(0) =0

This means lim, o k?>nf(7) = 0, since f(n7) = k¢ is a constant when k and ¢ are fixed. As
B P B S <

a result, a = li =
result, a 1M, _,oa 2 11m-_,g (H_#f(q—)-kf('r) 8

6 Conclusion

We have designed an optimum deterministic online algorithm that solves f-MPMD for any
monomial function f(t) = t* with o > 1. It is remarkable that the algorithm remains
optimum if only f:RT +— R is an increasing and convex polynomial function with f(0) = 0.

Actually, following Subsection 4.3.2, one can easily see that the competitive ratio is at most

max{ﬁ%,supcz% WM}, which is O(k) by elementary calculus,

when f is fixed.

An interesting future direction is to design a randomized algorithm for convex-MPMD. A
randomized algorithm is usually more competitive than a deterministic one when considering
oblivious adversaries. We conjecture that there is a randomized algorithm for convex-MPMD
with competitive ratio O(log k) but no such algorithm with competitive ratio O(1). If this
turns out true, there is still a clear separation between linear-MPMD and convex-MPMD in
the context of randomized algorithms.

In contrast to convex functions, concave functions may model the fact that in some
applications the delay cost grows slower and slower, which encourages matching two new
requests instead of matching old requests. It seems not difficult to design an algorithm with
bounded competitive ratio for these concave cost functions, but to design a good one, i.e.,
with a very small competitive ratio, seems still challenging.
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