
Online Scheduling of Car-Sharing Requests
Between Two Locations with Many Cars and
Flexible Advance Bookings

Kelin Luo1

School of Management, Xi’an Jiaotong University, Xi’an, China
luokelin@xjtu.edu.cn

https://orcid.org/0000-0003-2006-0601

Thomas Erlebach
Department of Informatics, University of Leicester, Leicester, United Kingdom
t.erlebach@leicester.ac.uk

https://orcid.org/0000-0002-4470-5868

Yinfeng Xu
School of Management, Xi’an Jiaotong University, Xi’an, China
yfxu@xjtu.edu.cn

Abstract

We study an on-line scheduling problem that is motivated by applications such as car-sharing,
in which users submit ride requests, and the scheduler aims to accept requests of maximum
total profit using k servers (cars). Each ride request specifies the pick-up time and the pick-up
location (among two locations, with the other location being the destination). The scheduler
has to decide whether or not to accept a request immediately at the time when the request is
submitted (booking time). We consider two variants of the problem with respect to constraints
on the booking time: In the fixed booking time variant, a request must be submitted a fixed
amount of time before the pick-up time. In the variable booking time variant, a request can be
submitted at any time during a certain time interval (called the booking horizon) that precedes
the pick-up time. We present lower bounds on the competitive ratio for both variants and propose
a balanced greedy algorithm (BGA) that achieves the best possible competitive ratio. We prove
that, for the fixed booking time variant, BGA is 1.5-competitive if k = 3i (i ∈ N) and the fixed
booking length is not less than the travel time between the two locations; for the variable booking
time variant, BGA is 1.5-competitive if k = 3i (i ∈ N) and the length of the booking horizon is
less than the travel time between the two locations, and BGA is 5/3-competitive if k = 5i (i ∈ N)
and the length of the booking horizon is not less than the travel time between the two locations.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Car-sharing system, Competitive analysis, On-line scheduling

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.64

1 This work was partially supported by the China Postdoctoral Science Foundation (Grant No.
2016M592811), and the China Scholarship Council (Grant No. 201706280058).

© Kelin Luo, Thomas Erlebach, and Yinfeng Xu;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 64; pp. 64:1–64:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luokelin@xjtu.edu.cn
https://orcid.org/0000-0003-2006-0601
mailto:t.erlebach@leicester.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:yfxu@xjtu.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2018.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

1 Introduction

In a car-sharing system, a company offers cars to customers for a period of time. Customers
can pick up a car in one location, drive it to another location, and return it there. Car
booking requests arrive on-line, and the goal is to maximize the profit obtained from satisfied
requests. We refer to this problem as the car-sharing problem.

In a real setting, customer requests for car bookings arrive over time, and the decision
about each request must be made immediately, without knowledge of future requests. This
gives rise to an on-line problem that bears some resemblance to interval scheduling, but in
which additionally the pick-up and drop-off locations play an important role: The server that
serves a request must be at the pick-up location at the start time of the request and will be
located at the drop-off location at the end time of the request. We consider a setting where
all driving routes go between two fixed locations, but can be in either direction. For example,
the two locations could be a residential area and a nearby shopping mall or central business
district. Other applications that provide motivation for the problems we study include car
rental, taxi dispatching and boat rental for river crossings. A server can serve two consecutive
requests only if the drop-off location of the first request is the same as the pick-up location of
the second request, or if there is enough time to travel between the two locations otherwise.
We allow empty movements, i.e., a server can be moved from one location to another while
not serving a request. Such empty movements could be implemented by having company
staff drive a car from one location to another, or in the future by self-driving cars.

With respect to constraints on the booking time, one can consider the fixed booking
time variant and the variable booking time variant of the car-sharing problem [7]. The fixed
booking time variant requires users to submit requests in such a way that the amount of
time between the booking time of a request and its start time is a fixed value, independent
of the request. This simplifies the scheduling task because the order of the start times of the
requests is the same as the order of their release times (booking times). It is, however, less
convenient for users because they have to book a request at a specific time. In the variable
booking time variant, the booking time of a request must lie in a certain time interval (called
the booking horizon) before the start time of the request. Users can book a request at any
time in this interval.

1.1 Related Work
In [7], the authors studied the car-sharing problem for the special case of two locations
and a single server, considering both fixed booking times and variable booking times, and
presented tight results for the competitive ratio. The optimal competitive ratio was shown
to be 2 for fixed booking times and 3 for variable booking times. In [8], the authors dealt
with the car-sharing problem with two locations and two servers, considering only the case
of fixed booking times, and presented tight results for the competitive ratio. The optimal
competitive ratio was shown to be 2. In contrast to the previous work on car-sharing between
two locations, in this paper we consider the car-sharing problem for both fixed booking times
and variable booking times in the setting with k servers where k can be arbitrarily large. As
a larger number of servers provides more flexibility to the algorithm, different lower bound
constructions and different techniques for analyzing the competitive ratio of an algorithm are
required. It seems natural to expect that a large number of servers can help an algorithm to
achieve better competitive ratio, but our results show that, surprisingly, 3 servers (in one
case) and 5 servers (in another case) already allow us to get the best competitive ratio, and
no improvement is possible with more servers.

K. Luo, T. Erlebach, and Y. Xu 64:3

Böhmová et al. [3] showed that if all customer requests for car bookings are known in
advance, the problem of maximizing the number of accepted requests is solvable in polynomial
time. Furthermore, they considered the problem variant with two locations where each
customer requests two rides (in opposite directions) and the scheduler must accept either
both or neither of the two. They proved that this variant is NP-hard and APX-hard. In
contrast to their work, we consider the on-line version of the problem with k servers.

Amongst other related work, the problem that is closest to our setting is the on-line
dial-a-ride problem (OLDARP). In OLDARP, transportation requests between locations
in a metric space arrive over time, but typically it is assumed that requests want to be
served “as soon as possible” rather than at a specific time as in our problem. Versions of
OLDARP with the objective of serving all requests while minimizing the makespan [1, 2]
or the maximum flow time [6] have been widely studied in the literature. The versions
of OLDARP where not all requests need to be served includes competitive algorithms for
requests with deadlines where each request must be served before its deadline or rejected [9],
and for settings with a given time limit where the goal is to maximize the revenue from
requests served before the time limit [5]. In contrast to existing work on OLDARP, in this
paper we consider requests that need to be served at a specific time that is specified by the
request when it is released. Another related problem is the k-server problem [4, Ch. 10], but
in that problem all requests must be served and requests are served at a specific location.

1.2 Problem Description and Preliminaries
We consider a setting with only two locations (denoted by 0 and 1) and k servers (denoted
by s1, s2, . . . , sk). The k servers are initially located at location 0. The travel time from 0 to
1 is the same as the travel time from 1 to 0 and is denoted by t.

Let R denote a sequence of requests that are released over time. The i-th request is
denoted by ri = (t̃ri

, tri
, pri

) and is specified by the booking time or release time t̃ri
, the

start time (or pick-up time) tri , and the pick-up location pri ∈ {0, 1}. If ri is accepted, a
server must pick up the customer at pri

at time tri
and drop off the customer at location

ṗri
= 1 − pri

, the drop-off location of the request, at time ṫri
= tri

+ t, the end time (or
drop-off time) of the request. We assume that for all ri ∈ R, tri is an integer multiple of the
travel time between location 0 and location 1, i.e., tri

= νt for some ν ∈ N.
Each server can only serve one request at a time. Serving a request yields profit r > 0.

An empty movement between the two locations takes time t, but has no cost. If two requests
are such that they cannot both be served by the same server, we say that the requests are in
conflict. We denote the set of requests accepted by an algorithm by R′, and the i-th request
in R′, in order of request start times, is denoted by r′i. We denote the profit of serving the
requests in R′ by PR′ = r · |R′|. The goal of the car-sharing problem is to accept a set of
requests R′ that maximizes the profit PR′ .

The problem for k servers and two locations for the fixed booking time variant in which
tri − t̃ri = a for all requests ri, where a ≥ t is a constant, is called the kS2L-F problem.
For the variable booking time variant, the booking time t̃ri

of any request ri must satisfy
tri − bu ≤ t̃ri ≤ tri − bl, where bl and bu are constants, with t ≤ bl < bu, that specify the
minimum and maximum length, respectively, of the time interval between booking time and
start time. The problem for k servers and two locations for the variable booking time variant
is called the kS2L-V problem. We do not require that the algorithm assigns an accepted
request to a server immediately, provided that it ensures that one of the k servers will serve
the request. In our setting, however, it is not necessary for an algorithm to use this flexibility.

ISAAC 2018

64:4 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

Table 1 Lower and upper bounds on the competitive ratio for the car sharing problem.

Problem Booking constraint Lower bound Upper bound

kS2L-F a ≥ t 1.5 1.5 (k = 3i, i ∈ N)
kS2L-V bl ≥ t, bu − bl < t 1.5 1.5 (k = 3i, i ∈ N)
kS2L-V bl ≥ t, bu − bl ≥ t 5/3 5/3 (k = 5i, i ∈ N)

The performance of an algorithm for kS2L-F or kS2L-V is measured using competitive
analysis (see [4]). For any request sequence R, let PRA denote the objective value produced
by an on-line algorithm A, and PR∗ that obtained by an optimal scheduler OPT that has full
information about the request sequence in advance. The competitive ratio of A is defined as
ρA = supR

PR∗
PRA

. We say that A is ρ-competitive if PR∗ ≤ ρ ·PRA
for all request sequences R.

Let ON be the set of all on-line algorithms for a problem. We only consider deterministic
algorithms. A value β is a lower bound on the best possible competitive ratio if ρA ≥ β for
all A in ON . We say that an algorithm A is optimal if there is a lower bound β with ρA = β.

1.3 Paper Outline
An overview of our results is shown in Table 1. In Section 2, we prove the lower bounds. In
Section 3, we propose a balanced greedy algorithm that achieves the best possible competitive
ratio. Although variable booking times provide much greater flexibility to customers, we
show that our balanced greedy algorithm (only with a different choice of a parameter in the
algorithm) is still optimal. When k 6= 3i (resp. k 6= 5i), i ∈ N, the upper bounds for kS2L-V
when bl ≥ t and bu − bl < t (resp. bu − bl ≥ t) are only slightly worse. The proofs for the
latter cases are omitted due to space restrictions.

2 Lower Bounds

In this section, we present lower bounds for kS2L-F and kS2L-V. We use ALG to denote any
deterministic on-line algorithm and OPT to denote an optimal scheduler. The set of requests
accepted by ALG is referred to as R′, and the set of requests accepted by OPT as R∗.

I Theorem 1. For a ≥ t (resp. bl ≥ t, bu − bl < t), no deterministic on-line algorithm for
kS2L-F (resp. kS2L-V) can achieve competitive ratio smaller than 1.5.

Proof. Initially, the adversary releases the 1st request sequence r1, r2, . . . , rk with r1 = r2 =
· · · = rk = (ν · t − a, ν · t, 1), where ν ∈ N and ν · t − a ≥ 0 (resp. r1 = r2 = · · · = rk =
(ν · t − bl, ν · t, 1) where ν ∈ N and ν · t − bl ≥ 0). Suppose ALG accepts k1 (1 ≤ k1 ≤ k)
requests in the 1st request sequence. There are two options that the adversary can adopt:
Option 1: The adversary releases the 2nd request sequence rk+1, rk+2, . . . , r2k with rk+1 =

rk+2 = · · · = r2k = (t̃r1 , tr1 , 0), and the 3rd request sequence r2k+1, r2k+2, . . . , r3k with
r2k+1 = r2k+2 = · · · = r3k = (t̃r1 + t, tr1 + t, 1). Note that the requests in the 2nd and the
3rd request sequences must be assigned to different servers from the k1 servers that have
accepted requests of the 1st request sequence as they are in conflict. From this it follows
that ALG cannot accept more than 2(k − k1) requests of the 2nd and the 3rd request
sequences. OPT accepts all the requests in the 2nd and the 3rd request sequences. We
have PR∗ = 2kr and PR′ ≤ k1r + 2(k − k1)r = (2k − k1)r, and hence PR∗

PR′
≥ 2k

2k−k1
.

Option 2: The adversary does not release any more requests. OPT accepts all requests in
the 1st request sequence. We have PR∗ = k · r and PR′ = k1 · r, and hence PR∗

PR′
≥ k

k1
.

K. Luo, T. Erlebach, and Y. Xu 64:5

Algorithm 1 Balanced Greedy Algorithm (BGA).
Input: k servers (2θk specified servers and (1− 2θ)k unspecified servers), requests arrive
over time.
Step: When request ri arrives, if it is acceptable to a specified server, assign it to that
server; otherwise, if ri is acceptable to an unspecified server, assign ri to that server;
otherwise, reject it.

If k1 ≥ 2k
3 , 2k

2k−k1
≥ 1.5; if k1 ≤ 2k

3 , k
k1
≥ 1.5. As the adversary can choose the option

that maximizes PR∗
PR′

, the claimed lower bound of 1.5 follows. J

I Theorem 2. For bl ≥ t and bu − bl ≥ t, no deterministic on-line algorithm for kS2L-V
can achieve competitive ratio smaller than 5/3.

Proof. Initially, the adversary releases the 1st request sequence r1, r2, . . . , rk with r1 = r2 =
· · · = rk = (ν · t − bu, ν · t, 0) (where ν ∈ N with ν · t − bu ≥ 0). Suppose ALG accepts
k1 (1 ≤ k1 ≤ k) requests in the 1st request sequence. There are now two options that the
adversary can adopt.

Option 1: The adversary releases the 2nd request sequence rk+1, rk+2, . . . , r2k with rk+1 =
rk+2 = · · · = r2k = (t̃r1 , tr1 − t, 0) (note that tr1 − t − t̃r1 = ν · t − t − (ν · t − bu) =
bu − t ≥ bl), and the 3rd request sequence r2k+1, r2k+2, . . . , r3k with r2k+1 = r2k+2 =
· · · = r3k = (t̃r2k

+ t, tr2k
+ t, 1), and the 4th request sequence r3k+1, r3k+2, . . . , r4k with

r3k+1 = r3k+2 = · · · = r4k = (t̃r2k
+ 2t, tr2k

+ 2t, 0).
Note that the requests in the 2nd, the 3rd and the 4th request sequences must be
assigned to different servers from the k1 servers that have accepted requests of the 1st
request sequence as they are in conflict. From this it follows that ALG cannot accept
more than 3(k − k1) requests in the 2nd, 3rd and 4th request sequences. OPT accepts
all the requests in the 2nd, 3rd and 4th request sequences. We have PR∗ = 3kr and
PR′ ≤ k1r + 3(k − k1)r = (3k − 2k1)r, and hence PR∗

PR′
≥ 3k

3k−2k1
.

Option 2: The adversary does not release any more requests. OPT accepts all requests in
the 1st request sequence. We have PR∗ = k · r and PR′ = k1 · r, and hence PR∗

PR′
≥ k

k1
.

If k1 ≥ 3
5k,

3k
3k−2k1

≥ 5
3 ; if k1 ≤ 3

5k,
k
k1
≥ 5

3 . As the adversary can choose the option that
maximizes PR∗

PR′
, the claimed lower bound of 5/3 follows. J

3 Upper Bounds

We propose a Balanced Greedy Algorithm (BGA) for the kS2L-F/V problem, shown in
Algorithm 1. The k servers are divided into two groups: a set Sf of 2θk specified servers and
a set Su of (1− 2θ)k unspecified servers, where θ is a parameter satisfying 0 ≤ θ ≤ 1

2 and
chosen in such a way that θk is an integer. The set Sf is further partitioned into sets Sof
and Sef of θk servers each. The θk specified servers in Sof serve only requests that start at
location 0 at time νt where ν is even and requests that start at location 1 at time νt where ν
is odd. The θk specified servers in Sef serve the other request types, i.e., requests that start
at location 0 (resp. 1) at time νt where ν is odd (resp. even).

When the algorithm receives request ri, let R′(ri) denote the set of requests that BGA
has already accepted, and let R′j(ri) denote the set of requests that BGA has accepted and
that are assigned to sj , for any j. Request ri is acceptable to a specified server if and only if
the number of requests in R′(ri) that start at tri

and have pick-up location pri
is less than

ISAAC 2018

64:6 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

θk. Furthermore, ri is acceptable to an unspecified server sj (sj ∈ Su) if and only if ri is
not in conflict with the requests in R′j(ri), i.e., for all r′q ∈ R′j(ri) we have |tri

− tr′q | ≥ 2t if
pri

= pr′q and |tri
− tr′q | ≥ t if pri

6= pr′q .
Denote the requests accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗|R∗|} and the requests

accepted by BGA by R′ = {r′1, r′2, . . . , r′|R′|} indexed in order of non-decreasing start times.
The requests with equal start time are ordered in the order in which they arrive. Let R∗(d)
denote the set of requests in R∗ which start at time d, and let R∗(d, e) denote the set of
requests in R∗ which start at time d and have pick-up location e. Observe that for all d, e, we
have |R∗(d)| ≤ k and |R∗(d, e)| ≤ k. Let R′(d) denote the set of requests in R′ which start
at time d, and let R′(d, e) denote the set of requests in R′ which start at time d and have
pick-up location e. Observe that for all d, e, we have |R′(d)| ≤ k and |R′(d, e)| ≤ (1− θ)k.

For simplification of the analysis, we suppose that the specified servers in each of the sets
Sof and Sef are ordered and if a request ri is acceptable to some specified server, BGA assigns
ri to the available specified server that comes first in that order.

I Observation 3. If θk > 0, then ∀r∗i ∈ R∗: tr′1 ≤ tr∗i ≤ tr′|R′| .

I Observation 4. For every r∗i ∈ R∗, BGA accepts min{|R∗(tr∗
i
, pr∗

i
)|, θk} requests that

start at tr∗
i
and have pick-up location pr∗

i
with specified servers, and hence |R′(tr∗

i
, pr∗

i
)| ≥

min{|R∗(tr∗
i
, pr∗

i
)|, θk}.

I Observation 5. If k0 servers of OPT , where 0 ≤ k0 ≤ k, each accept y (y ≥ 1) requests
that start during period [x, x+ yt) (where x = νt for some ν ∈ N), then at least min{θk, k0}
specified servers of BGA each accept y requests that start during this period.

To illustrate the idea of our analysis of BGA, we first give a simple proof of an upper
bound of 2 on the competitive ratio of BGA.

I Theorem 6. With θ = 1
2 , BGA is 2-competitive for kS2L-F and kS2L-V if k is even.

Proof. Since BGA with θ = 1
2 accepts a request ri ∈ R if the number of requests in

R′(ri) that start at tri
and have pick-up location pri

is less than k
2 , BGA can always accept

min{k2 , |R
∗(tr∗

i
, pr∗

i
)|} requests that start at the same time and have the same pick-up location.

As OPT accepts at most k requests that start at the same time and have the same pick-up
location, i.e., |R∗(tr∗

i
, pr∗

i
)| ≤ k, it follows that |R′| ≥ 1

2 |R
∗|. J

I Definition 7 (Common and uncommon request). For each r∗i ∈ R∗, if the number of requests
in R∗ that start at tr∗

i
and have pick-up location pr∗

i
is no more than the number of requests

in R′ which start at tr∗
i
and have pick-up location pr∗

i
, i.e., |R∗(tr∗

i
, pr∗

i
)| ≤ |R′(tr∗

i
, pr∗

i
)|, we

say that the requests in R∗(tr∗
i
, pr∗

i
) are common; if the number of requests in R∗ which start

at tr∗
i
and have pick-up location pr∗

i
is greater than the number of requests in R′ which start

at tr∗
i
and have pick-up location pr∗

i
, i.e., |R∗(tr∗

i
, pr∗

i
)| > |R′(tr∗

i
, pr∗

i
)|, we say that the first

|R′(tr∗
i
, pr∗

i
)| requests in R∗(tr∗

i
, pr∗

i
) are common, and the remaining requests in R∗(tr∗

i
, pr∗

i
)

are uncommon.

I Observation 8. If r∗i ∈ R∗ is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk.

I Definition 9 (Sufficient and insufficient interval). We say that an interval [x, x+ t) (x is an
integer multiple of t) is sufficient if |R′(x)| ≥ (1− θ)|R∗(x)|; otherwise it is insufficient.

K. Luo, T. Erlebach, and Y. Xu 64:7

3.1 Upper Bounds for kS2L-F
I Observation 10. For kS2L-F, if interval [x, x+t) (x is an integer multiple of t) is insufficient,
then x ≥ tr1 + t.

With the following two lemmas, we show that if an interval I is insufficient, the interval
I ′ preceding it must be sufficient and the competitive ratio of BGA with respect to requests
starting in I and I ′ is at most 1.5 (for θ = 1

3).

I Lemma 11. For 1
3 ≤ θ ≤ 1

2 , if r∗i ∈ R∗ is uncommon and interval [tr∗
i
, tr∗

i
+ t) is

insufficient, then |R′(tr∗
i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|

Proof. As r∗i is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk (by Observation 8) and every unspecified

server has accepted a request that is in conflict with r∗i , i.e., for all sj ∈ Su, there is
r′q ∈ R′j(r∗i) (recall that R′j(r∗i) is the set of requests that are accepted and assigned to sj by
BGA at the time when r∗i is released) such that tr∗

i
= tr′q and pr∗

i
= pr′q , or tr∗i − tr′q = t and

pr∗
i

= pr′q , or tr∗i = tr′q and pr∗
i
6= pr′q .

Observe that |R′(tr∗
i
)| < (1 − θ)k because interval [tr∗

i
, tr∗

i
+ t) is insufficient. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, |R′(tr∗

i
, ṗr∗

i
)| < (1 − θ)k − θk ≤ θk (as 1

3 ≤ θ). This implies that
BGA does not use unspecified servers to serve requests in R′(tr∗

i
, ṗr∗

i
) because BGA does

not use unspecified servers when specified servers are available. From this it follows that
each of the unspecified servers either accepts a request that starts at tr∗

i
with pick-up

location pr∗
i
, or accepts a request that starts at tr∗

i
− t with pick-up location pr∗

i
. As

|R′(tr∗
i
, pr∗

i
)| < (1− θ)k = θk + (1− 2θ)k, at least one unspecified server accepts a request

that starts at tr∗
i
− t with pick-up location pr∗

i
. This implies that |R′(tr∗

i
− t, pr∗

i
)| ≥ θk. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, each of the specified servers either accepts a request that starts at tr∗

i
at

pr∗
i
or a request that starts at tr∗

i
−t at pr∗

i
. Therefore |R′(tr∗

i
−t, pr∗

i
)| = k−|R′(tr∗

i
, pr∗

i
)|. J

I Lemma 12. For θ = 1
3 , if r

∗
i ∈ R∗ is uncommon and interval [tr∗

i
, tr∗

i
+ t) is insufficient,

then |R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≥ 2

3 (|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|) and also |R′(tr∗

i
−t)| > 2

3 |R
∗(tr∗

i
−t)|.

Proof. According to Lemma 11, |R′(tr∗
i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|. From this it follows

that each server of BGA accepts at least one request that starts during period [tr∗
i
− t, tr∗

i
],

i.e., |R′(tr∗
i
− t)|+ |R′(tr∗

i
)| ≥ k. Suppose k0 servers of OPT each accept two requests that

start during period [tr∗
i
− t, tr∗

i
]. We distinguish two cases.

Case 1: k0 ≥ k
3 . By Observation 5 (with y = 2), at least θk servers of BGA accept two

requests that start during period [tr∗
i
− t, tr∗

i
]. Since each server accepts at least one

request that starts during period [tr∗
i
−t, tr∗

i
], |R′(tr∗

i
−t)|+|R′(tr∗

i
)| ≥ 2θk+(1−θ)k = 4

3k.
Since |R∗(tr∗

i
− t)|+ |R∗(tr∗

i
)| ≤ 2k (each server of OPT accepts at most two requests

that start during period [tr∗
i
− t, tr∗

i
]), we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

2k
4
3k

= 3
2 .

Case 2: k0 <
k
3 . Note that each server of OPT accepts at most two requests that start

during period [tr∗
i
− t, tr∗

i
], so |R∗(tr∗

i
− t)| + |R∗(tr∗

i
)| < 2k

3 + (k − k
3) = 4

3k. Since

|R′(tr∗
i
− t)|+ |R′(tr∗

i
)| ≥ k, we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

4
3k

k < 3
2 .

Because |R′(tr∗
i
)| < 2

3 |R
∗(tr∗

i
)| and |R′(tr∗

i
− t)|+ |R′(tr∗

i
)| ≥ 2

3 (|R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)|),

we have |R′(tr∗
i
− t)| > 2

3 |R
∗(tr∗

i
− t)|. J

I Corollary 13. If interval [x, x + t) (x is an integer multiple of t) is insufficient, then
interval [x− t, x) and interval [x+ t, x+ 2t) are sufficient.

ISAAC 2018

64:8 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

Algorithm 2 Partition Rule (for kS2L-F).

Initialization: γ =
tr′
|R′|
−tr′1
t , j = 2, lj = 0, i = 0.

while i ≤ γ do
if interval i and i+ 1 are sufficient then

j = j + 1, i = i+ 1, lj = i;
else if interval i is sufficient and interval i+ 1 is insufficient then

j = j + 1, i = i+ 2, lj = i;
γ′ = j.

I Theorem 14. With θ = 1
3 , BGA is 3

2 -competitive for kS2L-F if k = 3ν (ν ∈ N).

Proof. We partition the time horizon [0,∞) into γ′ (γ′ ≤ γ + 3, where γ =
tr′
|R′|
−tr′1
t)

periods that can be analyzed independently. Let interval i (0 ≤ i ≤ γ) denote interval
[tr′1 +it, tr′1 +(i+1)t). We partition the time horizon based on the Partition rule (Algorithm 2)
and let period j (1 < j < γ′) denote [tr′1 + lj · t, tr′1 + lj+1 · t), in such a way that BGA and
OPT do not accept any requests in the first period [0, tr′1) and the last period [tr′1 + lγ′ · t,∞),
and the length of each period j (1 < j < γ′), i.e., (lj+1− lj)t, is either t or 2t. By Corollary 13
and the Partition rule (Algorithm 2), we have the following properties: if the length of period
j is t, i.e., lj+1− lj = 1, period j is sufficient; if the length of period j is 2t, i.e., lj+1− lj = 2,
the first half of period j, i.e., [tr′1 + lj · t, tr′1 + (lj + 1) · t), is sufficient and the second half
of period j, i.e., [tr′1 + (lj + 1) · t, tr′1 + (lj + 2) · t), is insufficient. Recall that interval 0 is
always sufficient by Observation 10.

Let R∗(j) denote the set of requests accepted by OPT that start in period j, for 1 ≤ j ≤ γ′.
Let R′(j) denote the set of requests accepted by BGA that start in period j, for 1 ≤ j ≤ γ′. We
bound the competitive ratio of BGA by analyzing each period independently. As R′ =

⋃
j R
′
(j)

and R∗ =
⋃
j R
∗
(j), it is clear for any α ≥ 1 that PR∗/PR′ ≤ α follows if we can show that

PR∗(j)
/PR′(j)

≤ α for all j, 1 ≤ j ≤ γ′.
According to Lemma 12, when lj+1− lj = 2, PR∗(j)

/PR′(j)
≤ 3

2 . Based on the partition rule,
when lj+1− lj = 1, period j is sufficient, i.e., |R′(j)| ≥ (1−θ)|R∗(j)| and hence PR∗(j)

/PR′(j)
≤ 3

2 .
Since PR∗(j)

= PR′(j)
= 0 for j = 1 and j = γ′ (recall that by Observation 3, all requests

accepted by BGA and OPT do not start earlier than tr′1 and do not start later than tr′
|R′|

),
the theorem follows. J

3.2 Upper Bounds for kS2L-V
If bl ≥ t and bu − bl < t for the kS2L-V problem, let θ = 1

3 . Since each request starts at time
νt for some ν ∈ N, all requests start in order of their release times, and therefore the upper
bound for the kS2L-V problem is equal to the upper bound for the kS2L-F problem (with
a ≥ t). From now on consider the kS2L-V problem with bl ≥ t and bu− bl ≥ t, and let θ = 2

5 .

I Lemma 15. For θ = 2
5 , if r

∗
i ∈ R∗ is uncommon and interval [tr∗

i
, tr∗

i
+ t) is insufficient,

then one of the following holds:
(i) |R′(tr∗

i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)| (> 2

5k) and |R′(tr∗
i

+ t, pr∗
i
)| ≤ θk, or

(ii) |R′(tr∗
i

+ t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)| (> 2

5k) and |R′(tr∗
i
− t, pr∗

i
)| ≤ θk, or

(iii) |R′(tr∗
i
− t, pr∗

i
)| − θk + |R′(tr∗

i
+ t, pr∗

i
)| − θk + |R′(tr∗

i
, pr∗

i
)| − θk ≥ (1 − 2θ)k and

|R′(tr∗
i
− t, pr∗

i
)| > θk and |R′(tr∗

i
+ t, pr∗

i
)| > θk.

K. Luo, T. Erlebach, and Y. Xu 64:9

Proof. As r∗i is uncommon, |R′(tr∗
i
, pr∗

i
)| ≥ θk (by Observation 8) and every unspecified

server has accepted a request that is in conflict with r∗i , i.e., for every sj ∈ Su there exists
r′q ∈ R′j(r∗i) (recall that R′j(r∗i) is the set of requests that are accepted and assigned to sj by
BGA at the time when r∗i arrives) such that tr′q = tr∗

i
and pr∗

i
= pr′q , or tr′q = tr∗

i
− t and

pr∗
i

= pr′q , or tr′q = tr∗
i

+ t and pr∗
i

= pr′q , or tr′q = tr∗
i
and pr∗

i
6= pr′q .

Observe that |R′(tr∗
i
)| < (1 − θ)k because interval [tr∗

i
, tr∗

i
+ t) is insufficient. Since

|R′(tr∗
i
, pr∗

i
)| ≥ θk, |R′(tr∗

i
, ṗr∗

i
)| < (1 − θ)k − θk ≤ θk (as θ = 2

5). This implies that BGA
does not use unspecified servers to serve requests in R′(tr∗

i
, ṗr∗

i
) because BGA does not use

unspecified servers when specified servers are available. From this it follows that each of the
unspecified servers either accepts a request that starts at tr∗

i
with pick-up location pr∗

i
, or

accepts a request that starts at tr∗
i
− t with pick-up location pr∗

i
, or accepts a request that

starts at tr∗
i

+ t with pick-up location pr∗
i
. As |R′(tr∗

i
, pr∗

i
)| < (1− θ)k = θk + (1− 2θ)k, at

least one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
, or a request that

starts at tr∗
i

+ t at pr∗
i
. We distinguish three cases.

Case 1: No unspecified server accepts a request that starts at tr∗
i

+ t at pr∗
i
. Then at least

one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. This implies that

|R′(tr∗
i
−t, pr∗

i
)| ≥ θk. Since |R′(tr∗

i
, pr∗

i
)| ≥ θk, each of the specified servers either accepts

a request that starts at tr∗
i
at pr∗

i
or a request that starts at tr∗

i
− t at pr∗

i
. Each of the

unspecified servers either accepts a request that starts at tr∗
i
at pr∗

i
, or a request that

starts at tr∗
i
− t at pr∗

i
. Therefore, |R′(tr∗

i
− t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|, and (i) holds.

Case 2: No unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. By symmetric

arguments to Case 1, we get |R′(tr∗
i

+ t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)|, and (ii) holds.

Case 3: At least one unspecified server accepts a request that starts at tr∗
i

+ t at pr∗
i
, and at

least one unspecified server accepts a request that starts at tr∗
i
− t at pr∗

i
. This implies

that |R′(tr∗
i
− t, pr∗

i
)| ≥ θk and |R′(tr∗

i
+ t, pr∗

i
)| ≥ θk. Since each of the unspecified

servers either accepts a request that starts at tr∗
i
at pr∗

i
, or a request that starts at tr∗

i
− t

at pr∗
i
, or a request that starts at tr∗

i
+ t at pr∗

i
, we have that |R′(tr∗

i
− t, pr∗

i
)| − θk +

|R′(tr∗
i

+ t, pr∗
i
)| − θk + |R′(tr∗

i
, pr∗

i
)| − θk ≥ (1− 2θ)k, and (iii) holds. J

I Definition 16 (l-full and r-full, l-large and r-large, l-small and r-small). If r∗i is an uncommon
request such that the interval I = [tr∗

i
, tr∗

i
+ t) is insufficient, we say that the interval

[tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-full (resp. r-full) with respect to I if |R′(tr∗

i
−

t, pr∗
i
)| = k − |R′(tr∗

i
, pr∗

i
)| (resp. if |R′(tr∗

i
+ t, pr∗

i
)| = k − |R′(tr∗

i
, pr∗

i
)|); we say that the

interval [tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-large (resp. r-large) with respect to I if

2
5k < |R

′(tr∗
i
− t, pr∗

i
)| < k − |R′(tr∗

i
, pr∗

i
)| (resp. 2

5k < |R
′(tr∗

i
+ t, pr∗

i
)| < k − |R′(tr∗

i
, pr∗

i
)|);

and we say that the interval [tr∗
i
− t, tr∗

i
) (resp. [tr∗

i
+ t, tr∗

i
+ 2t)) is l-small (resp. r-small)

with respect to I if |R′(tr∗
i
− t, pr∗

i
)| ≤ 2

5k (resp. |R′(tr∗
i

+ t, pr∗
i
)| ≤ 2

5k).

Note that the properties l-full, l-large and l-small refer to the interval directly to the left
of an insufficient interval, and the properties r-full, r-large and r-small to the interval directly
to the right of an insufficient interval.

I Observation 17 (Uniqueness). If r∗i is uncommon and interval [tr∗
i
, tr∗

i
+ t) is insufficient,

then interval [tr∗
i
− t, tr∗

i
) is either l-full, l-large, or l-small, and interval [tr∗

i
+ t, tr∗

i
+ 2t) is

either r-full, r-large, or r-small.

By Lemma 15, we obtain:

I Observation 18. If r∗i is uncommon, interval [tr∗
i
, tr∗

i
+ t) is insufficient, and interval

[tr∗
i

+ t, tr∗
i

+ 2t) is r-small, then interval [tr∗
i
− t, tr∗

i
) is l-full. Similarly, if r∗i is uncommon,

interval [tr∗
i
, tr∗

i
+t) is insufficient, and interval [tr∗

i
−t, tr∗

i
) is l-small, then interval [tr∗

i
+t, tr∗

i
)

is r-full.

ISAAC 2018

64:10 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

I Lemma 19. For θ = 2
5k, if r

∗
i ∈ R∗ is uncommon, interval [tr∗

i
, tr∗

i
+ t) is insufficient

and |R′(tr∗
i
− t, pr∗

i
)| > 2

5k (i.e., interval [tr∗
i
− t, tr∗

i
) is l-large or l-full), then |R′(tr∗

i
− t)|+

|R′(tr∗
i
)| ≥ 3

5 (|R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)|) and interval [tr∗

i
− t, tr∗

i
) is sufficient. Similarly, if r∗i

is uncommon, interval [tr∗
i
, tr∗

i
+ t) is insufficient and |R′(tr∗

i
+ t, pr∗

i
)| > 2

5k (i.e., interval
[tr∗

i
+ t, tr∗

i
+ 2t) is r-large or r-full), then |R′(tr∗

i
+ t)|+ |R′(tr∗

i
)| ≥ 3

5 (|R∗(tr∗
i

+ t)|+ |R∗(tr∗
i
)|

and interval [tr∗
i

+ t, tr∗
i

+ 2t) is sufficient.

Proof. Observe that |R′(tr∗
i
, pr∗

i
)| ≥ 2

5k because r∗i is uncommon. Since |R′(tr∗
i
−t, pr∗

i
)| ≥ 2

5k

(resp. |R′(tr∗
i

+ t, pr∗
i
)| ≥ 2

5k), each specified server of BGA accepts at least one request that
starts during period [tr∗

i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). Suppose k0 servers of OPT each accept

two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). We distinguish two

cases.
Case 1: k0 ≥ 2

5k. By Observation 5 (with y = 2), at least 2
5k servers of BGA each accept

two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]). Since each specified

server of BGA accepts at least one request that starts during period [tr∗
i
− t, tr∗

i
] (resp.

[tr∗
i
, tr∗

i
+t]), |R′(tr∗

i
−t)|+|R′(tr∗

i
)| ≥ 2· 25k+ 2

5k ≥
6
5k (resp. |R′(tr∗

i
+t)|+|R′(tr∗

i
)| ≥ 6

5k).
Since |R∗(tr∗

i
− t)|+ |R∗(tr∗

i
)| ≤ 2k and |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
)| ≤ 2k (each server of OPT

accepts at most two requests that start during period [tr∗
i
− t, tr∗

i
] or period [tr∗

i
+ t, tr∗

i
]),

we have
|R∗(tr∗

i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

2k
6
5k

= 5
3 (resp.

|R∗(tr∗
i

+t)|+|R∗(tr∗
i

)|
|R′(tr∗

i
+t)|+|R′(tr∗

i
)| ≤

5
3).

Case 2: k0 <
2
5k. According to the use of specified servers by BGA, at least k0 servers of

BGA each accept two requests that start during period [tr∗
i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]).

Since each specified server of BGA accepts at least one request that starts during period
[tr∗

i
− t, tr∗

i
] (resp. [tr∗

i
, tr∗

i
+ t]), |R′(tr∗

i
− t)|+ |R′(tr∗

i
)| ≥ 2k0 + 4

5k− k0 ≥ 4
5k + k0 (resp.

|R′(tr∗
i

+ t)|+ |R′(tr∗
i
)| ≥ 4

5k+ k0). Since |R∗(tr∗
i
− t)|+ |R∗(tr∗

i
)| ≤ 2k0 + k− k0 = k+ k0

and |R∗(tr∗
i

+ t)| + |R∗(tr∗
i
)| ≤ k + k0, we have

|R∗(tr∗
i
−t)|+|R∗(tr∗

i
)|

|R′(tr∗
i
−t)|+|R′(tr∗

i
)| ≤

k+k0
4
5k+k0

≤ 5
4 < 5

3

(resp.
|R∗(tr∗

i
+t)|+|R∗(tr∗

i
)|

|R′(tr∗
i

+t)|+|R′(tr∗
i

)| <
5
3).

Observe that |R′(tr∗
i
)| < 3

5 |R
∗(tr∗

i
)| because interval [tr∗

i
, tr∗

i
+ t) is insufficient. If

|R′(tr∗
i
− t, pr∗

i
)| > 2

5k, then |R
′(tr∗

i
− t)| + |R′(tr∗

i
)| ≥ 3

5 (|R∗(tr∗
i
− t)| + |R∗(tr∗

i
)|) implies

|R′(tr∗
i
− t)| ≥ 3

5 |R
∗(tr∗

i
− t)|. Similarly, if |R′(tr∗

i
+ t, pr∗

i
)| > 2

5k, then |R
′(tr∗

i
+ t)| ≥

3
5 |R
∗(tr∗

i
+ t)|. J

I Lemma 20. For θ = 2
5k, consider any r∗i , r∗j ∈ R∗ where tr∗

j
= tr∗

i
+ 2t, r∗i and r∗j are

uncommon, intervals [tr∗
i
, tr∗

i
+ t) and [tr∗

j
, tr∗

j
+ t) are insufficient, and interval [tr∗

i
+ t, tr∗

j
)

is r-full (|R′(tr∗
i

+ t, pr∗
i
)| = k−|R′(tr∗

i
, pr∗

i
)|). Then |R′(tr∗

i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+ 2t)| ≥

3
5 (|R∗(tr∗

i
)|+ |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
+ 2t)|).

Proof. Observe that |R′(tr∗
i
, pr∗

i
)| ≥ 2

5k (as r∗i is uncommon), |R′(tr∗
i

+ t, pr∗
i
)| ≥ 2

5k (as
interval [tr∗

i
+ t, tr∗

i
) is r-full) and |R′(tr∗

j
, pr∗

j
)| ≥ 2

5k (as r∗j is uncommon). From this it
follows that at least 2

5k specified servers of BGA each at least accept two requests that start
during period [tr∗

i
, tr∗

j
]. Since |R′(tr∗

i
+ t, pr∗

i
)| = 1 − |R′(tr∗

i
, pr∗

i
)|, each server of BGA at

least accepts one request that starts during period [tr∗
i
, tr∗

j
]. Suppose k0 servers of OPT each

accept three requests that start during period [tr∗
i
, tr∗

j
]. We distinguish two cases.

Case 1: k0 ≥ 2
5k. By Observation 5 (with y = 3), at least 2

5k servers of BGA each accept
three requests that start during period [tr∗

i
, tr∗

j
]. Since each server of BGA accepts at

least one request that starts during period [tr∗
i
, tr∗

j
], |R′(tr∗

i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+

2t)| ≥ 3 · 2
5k + 3

5k ≥
9
5k. Since |R∗(tr∗

i
)| + |R∗(tr∗

i
+ t)| + |R∗(tr∗

i
+ 2t)| ≤ 3k, we have

|R′(tr∗
i
)|+ |R′(tr∗

i
+ t)|+ |R′(tr∗

i
+ 2t)| ≥ 3

5 (|R∗(tr∗
i
)|+ |R∗(tr∗

i
+ t)|+ |R∗(tr∗

i
+ 2t)|).

K. Luo, T. Erlebach, and Y. Xu 64:11

Algorithm 3 Partition Rule (for kS2L-V).

Initialization: γ =
tr′
|R′|
−tr′1
t , j = 2, lj = 0, i = 0.

while i ≤ γ do
if interval i and interval i+ 1 are Suf, then
j = j + 1, i = i+ 1, lj = i;

else if interval i is Suf and l-small, and interval i+ 1 is InSuf, then
j = j + 1, i = i+ 1, lj = i;

else if interval i is Suf and not l-small, and interval i+ 1 is InSuf, then
j = j + 1, i = i+ 2, lj = i;

else if interval i is InSuf, interval i+ 1 is r-full and interval i+ 2 is InSuf, then
j = j + 1, i = i+ 3, lj = i;

else if interval i is InSuf, interval i+ 1 is r-full and interval i+ 2 is Suf, then
j = j + 1, i = i+ 2, lj = i;

γ′ = j.

Case 2: k0 <
2
5k. By Observation 5 (with y = 3), at least k0 servers of BGA each accept

three requests that start during period [tr∗
i
, tr∗

j
]. Since each server of BGA accepts at least

one request that starts during period [tr∗
i
, tr∗

j
] and at least 2

5k specified servers of BGA
each accept at least two requests that start during period [tr∗

i
, tr∗

j
], |R′(tr∗

i
)|+ |R′(tr∗

i
+

t)|+ |R′(tr∗
i

+ 2t)| ≥ 3k0 + 2 · (2
5k − k0) + 3

5k ≥
7
5k + k0. Since |R∗(tr∗

i
)|+ |R∗(tr∗

i
+ t)|+

|R∗(tr∗
i

+ 2t)| ≤ 3k0 + 2(k − k0) = 2k + k0, we have
|R∗(tr∗

i
)|+|R∗(tr∗

i
+t)|+|R∗(tr∗

i
+2t)|

|R′(tr∗
i

)|+|R′(tr∗
i

+t)|+|R′(tr∗
i

+2t)| ≤
2k+k0
7
5k+k0

≤ 10
7 < 5

3 . J

I Theorem 21. With θ = 2
5 , BGA is 5

3 -competitive for kS2L-V if k = 5ν (ν ∈ N).

Proof. We partition the time horizon [0,∞) into γ′ (γ′ ≤ γ + 3, γ =
tr′
|R′|
−tr′1
t) periods that

can be analyzed independently. Let interval i (0 ≤ i ≤ γ) denote the interval [tr′1 + it, tr′1 +
(i+ 1)t). We partition the time horizon using the partition rule shown in Algorithm 3, where
we use InSuf as an abbreviation for insufficient and Suf as an abbreviation for sufficient. We
let period j (1 < j < γ′) denote [tr′1 + lj · t, tr′1 + lj+1 · t).

Observe that BGA and OPT do not accept any requests in the first period [0, tr′1) and
in the last period [tr′1 + lγ′t,∞), and that the length of each period j (1 < j < γ′), i.e.,
(lj+1 − lj)t, is either t, 2t or 3t. By the partition rule (Algorithm 3), we have the following
properties: if the length of period j is t, i.e., lj+1 − lj = 1, period j is sufficient; if the length
of period j is 2t, i.e., lj+1 − lj = 2, either interval i is l-large or l-full and interval i+ 1 is
insufficient, or interval i is insufficient and interval i+ 1 is r-full; if the length of period j is
3t, i.e., lj+1 − lj = 3, interval i and interval i+ 2 are insufficient and interval i+ 1 is r-full.

Let R∗(j) denote the set of requests accepted by OPT that start in period j, for 1 ≤ j ≤ γ′.
Let R′(j) denote the set of requests accepted by BGA that start in period j, for 1 ≤ j ≤ γ′.
By Observation 18, if interval i is insufficient and interval i − 1 is l-small, then interval
i+ 1 is r-full. By Lemma 15 and Lemma 19, if interval i is insufficient and interval i+ 1 is
insufficient, then interval i− 1 is l-full and interval i+ 2 is r-full. From this it follows that an
invariant of Algorithm 3 is that at the start of each iteration of the while-loop, either interval
i is sufficient, or interval i is insufficient and interval i+ 1 is r-full. Hence, the partition rule
(Algorithm 3) is complete, i.e., in each iteration of the while-loop one of the if-cases applies.

ISAAC 2018

64:12 Online Scheduling of Car-Sharing Requests Between Two Locations with Many Cars

We bound the competitive ratio of BGA by analyzing each period independently. As
R′ =

⋃
j R
′
(j) and R∗ =

⋃
j R
∗
(j), it is clear that for any α ≥ 1, PR∗/PR′ ≤ α follows if we

can show that PR∗(j)
/PR′(j)

≤ α for all j, 1 ≤ j ≤ γ′.
According to Lemma 19, when lj+1 − lj = 2, PR∗(j)

/PR′(j)
≤ 5

3 . According to Lemma 20,
when lj+1 − lj = 3, PR∗(j)

/PR′(j)
≤ 5

3 . By the partition rule, if lj+1 − lj = 1, then period j is
sufficient, i.e., |R′(j)| ≥

3
5 |R
∗
(j)|, and hence PR∗(j)

/PR′(j)
≤ 5

3 . Since PR∗(j)
= PR′(j)

= 0 when
j = 1 and j = γ′ (recall that by Observation 3, all requests accepted by BGA and OPT do
not start earlier than tr′1 and do not start later than tr′

|R′|
), the theorem follows. J

4 Conclusion

We have studied an on-line problem with k servers and two locations that is motivated by
applications such as car sharing and taxi dispatching. In particular, we have analyzed the
effects that different constraints on the booking time of requests have on the competitive ratio
that can be achieved. For all variants of booking time constraints we have given matching
lower and upper bounds on the competitive ratio. The upper bounds are all achieved by the
same balanced greedy algorithm (BGA) with different choices for the number of specified
servers (2θk). Interestingly, k = 3 servers suffice to achieve competitive ratio 1.5 (in the case
of kS2L-F with a ≥ t and kS2L-V with bl ≥ t and bu − bl < t), and k = 5 servers suffice to
achieve competitive ratio 5

3 (in the case of kS2L-V with bl ≥ t and bu − bl ≥ t), and a larger
number of servers does not lead to better competitive ratios.

In future work, it would be interesting to determine how the number of servers, the
number of locations, and the constraints on the booking time affect the competitive ratio for
the general car-sharing problem with k servers and m locations.

References
1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:

Minimizing the Completion Time. In Proc. of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’00), volume 1770 of LNCS, pages 639–650. Springer,
2000. doi:10.1007/3-540-46541-3_53.

2 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’17), pages 994–1005. SIAM, 2017. doi:10.1137/1.9781611974782.63.

3 Katerina Böhmová, Yann Disser, Matús Mihalák, and Rastislav Srámek. Scheduling Trans-
fers of Resources over Time: Towards Car-Sharing with Flexible Drop-Offs. In Proc. of the
12th Latin American Symposium on Theoretical Informatics (LATIN’16), volume 9644 of
LNCS, pages 220–234. Springer, 2016. doi:10.1007/978-3-662-49529-2_17.

4 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

5 Ananya Christman, William Forcier, and Aayam Poudel. From theory to practice: max-
imizing revenues for on-line dial-a-ride. J. Comb. Optim., 35(2):512–529, 2018. doi:
10.1007/s10878-017-0188-z.

6 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto
Marchetti-Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in
the Online Dial-a-Ride Problem. In Proc. of the 3rd International Workshop on Approxim-
ation and Online Algorithms (WAOA 2005), Revised Papers, volume 3879 of LNCS, pages
258–269. Springer, 2006. doi:10.1007/11671411_20.

http://dx.doi.org/10.1007/3-540-46541-3_53
http://dx.doi.org/10.1137/1.9781611974782.63
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/11671411_20

K. Luo, T. Erlebach, and Y. Xu 64:13

7 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-Sharing between Two Locations: Online
Scheduling with Flexible Advance Bookings. In Proc. of the 24th International Computing
and Combinatorics Conference (COCOON ’18), 2018. To appear.

8 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-Sharing between Two Locations: Online
Scheduling with two Servers. In Proc. of 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS ’18), 117. LIPIcs, 2018. To appear. URL: http:
//www.cs.le.ac.uk/~te17/papers/mfcs2018.pdf.

9 Fanglei Yi and Lei Tian. On the Online Dial-A-Ride Problem with Time-Windows. In Proc.
of the 1st International Conference on Algorithmic Applications in Management (AAIM
’05), volume 3521 of LNCS, pages 85–94. Springer, 2005. doi:10.1007/11496199_11.

ISAAC 2018

http://www.cs.le.ac.uk/~te17/papers/mfcs2018.pdf
http://www.cs.le.ac.uk/~te17/papers/mfcs2018.pdf
http://dx.doi.org/10.1007/11496199_11

	Introduction
	Related Work
	Problem Description and Preliminaries
	Paper Outline

	Lower Bounds
	Upper Bounds
	Upper Bounds for kS2L-F
	Upper Bounds for kS2L-V

	Conclusion

