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Abstract
We study online secretary problems with returns in combinatorial packing domains with n candi-
dates that arrive sequentially over time in random order. The goal is to accept a feasible packing
of candidates of maximum total value. In the first variant, each candidate arrives exactly twice.
All 2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be
combined with arbitrary approximation algorithms for the packing domain, even when the total
value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm
with competitive ratio at least 0.5721− o(1) for growing n, and an algorithm with ratio at least
0.5459 for all n ≥ 1. We extend all algorithms and ratios to k ≥ 2 arrivals per candidate.

In the second variant, there is a pool of undecided candidates. In each round, a random
candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject)
or postponed (returned into the pool). We mainly focus on minimizing the expected number of
postponements when computing an optimal solution. An expected number of Θ(n logn) is always
sufficient. For matroids, we show that the expected number can be reduced to O(r log(n/r)),
where r ≤ n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching,
we show a bound of O(r logn), where r is the size of the optimum matching. For general packing,
we show a lower bound of Ω(n log logn), even when the size of the optimum is r = Θ(logn).
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1 Introduction

The secretary problem is a classic approach to study optimal stopping problems: A sequence
of n candidates are arriving in uniform random order. Each candidate reveals its value only
upon arrival and must be decided (accept/reject) before seeing any further candidate(s).
Every decision is final – once a candidate gets accepted, the game is over. Moreover, no
rejected candidate can be accepted later on. The goal is to find the best candidate. An
optimal solution is to discard the first (roughly) n/e candidates. From the subsequent ones
we accept the first that is the best one among the ones seen so far. The probability to hire
the best candidate approaches 1/e ≈ 0.37 when n tends to infinity.
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The secretary problem and its variants have been popular since the 1960s. Significant
interest in computer science emerged about a decade ago due to new applications in e-
commerce and online advertising markets [2, 14]. For example, the classic secretary problem
can be used to model a seller that wants to give away a single item, buyers arrive sequentially
over time, and the goal is to assign the item to the buyer with highest value. More generally,
online budgeted matching problems arise when search queries arrive over time, and the goal
is to show the most profitable ads on the search result pages. The goal here is to design
algorithms with good competitive ratio.

More recently, progress has been made towards a general understanding of online packing
problems with random-order arrival, including matching [3, 20, 16], integer packing pro-
grams [22, 17], or independent set problems [13]. Most prominently, the matroid secretary
problem has attracted a large amount of interest [2, 6]. Here the elements of a matroid arrive
in uniform random order, and the goal is to construct an independent set with as high a
value as possible. A central open problem in the area is the matroid secretary conjecture
– is there a constant-competitive algorithm for every matroid in the random order model?
The conjecture has been proved for a variety of subclasses of matroids [6]. Currently, the
best-known algorithms for the general problem are 1/O(log log rank)-competitive [21, 8].

A strong assumption in the secretary problem is that every decision about a candidate
must be made immediately without seeing any of the future candidates. Instead, in many
natural admission scenarios candidates appear more than once, or they arrive and stay in
the system for some time, during which a decision can be made. An interesting variant that
captures this idea is the returning secretary problem [25]. Here each candidate is assigned
two random time points from a bounded time interval. The earlier becomes the arrival time,
the later the departure time. Hence, we can assume that each candidate arrives exactly twice,
and all 2n arrivals occur in random order. The decision about acceptance of a candidate can
be made between the first and the second arrival. More generally, for k ≥ 2 each candidate
chooses k random points, arrives at the earliest and leaves at the latest point. In this case,
there are kn arrivals in random order. Vardi [25] showed an optimal algorithm for the
returning secretary problem with k = 2, for which the probability of accepting the best
candidate is about 0.768. For matroid secretary with k = 2 arrivals, a competitive ratio of
0.5, and for matching secretary a ratio 0.5625− o(1) (with asymptotics in n) were shown.

In this paper, we significantly broaden and extend the results on the returning secretary
problem towards general packing domains. We provide a simple algorithm that can be
combined with arbitrary α-approximation algorithms and yields competitive ratios of 0.5 · α
for all subadditive packing problems, including matroids, matching, knapsack, independent
set, etc. Moreover, we improve the guarantees for matching secretary and provide bounds
that hold in expectation for all n. We extend all our bounds to arbitrary k ≥ 2. In addition,
we study a complementary variant in which the decision maker is allowed to postpone the
decision about a candidate. In this case, the goal is to minimize the number of postponements
to guarantee an optimal or near-optimal solution in the end. These problems can be cast
as a set of novel coupon collector problems, and we provide guarantees and trade-offs for
matroid, matching and knapsack postponement.

Results and Contribution
In the secretary problem with k arrivals in Section 3, each candidiate arrives exactly k times.
We propose a simple approach for general subadditive packing problems with returns, which
can be combined with arbitrary α-approximation algorithms. It yields a competitive ratio of
0.5 · α for k = 2, and α · (1− 2−(k−1)) for k ≥ 2.
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For additive bipartite matching, we obtain a new algorithm that provides an improved
competitive ratio of 0.5721− o(1) for k = 2 with asymptotics in n. Moreover, we derive an
algorithm with ratio 0.5459 for k = 2 for every n. Both algorithms rely on exact solution of
partial matching problems. The algorithms can be combined with faster α-approximations
for partial matchings, by spending at most an additional factor α in the competitive ratio.
For the previous algorithm in [25], the algorithm description and proof of the ratio in the full
version is slightly ambiguous.1 Our algorithm clarifies and slightly improves upon this by
including the twice-arrived and rejected candidates during a sample phase when computing
partial matchings. Their removal yields free nodes in the offline partition for matching in
later rounds.

In the postponing secretary problem in Section 4, there is a pool of n undecided candidates.
In each round, a random candidate from the pool arrives. Upon arrival a candidate can be
either decided (accept/reject) or postponed and returned into the pool. We strive to minimize
the expected number of postponements to compute an optimal or near-optimal solution.
Postponing everyone until all candidates are observed at least once is the coupon collector
problem. Hence, with an expected number of O(n logn) postponements we reduce the problem
to offline optimization. For general subadditive packing and an α-approximation algorithm,
a simple trade-off shows an (1− ε) · α-approximation using O(n ln 1/ε) postponements.

Based on a property we term exclusion-monotonicity, we show significantly improved
results when the desired solution has small cardinality. A bound of O(r logn) for the expected
number of postponements holds when obtaining optimal solutions of size at most r in additive
matroids and bipartite matching, and greedy 2-approximations for knapsack. For matroids,
we can further improve the bound to O(r′ ln n/r′), where r′ = min(r, n−r). This upper bound
is at most n, and the worst-case is attained for uniform matroids. We fully characterize the
expected number of postponements of every candidate in uniform matroids when the optimal
solution is to be obtained. Finally, we conclude the paper with a lower bound that in general
we might need Ω(n log logn) postponements even with an optimal solution of cardinality
O(logn). Due to space constraints, all missing proofs are deferred to the full version of this
paper.

Further Related Work

The literature on secretary online variants of packing problems and online stochastic opti-
mization has grown significantly over the last decade. We restrict the review to the most
directly related results. For a survey of classic variants of the secretary problem, see [10].

The bipartite secretary matching problem was first studied in the context of transversal
matroids [3], where a decision about accepting an arriving vertex into the matching needs
to be taken directly, but matching edges can be decided in the end. Later works required
that the edges must also be decided upon arrival [20]. The best algorithm for both variants
obtains a competitive ratio of 1/e [16]. Most work in computer science has been devoted to
the matroid secretary problem. Currently, the best algorithms obtain a competitive ratio
1/O(log log rank) [21, 8]. It is an open problem if a constant competitive ratio can be shown.
For a survey of work on classes of matroids and further developments see [6].

1 For example, the pseudo-code on page 12 does not become the algorithm for a single secretary when
there is a single node in the offline partition. One would always accept the best secretary that arrived
once in the sample phase. A better one arriving in later rounds is always rejected inside the for-loop.
Also, the proof of Claim 5.6 seems to require both sides of the bipartite graph must have size n.

ISAAC 2018
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While above results are all for maximizing additive objective functions, recent work has
started to consider submodular ones. For cardinality and matching constraints, constant-
competitive algorithms exist for submodular secretary variants [18]. For matroids, there is a
general technique to extend algorithms for additive objectives to submodular ones, which
preserves constant competitive ratios [9].

Beyond matroids and matching, there are constant-competitive algorithms for knapsack
secretary [1]. Prominent graph classes in networking applications allow good secretary
algorithms for independent set [13]. The techniques for bipartite matching have been
extended to secretary variants of combinatorial auctions and integer packing programs [22, 17].
Moreover, there are 1/O(logn)-competitive algorithms even in a general packing domain [23].

Additional model variants that have found interest are, for example, local secretary [5]
(several decision makers try to simultaneously hire candidates based on local feedback),
temp secretary [11] (candidates are hired only for a bounded period of time), or ordinal
secretary [15, 24] (information available to the decision maker is only the total order of the
candidates but not their numerical values).

Secretary postponement can be seen as a combinatorial extension of the coupon collector
problem, a classic problem in applied probability. The elementary problem and its analysis
are standard and discussed in many textbooks. The problem has many applications, and
there is a plethora of variants that have been studied (see, e.g., [4, 12, 19]). To the best of
our knowledge, however, the results for combinatorial packing problems derived in this paper
have not been obtained in the literature before.

2 Packing Problems

We consider a packing problem, in which there is a set N of n candidates, and a set S ⊆ 2N

of feasible solutions. S is downward-closed, i.e. S ∈ S and T ⊆ S implies T ∈ S. For
most parts, we assume that the objective function w : 2N → R≥0 is additive, i.e., there
is a non-negative value w : N → R≥0 for each candidate, and w(S) =

∑
e∈S w(e) for all

S ⊆ N . More generally, we will sometimes assume the objective function w is monotone and
subadditive. If a packing problem has an α-approximation algorithm, then for any N ′ ⊆ N
the algorithm guarantees an approximation ratio α ≤ 1 for maximizing w over S ∩ 2N ′ .

In a secretary variant, we know the number n upfront, and the candidates arrive in
random order. Suppose a set Ni of candidates has arrived in rounds 1, . . . , i and candidate
e ∈ N \Ni arrives in round i+ 1. Then e reveals all new feasible solutions with previously
arrived candidates (S ∩ 2Ni∪{e}) \ (S ∩ 2Ni) and their corresponding weight. In the additive
case, this simply reduces to revealing the solutions and the weight w(e).

We consider several specific variants. In matroid secretary, the set of candidates and the
set of feasible solutions form a matroid. Upon arrival, a candidate reveals the new feasible
solutions and their weights. In the additive variant with known matroid, all candidates and
feasible solutions are known upfront. Candidates only reveal their weight upon arrival.

In (bipartite) matching secretary, there is a bipartite undirected graph (N ∪ V,E). The
nodes in the offline partition V are present upfront. The candidates in the online partition
arrive sequentially. The feasible solutions are the matchings in the arrived subgraph. Upon
arrival, a candidate reveals its incident edges and weights of the new feasible solutions. In
the additive version, the arriving candidate reveals a weight per edge, and the weight w(M)
of a matching M is the sum of edge weights. Upon accepting a candidate, the algorithm also
has to decide which matching edge to include into M (since otherwise it is matroid secretary
with transversal matroid).
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For (additive) knapsack secretary, an arriving candidate e reveals its weight w(e) and a
size b(e) ≥ 0. The size B of the knapsack is known upfront. The feasible solutions are all
subsets of candidates such that their total size does not exceed B.

3 Secretaries with k Arrivals

Suppose that each candidate arrives exactly k times, and all these kn arrivals are presented
in uniformly random order. Consider any subadditive secretary packing problem and the
following simple algorithm. In the beginning, flip kn fair coins. The number of heads is the
length of an initial sample phase. During the sample phase reject all candidates. Consider
the set T of candidates that has appeared at least once and at most k− 1 times in the sample
phase. Apply the α-approximation algorithm to the instance based on S ∩ 2T to choose a
feasible solution. Accept each candidate in the solution by the time of its k-th arrival.

I Proposition 1. For any subadditive packing problem with an α-approximation algorithm,
the secretary problem with k arrivals allows an algorithm with approximation ratio

β = α ·
(

1− 1
2k−1

)
.

Proof. Due to random order of arrival, we can simulate generation of T by attaching each of
the kn coins to one arrival of one candidate. The arrival is in the sample phase if and only if
the coin turns up heads. Then, the probability is 1/2k for each of the following events: (1) a
given candidate never appears in the sample phase, and (2) a given candidate appears k times
in the sample phase. T is distributed as if we would include each candidate independently
with probability 1−

( 1
2
)k−1.

Once T is created, we apply the α-approximation algorithm to the instance based on S∩2T

to choose a feasible solution. Note that every candidate in T will appear at least once after
the sample phase and therefore is available for acceptance by our algorithm. Each element
in T is sampled independently from N . Hence, as a simple consequence of subadditivity
(see, e.g., [7, Proposition 2]), the value of the best feasible solution S∗T ⊆ T has value
w(S∗T ) ≥ w(T ∩ S∗) ≥

(
1−

( 1
2
)k−1

)
·w(S∗). By applying the α-approximation algorithm to

T , we obtain a feasible solution S of value w(S) ≥ α ·w(S∗T ) ≥ α ·
(

1−
( 1

2
)k−1

)
·w(S∗). J

For secretary matching, we improve upon this by using a slightly more elaborate approach.
The algorithm again samples and rejects a number of candidates that is determined by kn
independent coin flips with a suitable probability p < 1 (determined below). Hence, the
length of the sample phase is distributed according to Binom(kn, p). At the end of the
sample phase it computes a matching Ms using an α-approximation algorithm for all known
candidates and offline vertices V . It accepts into M the edges incident to candidates with
at most k − 1 arrivals in the sample. Each of them can be accepted upon their last arrival
after the sample phase. The algorithm drops the edges from Ms incident to candidates that
arrived k times in the sample. Let Vs ⊆ V be the unmatched offline nodes.

In the second phase, the algorithm follows ideas from [16, 25]. Upon arrival of a new
candidate e, the algorithm computes an α-approximate matching Me among Vs and all
candidates with first arrival after the sample phase. If Me contains an edge (e, v) incident to
e, this edge is added into M if v is still unmatched. Otherwise the edge is discarded.

Since the algorithm can be combined with arbitrary α-approximation algorithms for
matching, it also applies to, e.g., the k-arrival variant of ordinal secretary matching [15].

ISAAC 2018
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I Theorem 2. For secretary matching with 2 arrivals and any α-approximation algorithm for
offline matching with α ≤ 1, there is an algorithm with approximation ratio of 0.5721 ·α−o(1).
For k arrivals, the ratio becomes at least α ·

(
1− 1

2k−1 + 1
22k − 1

22k·(2k−1)2

)
− o(1).

Proof. By similar arguments as above, for each arrival of a secretary we can assume to flip
a coin independently with probability p < 1 that determines if the arrival happens in the
sample phase. Hence, each candidate has probability pk to arrive exactly k times in the
sample phase and (1 − p)k to never arrive in the sample phase. Let M be the matching
computed by the algorithm, M1 the matching obtained right after the sample phase and M2
the matching composed in the second phase. It holds E [w(M)] = E [w(M1)] + E [w(M2)].

For M1 we interpret the random coin flips as a two-step process. First, for each candidate
in N we flip a coin independently with probability (1−(1−p)k) whether the candidate arrives
at least once in the sample phase. Then, we flip another independent coin with probability
pk/(1− (1− p)k) whether the candidate arrives k times in the sample phase. The first set
of coin flips determines the matching Ms that evolves when we apply the α-approximation
algorithm right after the sample phase. Since every candidate is included independently
we have E [w(Ms)] ≥ (1 − (1 − p)k) · α · w(M∗). Afterwards, the second set of coin flips
determines the candidates that are dropped from Ms. They are determined independently, so
E [w(M1)] =

(
1− pk

1−(1−p)k

)
·α·E [w(Ms)]. In total, E [w(M1)] ≥ (1−(1−p)k−pk)·α·w(M∗).

We denote by X the random number of candidates that arrived at least once during the
sample phase. In the acceptance phase of the algorithm, we consider all n−X candidates
that have not arrived during the sample phase. Standard arguments [16, 25, 18] show that
each of these newly arriving candidates contributes in expectation a value of (α · (w(S∗))/n.
For the `-th first arrival of a new candidate, the probability that the edge (e, v) suggested by
the algorithm survives is the probability that the offline node v ∈ V was not matched earlier,
which is lower bounded by

pk

1− (1− p)k
·

`−1∏
r=X

r − 1
r

= pk

1− (1− p)k
· X − 1
`− 1 .

Hence, the expected value for M2 is at least

E [w(M2) | X] ≥ α · w(M∗) ·
n∑

`=X

pk

1− (1− p)k
· X − 1
`− 1 ·

1
n

≥ α · w(M∗) · pk

1− (1− p)k
· X − 1

n
· ln n

X
.

For constants p and k, standard Hoeffding bounds imply that X = n(1− (1− p)k)± o(n)
with probability at least 1− 1/nc for suitable constant c (see, e.g., [25]). Hence,

E [w(M)] /w(M∗) ≥ α

(
(1− (1− p)k − pk) + pk · ln

(
1

1− (1− p)k

))
− o(1) , (1)

where the asymptotics are in n. Numerical optimization shows that for k = 2 and p ≈ 0.49085,
the ratio becomes at least 0.57212 · α− o(1). See Table 1 for more numerical results.

Intuitively, the algorithm benefits from the unseen candidates after the sample phase and
has a tendency to reduce the sample size. On the other hand, the candidates that come k
times within the sample phase create the set of free nodes in V available for matching to later
candidates. Overall, this leads to a small reduction in the sample size. For larger k this effect
vanishes since the number of candidates that appear never or k times during the sample
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Table 1 Near-optimal parameters p for the sample phase and resulting bounds for the competitive
ratio (assuming α = 1) derived by numerical optimization of function (1).

k 2 3 4 5 6 7

p 0.49085 0.498901 0.499826 0.499968 0.499994 0.499999

ratio 0.57212 0.766694 0.879033 0.938491 0.968995 0.984435

phase both become exponentially small. The optimal sampling parameter quickly approaches
p → 0.5. This maximizes the profit from candidates that are available for optimization
immediately after the end of the sample phase. Thereby, the improvement over the simple
procedure in Proposition 1 becomes smaller.

More formally, we use ln(1 + x) ≥ x− x2 in (1) and obtain

E [w(M)] /w(M∗) ≥ α
(

(1− (1− p)k − pk) + pk · (1− p)k

1− (1− p)k
− pk(1− p)2k

(1− (1− p)k)2

)
− o(1) .

Note that ln(1 + x) ≤ x, so we deteriorate the expression only by the last negative term. For
growing k, the optimal value of p approaches 0.5 very quickly, and we bound

E [w(M)] /w(M∗) ≥ α
((

1− 1
2k
− 1

2k

)
+

1
2k · 1

2k

1− 1
2k

−
1

2k · 1
22k

(1− 1
2k )2

)
− o(1)

= α

(
1− 1

2k−1 + 1
22k
− 1

22k · (22k − 2k+1 + 1)

)
− o(1) . J

In contrast to [25], our algorithm computes an optimal (or α-approximate) matching
after the sampling phase for the set of all candidates that arrived during that phase (instead
of the ones that arrived only once). All candidates that arrived k times are dropped. This
creates free nodes of V to be matched to subsequently arriving candidates. The ratios depend
asymptotically on n, since the guarantee in the second phase relies on concentration bounds
for X, the number of candidates that arrive at least once in the sampling phase.

Alternatively, one can replace the second phase by recursively applying the sampling
phase. More formally, after the sampling phase is done and matching M1 is added to M , we
apply the same sampling phase to Vs and the candidates that have not arrived so far. In this
way, we can iterate the sampling step and re-apply it to the unseen candidates and left-over
nodes of the offline partition. The resulting ratios do not require concentration bounds.

I Corollary 3. For secretary matching with 2 arrivals and any α-approximation algorithm
for offline matching with α ≤ 1, there is an algorithm with approximation ratio of 0.5459 · α
for every n ≥ 1. For k arrivals, the ratio becomes at least (1− 1

2k−1 + 1
22k − 2k−1

22k·(22k−2k−1) ) ·α
for every n ≥ 1.

4 Postponing Secretaries

Now suppose that for each arriving candidate the algorithm can decide (accept/reject) or
postpone it. The goal is to compute an optimal or near-optimal solution with a small expected
number of postponements. Consider any algorithm for the postponement problem. We
cluster the execution into rounds. Round i are the arrivals from and including the i-th unique
arrival (i.e., the i-th time a candidate arrives for the first time) and before the (i + 1)-th
unique arrival. Clearly, there are always n − 1 rounds in the execution of any algorithm.

ISAAC 2018
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If we simply postpone every candidate until we have seen all n candidates, we have full
information to make accept/reject decisions for all candidates. Then the problem reduces to
the classic coupon collector problem, and the expected number of returns is Θ(n logn). Our
goal is to examine how we can improve upon this baseline.

We first consider a general result for subadditive packing. To reduce the expected number
of returns to Θ(n), it is sufficient to sacrifice a constant factor in the approximation ratio.
We obtain the following FPTAS-style trade-off between postponements and solution quality.

I Proposition 4. For any2 ε>2/n and any subadditive packing problem with α-approximation
algorithm, there is an α · (1 − ε)-approximation algorithm with an expected number of
postponements of E [R] < n · ln(2/ε).

Proof. We postpone every candidate until round dn(1− ε)e. Then, we run the α-approxima-
tion algorithm on the subset of arrived candidates. By the same arguments as in Proposition 1,
this yields an α(1− ε)-approximation.

Let Ri be the number of postponements in round i. Clearly, by linearity of expectation,
E [R] =

∑n−1
i=1 E

[
Ri
]
. In each round, the number of postponements is the number of rounds

until we see the next unique arrival, and, hence, distributed according to a negative binomial
distribution. Therefore, their expected number is

E [R] ≤
dn(1−ε)e∑

i=1

(
n

n− i
− 1
)

= n ·
dn(1−ε)e∑

i=1

1
n− i

− dn(1− ε)e

≤ n · (ln(n)− ln(nε− 1)− 1 + ε) ≤ n · (− ln(ε− 1/n)) < n ln
(

2
ε

)
. J

4.1 Exclusion-Monotone Algorithms

We obtain significantly better guarantees for packing problems and algorithms with a
monotonicity property. Consider a packing problem and any algorithm A. We denote by
A(T ) the solution computed by A when applied to T ⊆ N .

I Definition 5. A sequence of subsets (Ni)i∈N with Ni ⊆ N is called inclusion-monotone if
Ni ⊆ Nj for all i ≤ j. An algorithm A is called r-exclusion-monotone if for every inclusion
monotone sequence there is a sequence of subsets (Di)i∈N with A(Ni) ⊆ Di ⊆ Ni, |Di| ≤ r
and Ni \Di ⊆ Nj \Dj for all i ≤ j.

Intuitively, to determine its solution for any subset of available elements Ni, an r-exclusion-
monotone algorithm A can restrict attention to a set Di of at most r elements. Moreover,
A is such that any element e ∈ Ni \Di that is discarded must never be reconsidered when
more elements become available.

This property is exhibited in a variety of important packing domains. For these problems
we can obtain more fine-grained, significantly improved guarantees based on solution size.

2 For ε ≤ 2/n, the bound remains Θ(n logn) by simply observing all applicants and computing an
α-approximation.
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I Proposition 6. The following algorithms are r-exclusion-monotone.
Optimal algorithm Opt for matroids. r is the rank of the matroid.
Optimal algorithm Opt for bipartite matching. r is the maximum cardinality of any
matching3.
Greedy 0.5-approximation algorithm for knapsack. Here r = |S|+ 1 with S a feasible
packing of the knapsack with maximum cardinality.

Now consider candidates arriving in random order with postponements. Obviously, the set
of arrived candidates forms an inclusion-monotone sequence. In our algorithm Maintain-A,
we apply the r-exclusion-monotone algorithm A in the beginning of round i to the set Ni

of arrived candidates. Maintain-A immediately rejects any candidate as soon as it is not
contained in Di. It keeps postponing the candidates in Di. Finally, Maintain-A accepts the
candidates in A(N) after the last round. Note that for the following result, Maintain-A does
not have to know n, r or any properties of the unseen candidates. The following guarantee
significantly improves over the simple bound given in Proposition 4 when the solution is
drawn from a small subset of elements.

I Theorem 7. Consider a packing problem with an r-exclusion-monotone α-approximation
algorithm A. The corresponding algorithm Maintain-A computes an α-approximation with
an expected number of postponements E [R] = Θ(r lnn/r′), where r′ = min(r, n− r).

Proof. Consider the execution of the algorithm in rounds as discussed above. In each round,
let Ui denote the number of candidates that are still undecided (i.e., either have not arrived
or have been left undecided in earlier rounds). In round i we have seen exactly i candidates.
Thus, given Ui undecided candidates, the expected number of postponements Ri in round i
is given by a negative binomial distribution and amounts to

E
[
Ri | Ui

]
=
(

Ui

n− i
− 1
)

.

To bound Ui we note that, trivially, Ui ≤ n. Moreover, the number of candidates that have
arrived and are undecided is Ui − (n− i). Since Maintain-A postpones only candidates in
the set Di, we have that Ui − (n− i) ≤ r. This implies Ui ≤ min(n, n− i+ r) and yields

E [R] ≤
r−1∑
i=1

(
n

n− i
− 1
)

+
n−1∑
i=r

(
n− i+ r

n− i
− 1
)

= n

r−1∑
i=1

1
n− i

− r + r

n−1∑
i=r

1
n− i

≤ n
(

1
n− r + 1 + ln

(
n− 1

n− r + 1

))
+ r

(
1
r
− 1 + ln

(
n− 1
r

))
=
(

2 + r − 1
n− r + 1 − r

)
+ n ln

(
n− 1

n− r + 1

)
+ r ln

(
n− 1
r

)
.

Clearly, the first term in the bracket is at most 1. For r ≥ n− r + 1, the second term is
larger than the third term and amounts to O(r ln n/r′). For r ≤ n− r + 1, we upper bound

n ln
(

n− 1
n− r + 1

)
= n ln

(
1 + r − 2

n− r + 1

)
≤ (r − 2) + (r − 2)(r − 1)

n− r + 1 < 2r − 4 .

3 Recall that vertices in one partition arrive and get postponed, along with their incident edges. If single
edges arrive and must be postponed individually, the property might not hold (c.f. Example 10 below).
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Figure 1 Number of postponements of MaintainOPT in a uniform matroid with n = 10 and
r = 3 (left), n = 100 and r = 30 (middle), and n = 1000 and r = 300 (right). The x-axis is the
index of the candidate in the sorted order. The y-axis shows the average number of postponements
over 5000 runs. The O(1)-terms in Theorem 9 turn out to be small. They appear to be maximal for
candidates r and r + 1, but seem to vanish for growing n.

Thus, the asymptotics are dominated by the third term, and E [R] = O(r ln n/r′). A similar
calculation using elementary lower bounds shows that E [R] = Ω(r ln n/r′). J

4.2 Matroids
We adjust MaintainOPT for known matroids, i.e. when the structure of the matroid is
known upfront (only the weights of the elements are revealed). In this case, we can assume
r ≤ n/2, since for r ≥ n/2 we can consider finding a minimum-weight basis in the dual
matroid. We adjust algorithm MaintainOPT in the following way. Instead of postponing
all elements in the current optimum until the end, we can accept some elements earlier. In
particular, we can directly accept an element e as soon as there is no unseen element that
can force e to leave the optimum solution. This allows to significantly improve the number
of returns to below n for any rank of the matroid.

I Theorem 8. For the class of all matroids with rank r, the expected number of postponements
R in MaintainOPT with known matroid is maximized for the uniform matroid. It is bounded
by E [R] = Θ(r′ ln n/r′), where r′ = min(r, n− r). For every matroid it holds that E [R] < n.

Note that for any postponement problem, a simple calculation shows that the expected
number of postponements of any single candidate can always be upper bounded by lnn+1. In
contrast, the previous theorem shows that, on average, we need less than one postponement
per candidate to compute even an optimal solution in matroids. However, they can be quite
unbalanced over the candidates. We fully characterize the expected number of postponements
in the uniform matroid with r ≤ n/2. The worst candidate in the optimal solution (i.e., the
r-th best candidate) asymptotically gets the largest expected number of postponements. The
expected number is decreasing quickly for better and worse candidates.

I Theorem 9. For MaintainOPT with known uniform matroid of rank r ≤ n/2, the
expected number of postponements Rj of the j-th best candidate is bounded by

E [Rj ] ≤


ln
(

n− j
r − j + 1

)
+O(1) , for j = 1, . . . , r,

ln
(
j − 1
j − r

)
+O(1) , for j = r + 1, . . . , n.

Based on our experiments in Figure 1 the O(1) terms are small and even seem to vanish
for large n. The logarithmic function captures the number of postponements rather precisely.
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For matroids, the number of postponements of MaintainOPT with known matroid
is always at most n. Instead, for bipartite matching the number of postponements of
MaintainOPT must grow to Θ(n logn) when r becomes large, even if the graph is known.

I Example 10. Consider a simple cycle of length 2n and number the vertices consecutively
around the cycle. Suppose the r = n even vertices form the offline partition V , and the n
odd vertices arrive in random order. The edge weights can be arbitrary, but an adversary
chooses them to be in [1, 1 + ε]. Then, unless we see all vertices, we cannot decide which of
the two perfect matchings will be the optimal one. MaintainOPT needs to see all vertices
to be able to decide the matching edges. We recover the coupon collector problem.

The example also applies when the edges of the bipartite graph are candidates that arrive
in random order (rather than the vertices). In order to guarantee that an optimal solution
is returned with probability 1 in the end, all 2n candidate edges need to remain undecided
until the last unique arrival. This shows, in particular, that the bound of O(r′ ln n/r′) for
MaintainOPT for known matroids cannot be extended to known intersections of matroids.

4.3 Exclusion-Monotonicity and Solution Size
For r-exclusion-monotone algorithms A the algorithm Maintain-A needs at most O(r lnn)
postponements. One might hope that for any r-exclusion-monotone algorithm the parameter
r is tied closely to the solution size of the algorithm. Then a large number of returns in
Maintain-A would be caused by A returning a solution with many elements. This, however,
is not the case – even if we are guaranteed that the size of the optimal solution is Θ(logn),
an expected number of Ω(n log logn) postponements for MaintainOPT can be required.

I Theorem 11. There is a class of instances of the independent set problem with every
optimal solution of size |I∗| = 3 lnn, for which the expected number of postponements R in
MaintainOPT is E [R] = Ω(n ln lnn).
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