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Abstract
We consider the problem of encoding two-dimensional arrays, whose elements come from a total
order, for answering Top-k queries. The aim is to obtain encodings that use space close to
the information-theoretic lower bound, which can be constructed efficiently. For 2 × n ar-
rays, we first give upper and lower bounds on space for answering sorted and unsorted 3-
sided Top-k queries. For m × n arrays, with m ≤ n and k ≤ mn, we obtain (m lg

((k+1)n
n

)
+

4nm(m − 1) + o(n))-bit encoding for answering sorted 4-sided Top-k queries. This improves
the min (O(mn lgn),m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit encoding of Jo et al. [CPM, 2016] when

m = o(lgn). This is a consequence of a new encoding that encodes a 2 × n array to support
sorted 4-sided Top-k queries on it using an additional 4n bits, in addition to the encodings to
support the Top-k queries on individual rows. This new encoding is a non-trivial generalization
of the encoding of Jo et al. [CPM, 2016] that supports sorted 4-sided Top-2 queries on it using
an additional 3n bits. We also give almost optimal space encodings for 3-sided Top-k queries,
and show lower bounds on encodings for 3-sided and 4-sided Top-k queries.
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1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] of n elements from a total order, the range
Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions of k largest values in
A[i . . . j]. In this paper, we refer to these queries as 2-sided Top-k queries; and the special case
where the query range is [1 . . . i], for 1 ≤ i ≤ n, as the 1-sided Top-k queries. We can extend
the definition to the two-dimensional (2D) case – given an m× n 2D array A[1 . . .m][1 . . . n]
of mn elements from a total order and a k ∈ {1, . . . ,mn}, the range Top-k query on A

(Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n) returns the positions of k largest values in

1 The author of this paper is supported by the DFG research project LO748/11-1.
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A[i . . . j][a . . . b]. Without loss of generality, we assume that all elements in A are distinct
(by ordering equal elements based on the lexicographic order of their positions). Also, we
assume that m ≤ n. In this paper, we consider the following types of Top-k queries.

Based on the order in which the answers are reported
Sorted query: the k positions are reported in sorted order of their corresponding values.
Unsorted query: the k positions are reported in an arbitrary order.

Based on the query range
3-sided query: the query range is A[i . . . j][1 . . . b], for i, j ∈ {1,m}, and b ∈ {1, n}.
4-sided query: the query range is A[i . . . j][a . . . b], for i, j ∈ {1,m}, and a, b ∈ {1, n}.

We consider how to support these range Top-k queries on A in the encoding model. In
this model, one needs to construct a data structure (an encoding) so that queries can be
answered without accessing the original input array A. The minimum size of an encoding is
also referred to as the effective entropy of the input data [8]. Our aim is to obtain encodings
that use space close to the effective entropy, which can be constructed efficiently. In the rest
of the paper, we use Top-k(i, j, a, b) to denote Top-k(i, j, a, b, A) if A is clear from the context.
Also, unless otherwise mentioned, we assume that all Top-k queries are sorted 4-sided Top-k
queries. Finally, we assume the standard word-RAM model [14] with word size Θ(lgn).

1.1 Previous work
The problem of encoding 1D and 2D arrays to support Top-k queries has been widely studied
in the recent years. Especially, the case when k = 1, which is commonly known as the Range
maximum query (RMQ) problem, has been studied extensively, and has a wide range of
applications [1]. Optimal encodings for answering RMQ queries on 1D and 2D arrays are
well-studied. Fischer and Heun [5] proposed a 2n+ o(n)-bit data structure which answers
RMQ queries on 1D array of size n in constant time. For a 2D array A of size m × n, a
trivial way to encode A for answering RMQ queries is to store the rank of all elements
in A, using O(nm lgn) bits. Golin et al. [8] show that when m = 2 and RMQ encodings
on each row are given, one can support RMQ queries on A using n − O(lgn) extra bits
by encoding joint Cartesian tree on both rows. By extending the above encoding, they
obtained nm(m+ 3)/2-bit encoding for answering RMQ queries on A, which takes less space
than the trivial O(nm lgn)-bit encoding when m = o(lgn). Brodal et al. [3] proposed an
O(min (nm lgn,m2n))-bit data structure which supports RMQ queries on A in constant time.
Finally, Brodal et al. [2] obtained an optimal O(nm lgm)-bit encoding for answering RMQ
queries on A (although the queries are not supported efficiently).

For the case when k = 2, Davoodi et al. [4] proposed a 3.272n+ o(n)-bit data structure
to encode a 1D array of size n, which supports Top-2 queries in constant time. The space
was later improved by Gawrychowski and Nicholson [7] to the optimal 2.755n+ o(n) bits,
although it does not support queries efficiently. For Top-2 queries on 2× n array A, Jo et
al. [11] showed that 3n+ o(n)-bit extra space is enough for answering 4-sided Top-2 queries
on A, when encodings of 2-sided Top-2 queries for each row are given.

For general k, on a 1D array of size n, Grossi et al. [10] proposed an O(n lg k)-bit2 encoding
which supports sorted Top-k queries in O(k) time, and showed that at least n lg k−O(n) bits
are necessary for answering 1-sided Top-k queries; Gawrychowski and Nicholson [7] proposed
a (k + 1)nH(1/(k + 1)) + o(n)-bit3 encoding for Top-k queries (although the queries are not

2 We use lg n to denote log2 n.
3 H(x) = x lg (1/x) + (1− x) lg (1/(1− x)), i.e., an entropy of the binary string whose density of zero is x
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Table 1 Summary of the results of upper and lower bounds for Top-k encodings on 2D arrays.
The lower bound results marked (*) (of Theorem 12 and 13) are for the additional space (in bits)
necessary, assuming that encodings of Top-k queries for both rows are given.

Dimension Query type Space (in bits) Reference
Upper bounds

2× n

3-sided, unsorted 2 lg
((k+1)n

n

)
+ d(n− bk/2c) lg 3e+ o(n) Theorem 2

3-sided, sorted 2 lg
(3n

n

)
+ 2n + o(n) Theorem 3, k = 2

2 lg
((k+1)n

n

)
+ d2n lg 3e+ o(n) Theorem 4

4-sided, sorted
5n−O(lg n) [8], k = 1

2 lg
(3n

n

)
+ 3n + o(n) [11], k = 2

2 lg
((k+1)n

n

)
+ 4n + o(n) Theorem 8

m× n 4-sided, sorted

O(min (nm lg n, m2n)) [8], k = 1
O(nm lg m) [2], k = 1

m2 lg
((k+1)n

n

)
+ m lg m + o(n) [11]

m lg
((k+1)n

n

)
+ 2nm(m− 1) + o(n) Theorem 9

Lower bounds

2× n

4-sided 5n−O(lg n) [8], k = 1
3-sided, unsorted 1.27(n− k/2)− o(n) (*) Theorem 12

3 or 4-sided, sorted 2n−O(lg n) (*) Theorem 13
m× n 4-sided, sorted Ω(nm lg (max (m, k))) [3, 10]

supported efficiently), and showed that at least (k+1)nH(1/(k+1))(1−o(1)) bits are required
to encode Top-k queries. They also proposed a (k + 1.5)nH(1.5/(k + 1.5)) + o(n lg k)-bit
data structure for answering Top-k queries in O(k6 lg2 nf(n)) time, for any strictly increasing
function f . For a 2D array A of size m× n, one can answer Top-k queries using O(nm lgn)
bits, by storing the rank of all elements in A. Jo et al. [11] recently developed the first non-
trivial Top-k encodings on 2D arrays. They proposed an (m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit

encoding for sorted 4-sided Top-k queries, which takes less space than trivial O(nm lgn)-bit
encoding when n = Ω(km). They also proposed an O(nm lgn)-bit data structure which
supports Top-k queries in O(k) time.

1.2 Our results
For any 2 × n array A, we first show, in Section 2, that given the sorted 1-sided Top-k
encodings of the two individual rows, we can support the 3-sided sorted (resp., unsorted)
Top-k queries on A using an additional d(n− bk/2c) lg 3e+ o(n) (resp., d2n lg 3e+ o(n)) bits.
For unsorted queries, our encoding can answer the queries in 2T (n, k) + O(1) time, when
one can answer the 1-sided sorted Top-k queries for each row in T (n, k) time.

For 4-sided Top-k queries on A, we show that 4n bits are sufficient for answering sorted
4-sided Top-k queries on 2 × n array, when encodings for answering sorted 2-sided Top-k
queries for each row are given. This encoding is obtained by extending a DAG for answering
Top-2 queries on 2×n array which is proposed by Jo et al. [11], but we use a different approach
from their encoding to encode the DAG. Our result generalizes the (5n−O(lgn))-bit encoding
of RMQ query on 2×n array proposed by Golin et al. [8] to general k, and shows that we can
encode a joint Cartesian tree for general k (which corresponds to the DAG in our paper) using
4n bits. Note that the additional space is independent of k. We also obtain a data structure
for answering Top-k queries in O(k2 + kT (n, k)) time using 2S(n, k) + (4k+ 7)n+ ko(n) bits,

ISAAC 2018
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if there exists an S(n, k)-bit encoding to answer sorted 2-sided Top-k queries on a 1D array
of size n in T (n, k) time. Comparing to the 2S(n, k) + 4n + o(n)-bit encoding, this data
structure uses more space but supports Top-k queries efficiently (the 2S(n, k) + 4n+ o(n)-bit
encoding takes O(k2n2 + nkT (n, k)) time for answering Top-k queries).

By extending the 2S(n, k)+4n+o(n)-bit encoding on 2×n array, we obtain (m lg
((k+1)n

n

)
+

2nm(m− 1) + o(n))-bit encoding for answering 4-sided Top-k queries on m× n arrays. This
improves upon the trivial O(mn lgn)-bit encoding when m = o(lgn), and also generalizes
the nm(m+ 3)/2-bit encoding [8] for answering RMQ queries. Comparing with Jo et al.’s [11]
(m2 lg

((k+1)n
n

)
+m lgm+ o(n))-bit encoding, our encoding takes less space in all cases (for

k > 1) since m2 lg
((k+1)n

n

)
= m lg

((k+1)n
n

)
+ m(m − 1) lg

((k+1)n
n

)
. The trivial encoding

of the input array takes O(nm lgn) bits, whereas one can easily show a lower bound of
Ω(nm lg (max (m, k))) bits for any encoding of an m× n array that supports Top-k queries
since at least O(nm lgm) bits are necessary for answering RMQ queries [3], and at least n lg k
bits are necessary for answering Top-k queries for each row [10]. Thus, there is only a small
range of parameters where a strict improvement over the trivial encoding is possible. Our
result closes this gap partially, achieving a strict improvement when m = o(lgn).

Finally in Section 4, given a 2× n array A, we consider the lower bound on additional
space required to answer unsorted (or sorted) Top-k on A when encodings of Top-k query for
each row are given. We show that at least 1.27(n− k/2)− o(n) (or 2n−O(lgn)) additional
bits are necessary for answering unsorted (or sorted) 3-sided Top-k queries on A, when
encodings of unsorted (or sorted) 1-sided Top-k query for each row are given. We also show
that 2n−O(lgn) additional bits are necessary for answering sorted 4-sided Top-k queries on
A, when encodings of unsorted (or sorted) 2-sided Top-k query for each row are given. These
lower bound results imply that our encodings in Sections 2 and 3 are close to optimal (i.e.,
within O(n) bits of the lower bound), since any Top-k encoding for the array A also needs
to support the Top-k queries on the individual rows. All these results are summarized in
Table 1.

2 Encoding 3-sided range Top-k queries on 2 × n array

In this section, we consider the upper bounds on space for encoding unsorted and sorted
3-sided Top-k queries on 2× n array A[1, 2][1 . . . n], given the encodings of Top-k on the two
individual rows. For the case of k = 1 (i.e., the RMQ problem), there exists an optimal
(5n−O(lgn))-bit encoding of a 2×n array, which stores two Cartesian trees for the individual
rows, and encodes the additional information (to answer the queries involving both rows)
using a joint Cartesian tree [8]. In the rest of this section, we assume that k > 1. We first
consider answering unsorted and sorted 3-sided Top-k queries. If sorted 1-sided Top-k queries
on each row can be answered using S(n, k) space4, we can support unsorted and sorted 3-sided
Top-k queries on A using (2S(n, k) + d(n−bk/2c) lg 3e) and (2S(n, k) + d2n lg 3e+ o(n)) bits
respectively. For i ∈ {1, 2}, let Ai = [ai1, . . . , ain] be an array of size n constituting the i-th
row of A and let (i, j) denote the position in the i-th row and j-th column in A. We first
introduce a lemma from Grossi et al. [9], to support queries efficiently.

4 here and in the rest of the paper, we assume that S(n, k) = S(n, n) for k > n
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I Lemma 1 ([9]). Let A be an array of size n over an alphabet of size 3. Then one can
encode A using at most nH0(A) + o(n) ≤ dn lg 3e+ o(n) bits, while supporting the following
queries in O(1) time (H0(A) denotes the zeroth-order entropy of A).

rankA(x, i) : returns the number of occurrence of the symbol x in A[1 . . . i]
selectA(x, i) : returns the position of the i-th occurrence of the symbol x in A.

Also, we define rankA(x, 0) = selectA(x, 0) = 0

Encoding unsorted 3-sided Top-k queries on 2 × n array. We now show how to support
(unsorted and sorted) 3-sided Top-k queries on a 2 × n array A, given the sorted 1-sided
Top-k encodings on the two rows A1 and A2. (Note that in 1D, the space used by the sorted
and unsorted 1-sided Top-k encodings differ by O(k lg k) bits.) For 1 ≤ i ≤ n, let fi and
si = k − fi be the number of answers to the (sorted or unsorted) Top-k(1, 2, 1, i) query that
belong to the first row and the second row, respectively. We first consider the unsorted case.
Since the encodings for answering unsorted 1-sided Top-k queries on A1 and A2 are given, it
is enough to show how to answer 1-sided Top-k queries on A (to support all possible unsorted
3-sided Top-k queries).

I Theorem 2. (∗)5 Let A be a 2× n array. For 1 < k ≤ 2n, if we have S(n, k)-bit encoding
which can answer the sorted 1-sided Top-k queries for each row in T (n, k) time, then we can
answer unsorted 3-sided Top-k queries on A using (2S(n, k) + d(n− bk/2c) lg 3e+ o(n)) bits
with 2T (n, k) +O(1) query time.

Encoding sorted 3-sided Top-k queries on 2 × n array. We now consider the encoding
for answering sorted 3-sided Top-k queries on 2 × n array A, when sorted 1-sided Top-k
encodings for the two rows A1 and A2 are given. Similar to the unsorted case, it is enough to
show how to support the sorted 1-sided Top-k queries on A. We first give an encoding that
uses less space for small values of k, and later give another encoding that is space-efficient
for large values of k

I Theorem 3. (∗) Let A be a 2× n array. For 1 < k ≤ n, if we have S(n, k)-bit encoding
which can answer the sorted 1-sided Top-k queries for each row in T (n, k) time, then we can
encode A using 2S(n, k) + kn bits to support sorted 3-sided Top-k queries in 2T (n, k) time.

The additional space used in Theorem 3 is close to the optimal for k = 1, 2 or 3, but
increases with k. Using similar ideas, one can obtain another encoding that uses 2n lg(k + 1)
bits, in addition to the individual row encodings. In the following, we give an alternative
encoding whose additional space is independent of k.

I Theorem 4. (∗) Let A be a 2 × n array. For 1 < k ≤ 2n, suppose we have S(n, k)-bit
encoding which can answer the sorted 1-sided Top-k queries. Then we can answer sorted
3-sided Top-k queries on A using (2S(n, k) + d2n lg 3e+ o(n)) bits.

If we use the (n lg k +O(n))-bit Top-k encoding of a 1D array by Grossi et al. [10] that
can answer sorted 1-sided Top-k query on 1D array of size n in O(k lg k) time, then we obtain
3-sided unsorted (or sorted) Top-k encodings on A using 2n lg k +O(n) bits. Furthermore
for unsorted queries, we can answer the query in O(k lg k) time. Also if one can construct
an encoding for answering 1-sided unsorted (or sorted) Top-k queries on individual rows

5 Proofs of the results marked with (∗) is omitted due to space limitation, and can be found in the
extended version [12].
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in C(n, k) time, we can construct an encoding for answering 3-sided unsorted (or sorted)
Top-k queries in O(C(n, k) + n lg k) time as follows. Since it is enough to know the answers
of unsorted (or sorted) Top-k(1, 2, 1, i) queries for 1 ≤ i ≤ n to construct, we maintain a
min-heap and insert the first k values (in column-major order) to the heap and sort them
using O(k lg k) time. After that, whenever we insert a next value in A in column-major
order, we delete the smallest value in the heap, using O((n− k) lg k) time in total. The data
structure of Lemma 1 can be constructed in O(n) time [9].

3 Encoding 4-sided Top-k queries on 2 × n array

In this section, we describe the encoding of sorted 4-sided Top-k on 2× n array A, assuming
that sorted 2-sided Top-k encodings on A1 and A2 are given. We show that we can encode
sorted 4-sided Top-k queries on A using at most 2S(n, k) + 4n bits if sorted 2-sided Top-k
queries on each row can be answered in T (n, k) time using S(n, k) bits. By extending
this encoding to an n × m array, we obtain an mS(n, k) + 2nm(m − 1)-bit encoding for
answering the 4-sided Top-k query on m× n array. Note that if we use Gawrychowski and
Nicholson’s (lg

((k+1)n
n

)
+ o(n))-bit optimal encoding for sorted 2-sided Top-k queries on a

1D array [7], we obtain an encoding that takes (m lg
((k+1)n

n

)
+ 2nm(m− 1) + o(n)) bits for

answering 4-sided Top-k queries. This improves upon the trivial O(mn lgn)-bit encoding
when m = o(lgn), and comparing with Jo et al.’s [11] (m2 lg

((k+1)n
n

)
+ m lgm + o(n))-bit

encoding, our encoding takes less space than in all cases when k > 1. Finally for 2× n array,
we describe a data structure for answering Top-k queries in O(k2 + kT (n, k)) time using
2S(n, k) + (4k + 7)n + ko(n) bits, which supports Top-k queries in efficient time, and for
small constant k (2 ≤ k < 160), this data structure takes less space than constructing a
data structure of Grossi et al. [10] on the array of size 2n which stores the values in A in
column-major order.

We first define a binary DAG Dk
A on A, which generalizes the binary DAG defined by

Jo et al. to answer Top-2 queries on A [11]. Then we show how to encode Dk
A using 4n

bits, to answer the sorted 4-sided Top-k queries on A. Every node p in Dk
A is labeled with

some closed interval p = [a, b], where 1 ≤ a, b ≤ n. We use Top-k(p) to refer to the sorted
Top-k(1, 2, a, b, A) query. For a node p = [a, b] in Dk

A and 1 ≤ i ≤ k, let (pi
r, p

i
c) be the

position of the i-th largest element in A[1, 2][a . . . b]. Now we define Dk
A as follows (see

Figure 1 for an example.).

1. The root of Dk
A is labeled with the range [1, n].

2. A node [a, b] does not have any child node (i.e leaf node) if 2(b− a+ 1) ≤ k.
3. Suppose there exists a non-leaf node p = [a, b] in Dk

A, and let a′ and b′, where a ≤ a′ ≤
b′ ≤ b, be the leftmost and rightmost column indices among the answers of Top-k(p),
respectively. If a < b′, then the node p has a node [a, b′ − 1] as a left child. Similarly, if
a′ < b, the node p has a node [a′ + 1, b] as a right child.

The following lemma states some useful properties of Dk
A. All the statements in the

lemma can be proved by simply extending the proofs of the lemmas in [11].

I Lemma 5 ([11]). Let A be a 2 × n array. For any two distinct nodes p = [ap, bp] and
q = [aq, bq] in Dk

A, following statements hold.
(i) Top-k(p) 6= Top-k(q) (i.e., any two distinct nodes have different Top-k answers).
(ii) p ⊂ q if and only if p is descendant of q.
(iii) For any interval [a, b] with 1 ≤ a ≤ b ≤ n, there exists a unique node p[a,b] in Dk

A such
that [a, b] ⊂ p[a,b], and any descendant of p[a,b] does not contain [a, b]. Furthermore, for
such a node p[a,b], Top-k([a, b]) = Top-k(p[a,b]).
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A1 1 21 17 12 20 3 15 11 10
A2 6 5 16 14 19 2 18 4 7

[1,9]

[1,4] [3,9]

[1,2] [3,4] [3,6] [6,9]

[1,1] [2,2] [3,3] [4,4] [4,6] [6,7] [8,9]

[7,7] [8,8] [9,9]

[5,6]

[5,5] [6,6]

Figure 1 2× n array A and the DAG D3
A.

By Lemma 5(iii), if the DAG Dk
A and the answers for each sorted 2-sided Top-k queries cor-

responding to all the nodes in Dk
A are given, then we can answer any sorted Top-k(1, 2, a, b, A)

query by finding the corresponding node in p[a,b] in Dk
A.

Now we describe how to encode Dk
A to answer the Top-k(p) query for each node p ∈ Dk

A.
Our encoding of Dk

A uses a different approach from the encoding of Jo et al. [11], which
encodes by traversing D2

A in level order. We say that a node p = [a, b] picks the position
(x, y) if we store the information that (x, y) is the position of the i-th largest element in
A[1, 2][a . . . b], for some i ≤ k. To encode the DAG Dk

A, we traverse its nodes in a modified
level order, which we describe later. While traversing the nodes of Dk

A in the modified
level order, we classify the nodes as visited, half-visited, or unvisited. All the nodes are
initially unvisited, and the traversal continues until all the nodes in DA

k are visited. During
the traversal of unvisited or half-visited node, we may pick a position whose column index
is contained in that node (under some conditions, described later). Whenever we pick a
position, we store one bit of information to resolve some of the queries. We bound the overall
additional space to 4n bits by showing that each position in A is picked at most twice. For
two nodes pi = [ai, bi] and pj = [aj , bj ] with pi 6⊂ pj and pj 6⊂ pi, we say the node pi preceeds
the node pj if ai < aj .

When the traversal starts at the root node [1, n], we pick all positions which are answers to
the Top-k(1, n,A) query. Since we know the answers to the Top-k(1, n,A1) and Top-k(1, n,A2)
queries, the positions that are picked at the root can be encoded using a k-bit sequence
a1 . . . ak where ai represents the row index of the i-th largest element in A[1, 2][1 . . . n], for
1 ≤ i ≤ k. From the definition of Dk

A, if the label of a node p and the answers of the Top-k(p)
query are given, then it is easy to compute the labels of the children of p.

Since it is trivial to answer the Top-k query at a leaf node, we only focus on the
non-leaf nodes. Suppose that we traverse to a non-leaf node p = [a, b], and let q be one
of its parent nodes (note that a node can have multiple parents in a DAG). Note that
1 ≤ |Top-k(q)−Top-k(p)| ≤ 2, since p contains all the Top-k answers of q except one or both
positions from the column a− 1 or from the column b+ 1. We first consider the case when
|Top-k(q)− Top-k(p)| = 1 (this also includes the case when there exists another parent node
q′ of p such that |Top-k(q) − Top-k(p)| = 1 and |Top-k(q′) − Top-k(p)| = 2). In this case,
traversal visits the node p only once in modified level order, and picks at most one position
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at node p. Let Top-k(q) − Top-k(p) = {(qk′

r , q
k′

c )} for some k′ ≤ k. From the construction
of Dk

A and Lemma 5(ii), it is clear that (p`
r, p

`
c) = (q`

r, q
`
c) if ` < k′; (p`

r, p
`
c) = (q`+1

r , q`+1
c )

if k′ ≤ ` < k; and Top-k(p) − Top-k(q) = {(pk
r , p

k
c )}. Therefore, if the answers of the

Top-(k − 1)(p) query are composed of fp positions from the first row and sp = (k − 1− fp)
positions from the second row, then we can find (pk

r , p
k
c ) by comparing (fp + 1)-th largest

element in A1 and (sp + 1)-th largest element in A2 using Top-k(a, b, A1) and Top-k(a, b, A2)
queries, (we define the position of these elements as the first-candidates of node p), and
choosing the position with larger element. Note that if the answers of the Top-(k − 1)(p)
query contains all positions in A[1][a . . . b] or A[2][a . . . b], there is no first-candidate of node
p at the first or second row respectively. In this case we do not pick any positions at node
p. Now suppose that (1, x) and (2, y) are the first-candidates of node p, and without loss
of generality suppose A[1][x] > A[2][y], and hence (pk

r , p
k
c ) = (1, x). Then we consider the

following cases.

1. If both (1, x) and (2, y) is not picked in the former nodes in Dk
A in modified level order,

we pick (1, x).
2. Suppose (1, x) or (2, y) is already picked by a visited or half-visited node p′ = [a′, b′].

Then we pick (1, x) at node p if and only if for all such p′ does not contain both x and y.

Suppose that Top-(k − 1)(p) is given and one of the first-candidates is picked at node
p. Then we can store its information using one bit, by representing the row index of the
first-candidate picked at p.

Now consider the case |Top-k(q) − Top-k(p)| = 2, and let Top-k(q) − Top-k(p) =
{(qk′

r , q
k′

c ), (qk′′

r , qk′′

c )} for some k′ < k′′ ≤ k. In this case, the traversal visits the node
p twice in modified level order, and picks at most two positions at node p. From the construc-
tion of Dk

A and Lemma 5(ii), it is clear that (p`
r, p

`
c) = (q`

r, q
`
c) if ` < k′; (p`

r, p
`
c) = (q`+1

r , q`+1
c )

if k′ ≤ ` < k′′; (p`
r, p

`
c) = (q`+2

r , q`+2
c ) if k′′ ≤ ` < k − 1; and Top-k(p) − Top-k(q) =

{(pk−1
r , pk−1

c ), (pk
r , p

k
c )}. Therefore, if the answers of Top-(k − 2)(p) query are composed of

fp and sp = (k − 2 − fp) positions in the first and the second row respectively, we can
find (pk−1

r , pk−1
c ) by comparing (fp + 1)-th largest element in A1 and (sp + 1) in A2 using

Top-k(a, b, A1) and Top-k(a, b, A2) query (we again define the position of these elements as
the first-candidates of node p), Suppose that (1, x) and (2, y) are first-candidates of node p,
and without loss of generality suppose A[1][x] > A[2][y], and hence (pk−1

r , pk−1
c ) = (1, x). In

this case, we first pick (1, x) or do not pick anything at node p by the procedure described
above, when we first traverse p in modified level order. When we visit p for the second time,
we can find (pk

r , p
k
c ) by comparing A2[y] with the (fp + 2)-th largest element in A1 (we define

the positions of these elements as the second-candidates of node p), and choose the position
with the larger element. Note that if the answers of the Top-(k − 1)(p) query contains all
positions in A[1][a . . . b] or A[2][a . . . b], there is no second-candidate of node p at the first
or second row respectively. In this case we do not pick any positions at node p during the
second visit of p. Again, suppose that (1, x′) and (2, y) are the second-candidates of node p
and without loss of generality suppose A[1][x′] < A[2][y], and hence(pk

r , p
k
c ) = (2, y). Then

we consider the following cases.

1. If both (1, x′) and (2, y) is not picked in the former nodes in Dk
A in the modified level

order, we pick (2, y).
2. Suppose (1, x′) or (2, y) is already picked by the visited or half-visited p′′ = [a′′, b′′]. Then

we pick (2, y) at node p if and only if for all such p′′ does not contain both x′ and y.
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Note that if Top-(k − 2)(p) is given and (1, x) is picked at node p, we can store its
information using one bit, by representing a row index of first-candidate picked at p. Similarly,
if Top-(k − 1)(p) is given and (2, y) is picked at node p, we can store its information using
one more bit.

Now we describe the algorithm to traverse the nodes in Dk
A in the modified level order.

In modified level order, for any two nodes p = [i, j] and p′ = [i′, j′], we traverse p prior
to p′ if and only if all column indices of p′’s first or second candidates are contained in p.
Furthermore by the procedure described above, we do not pick any position at p′ in this case
if there exists a position which is the first or second candidate of both p and p′. In the DAG,
the level of the node p, denoted by l(p), is defined as the number of edges in the longest path
from root to p.

1. Mark the root of Dk
A as visited, and add its children into visit-list, which is an ordered

list such that for two nodes p and q in visit-list, p comes before q in visit-list if and only
if l(p) < l(q) or l(p) = l(q) and p precedes q in the DAG.

2. Find the leftmost unvisited or half-visited node p from visit-list which satisfies one of the
following conditions (without loss of generality, assume that x ≤ y).

Number of first or second candidates of p is less than 2.
First or second candidates of p are (1, x) and (2, y), and there exists no node p′ in
visit-list such that (a) p ⊂ p′, or (b) p′ precedes p and x ∈ p′, or (c) p precedes p′ and
y ∈ p′.

Then we continue the traversal from p.
3. Let q be a parent of p. If (i) |Top-k(q)− Top-k(p)| = 1, or (ii) |Top-k(q)− Top-k(p)| = 2

and p is half-visited, or (iii) the number of first or second candidates of p is less than
2, then mark p as visited, delete p from the visit-list, and insert p’s children (if any) to
visit-list. If none of these three conditions hold, then mark p as half-visited.

4. Repeat Steps 2 and 3 until all the nodes in Dk
A are marked as visited.

For example we traverse the nodes of D3
A in Figure 1 as: [1, 9]→ [1, 4]→ [1, 4]→ [3, 9]→

[1, 2] → [1, 2] → [3, 6] → [6, 9] → [6, 9] → [1, 1] → [2, 2] → [3, 4] → [4, 6] → [6, 7] → [8, 9] →
[8, 9] → [3, 3] → [4, 4] → [5, 6] → [8, 8] → [9, 9] → [5, 5] → [6, 6]. During the traversal (in
the above order), the position(s) picked at each node are: {(1, 2), (1, 5), (2, 5)} → (1, 3)→
(2, 3) → (2, 7) → (1, 1) → (1, 2) → ε → (1, 7) → (1, 8) → ε → ε → (2, 4) → ε → (1, 6) →
(1, 9)→ (2, 9)→ ε→ ε→ ε→ ε→ ε→ ε→ ε, respectively (ε indicates that no position is
picked). Now we bound the total number of picked positions during the traversal of Dk

A.

I Lemma 6. (∗) Given 2×n array A[1, 2][1 . . . n] and DAG Dk
A, any position in A is picked

at most twice while we traverse all nodes in Dk
A in the modified level order.

Now we prove our main theorem. To obtain a construction time of our encoding, we first
introduce a lemma which states a maximum number of nodes in Dk

A.

I Lemma 7. (∗) Given 2× n array A and DAG Dk
A, there are at most 6kn nodes in Dk

A.

I Theorem 8. (∗) Given a 2× n array A, if there exists an S(n, k)-bit encoding to answer
sorted 2-sided Top-k queries on a 1D array of size n in T (n, k) time and such encoding
can be constructed in C(n, k) time, then we can encode A in 2S(n, k) + 4n bits using
O(C(n, k) + k2n2 + knT (n, k)) time.

We can obtain an encoding for answering sorted 4-sided Top-k queries on an m× n array
by extending the encoding of a 2× n array described in Theorem 8 as stated below.
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I Theorem 9. (∗) Given an m × n array A, if there exists an S(n, k)-bit encoding to
answer sorted 2-sided Top-k queries on a 1D array of size n, then we can encode A in
mS(n, k) + 2nm(m− 1) bits, to support sorted 4-sided Top-k queries on A.

Data structure for answering 4-sided Top-k queries on 2 × n array. The encoding of
Theorem 8 shows that 4n bits are sufficient for answering Top-k queries whose range spans
both rows, when encodings for answering sorted 2-sided Top-k queries for each row are
given. However, this encoding does not support queries efficiently (takes O(k2n2 +knT (n, k))
time) since we need to reconstruct all the nodes in DA to answer a query (in the worst
case). We now show that the query time can be improved to O(k2 + kT (n, k)) time if we
use (4k + 7)n + ko(n) additional bits. Note that if we simply use the data structure of
Grossi et al. [10] (which takes 44n lg k + O(n lg lg k) bits to encode a 1D array of length
n to support Top-k queries in O(k) time) on the 1D array of size 2n obtained by writing
the values of A in column-major order, we can answer Top-k queries on A in O(k) time
using 88n lg k +O(n lg lg k) additional bits. Although our data structure takes more query
time and takes asymptotically more space, it uses less space for small values of k (note that
4k + 7 < 88 lg k for all integers 2 ≤ k < 160) when n is sufficiently large. We now describe
our data structure.

We first define a graph G12 = (V (G12), E(G12)) on A as follows. The set of vertices
V (G12) = {1, 2, . . . n}, and there exists a edge (i, j) ∈ E(G12) if and only if (i) i < j and
A[1][i] < A[2][j], (ii) there are at most k − 1 positions in A[1, 2][i . . . j] whose corresponding
values are larger than both A[1][i] and A[2][j], and (iii) there is no vertex j′ > i that satisfies
the condition (ii) such that A[1][j] < A[2][j′] < A[2][j]. We also define a graph G21 on A
which is analogous to G12. Each of the graphs G12 and G21 have n vertices and at most n
edges. Also for any vertex v ∈ V (G12) (resp., V (G21)), there exists at most one vertex v′ in
G12 (resp., G21) such that v is incident to v′ and v < v′. We now show that G12 (thus, also
G21) is a k-page graph, i.e. there exist no k + 1 edges (i1, j1) . . . (ik+1, jk+1) ∈ E(G12) such
that i1 < i2 · · · < ik+1 < j1 < j2 · · · < jk+1.

I Lemma 10. Given 2× n array A, a graph G12 on A is k-page graph.

Proof. Suppose that there are k + 1 edges (i1, j1) . . . (ik+1, jk+1) ∈ E(G12) such that i1 <
i2 · · · < ik+1 < j1 < j2 · · · < jk+1, and for 1 ≤ t ≤ k + 1, let it be a position of the minimum
element in A1[i1 . . . ik+1]. Then by the definition fo G12, there are at least k positions
(1, it+1), . . . , (1, ik+1), (2, j1), . . . , (2, jt−1) in A[1, 2][it . . . jt] whose corresponding values in A
are larger than both A[1][it] and A[2][jt], which contradicts the definition of G12. J

From the above lemma and the succinct representation of k-page graphs of Munro and
Raman [15] (with minor modification as described in [6]), we can encode G12 and G21 using
(4k + 4)n + ko(n) bits in total, and for any vertex v in V (G12) ∪ V (G21), we can find a
vertex with the largest index which incident to v in O(k) time. Also to compare the elements
in the same column, we maintain a bit string PA[1 . . . n] of size n such that for 1 ≤ i ≤ n,
PA[i] = 0 if and only if A[1][i] > A[2][i]. Finally, for G12 (resp., G21), we maintain another
bit string Q12[1 . . . n−1] (resp., Q21[1 . . . n−1]) such that for 1 ≤ i ≤ n−1, Q21[i] = 1 (resp.,
Q21[i] = 1) if and only if all elements in A2[i+ 1 . . . n] (resp., A1[i+ 1 . . . n]) are smaller than
A[1][i] (resp., A[2][i]). We now show that if there is an encoding which can answer the sorted
Top-k queries on each row, then the encoding of G12, G21, and the additional arrays defined
above are enough to answer 4-sided Top-k queries on A.
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I Theorem 11. (∗) Given a 2 × n array A, if there exists an S(n, k)-bit encoding to
answer sorted 2-sided Top-k queries on a 1D array of size n in T (n, k) time, then there is
a 2S(n, k) + (4k + 7)n+ ko(n)-bit data structure which can answer Top-k queries on A in
O(k2 + kT (n, k)) time.

4 Lower bounds for encoding range Top-k queries on 2 × n array

In this section, we consider the lower bound on space for encoding a 2×n array A to support
Top-k queries, when k > 1. Specifically for 1 ≤ i ≤ j ≤ n, we consider to lower bound on
extra space for answering i) unsorted and sorted 3-sided Top-k(1, 2, 1, i) queries, assuming
that we have access to the encodings of the individual rows of A that can answer unsorted or
sorted 1-sided Top-k queries and ii) sorted 4-sided Top-k(1, 2, i, j) queries, assuming that we
have access to the encodings of the individual rows of A that can answer sorted 2-sided Top-k
queries. We show that for answering unsorted (or sorted) 3-sided Top-k(1, 2, 1, i) queries on
A, at least 1.27n−o(n) (or 2n−O(lgn)) extra bits are necessary, and for answering unsorted
or sorted 4-sided Top-k(1, 2, i, j) queries on A, at least 2n−O(lgn) extra bits are necessary.

For simplicity (to avoid writing floors and ceilings, and to avoid considering some boundary
cases), we assume that k is even. (Also, if k is odd we can consider the lower bound on extra
space for answering 3-sided Top-k queries as the lower bound of extra space for answering
3-sided Top-(k − 1) queries – it is clear that former one requires more space.) For both
unsorted and sorted query cases, we assume that all elements in A are distinct, and come
from the set {1, 2, . . . 2n}; and also that each row in A is sorted in the ascending order.
Finally, for 1 ≤ ` ≤ 2n, we define the mapping A−1(`) = (i, j) if and only if A[i][j] = `.

Unsorted 3-sided Top-k query. If n ≤ k/2 we do not need any extra space since all
positions are answers of unsorted Top-k(1, 2, 1, i, A) queries for i ≤ n. If not (n > k/2), for
1 ≤ i ≤ n − k/2, let Ui be a set of arrays of size 2 × n such that i) for any B ∈ Ui, all of
{1, 2 . . . 2i} are in B[1, 2][1 . . . i] and each row in B is sorted in the ascending order, and ii) for
any two distinct arrays B,C ∈ Ui, there exists 1 ≤ j ≤ i such that {B−1(2j−1), B−1(2j)} 6=
{C−1(2j − 1), C−1(2j)}. By the definition of Ui, it is easy to show that for any two
distinct arrays B,C ∈ Ui, unsorted Top-k(1, 2, 1, k/2 + j, B) 6= Top-k(1, 2, 1, k/2 + j, C) if
{B−1(2j − 1), B−1(2j)} 6= {C−1(2j − 1), C−1(2j)} for some j ≤ i. We compute the size of
Ui as follows. |U1| = 1 since there exists only one case as {B−1(1), B−1(2)} = {(1, 1), (2, 1)}.
For i = 2, we can consider three cases as (1, 2, 3, 4), (1, 3, 2, 4), or (1, 4, 2, 3) if we write the
elements of B[1, 2][1, 2] in U2 in row-major order (note that each row is sorted in ascending
order). By computing the size of Ui for 2 < i ≤ n− k/2, we obtain a following theorem.

I Theorem 12. Given a 2× n array A and encodings for answering unsorted (or sorted)
1-sided Top-k queries on both rows in A, at least d(n− k/2) lg (1 +

√
2)e − o(n) = 1.27(n−

k/2)− o(n) additional bits are necessary for answering unsorted 3-sided Top-k queries on A.

Proof. (Sketch) Since we need at least lg |Un−k/2| bits of extra space for answering unsorted
Top-k queries which span both rows, we only need to compute the size of Un−k/2. To compute
this, for 2 < i ≤ n− k/2, we construct the arrays in Ui from the arrays in Ui−1, and obtain
the recurrence relation: |Ui| = 3|Ui−2|+ 2(|Ui−1| − |Ui−2|). Solving this gives us the stated
bound. Details of the proof are omitted due to space limitation. J

Sorted 3-sided and 4-sided Top-k query. In this case we divide a 2 × n array A into
2n/k blocks A1 . . . A2n/k of size 2 × k/2 as for 1 ≤ ` ≤ k/2, A`[i][j] = A[i][2(` − 1) +
j] and all values of A` are in {k(` − 1) + 1 . . . k`}. Then for any 2 × n array A and
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A′, sorted Top-k(1, 2, k(i − 1)/2 + 1, ki/2, A) 6= Top-k(1, 2, k(i − 1)/2 + 1, ki/2, A′), and
Top-k(1, 2, 1, ki/2, A) 6= Top-k(1, 2, 1, ki/2, A′) if Ai 6= A′i for 1 ≤ i ≤ 2n/k. Let Si be the set
of arrays of size 2× i such that for any B ∈ Si, all values of B are in {1, 2i} and both rows of
B are sorted in ascending order. Since the size of Si is same as central binomial number,

(2i
i

)
,

which is well-known as at least 4i/
√

4i [13]. Therefore, at least d2n lg |Sk/2|/ke ≥ 2n−O(lgn)
bits are necessary for answering sorted Top-k queries that span both the rows, when encodings
for answering sorted (or unsorted) on both rows are given.

I Theorem 13. Given a 2× n array A, at least 2n−O(lgn) additional bits are necessary
for answering sorted 3-sided (resp., 4-sided) Top-k queries on A if encodings for answering
unsorted (or sorted) 1-sided (resp., 2-sided) Top-k queries on both rows in A are given.

5 Conclusion

In this paper, we proposed encodings for answering Top-k queries on 2D arrays. For 2× n
arrays, we proposed upper and lower bounds on space for answering 3-sided sorted and
unsorted Top-k queries. Finally, we obtained an (m lg

((k+1)n
n

)
+ 2nm(m − 1) + o(n))-bit

encoding for answering 4-sided sorted Top-k queries on m × n arrays. We end with the
following open problems: (a) can we support 4-sided sorted Top-k queries with efficient query
time on m × n arrays using less than O(nm lgn) bits when m = o(lgn)? (b) is there any
improved lower or upper bound for answering 4-sided sorted Top-k queries on 2× n arrays?
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